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Abstract: Inbreeding depression has been widely documented for livestock and other animal and
plant populations. Inbreeding is generally expected to have a stronger unfavorable effect on fitness
traits than on other traits. Traditionally, the degree of inbreeding depression in livestock has been
estimated as the slope of the linear regression of phenotypic values on pedigree-based inbreeding
coefficients. With the increasing availability of SNP-data, pedigree inbreeding can now be replaced
by SNP-based measures. We performed a meta-analysis of 154 studies, published from 1990 to 2020
on seven livestock species, and compared the degree of inbreeding depression (1) across different
trait groups, and (2) across different pedigree-based and SNP-based measures of inbreeding. Across
all studies and traits, a 1% increase in pedigree inbreeding was associated with a median decrease
in phenotypic value of 0.13% of a trait’s mean, or 0.59% of a trait’s standard deviation. Inbreeding
had an unfavorable effect on all sorts of traits and there was no evidence for a stronger effect
on primary fitness traits (e.g., reproduction/survival traits) than on other traits (e.g., production
traits or morphological traits). p-values of inbreeding depression estimates were smaller for SNP-
based inbreeding measures than for pedigree inbreeding, suggesting more power for SNP-based
measures. There were no consistent differences in p-values for percentage of homozygous SNPs,
inbreeding based on runs of homozygosity (ROH) or inbreeding based on a genomic relationship
matrix. The number of studies that directly compares these different measures, however, is limited
and comparisons are furthermore complicated by differences in scale and arbitrary definitions of
particularly ROH-based inbreeding. To facilitate comparisons across studies in future, we provide
the dataset with inbreeding depression estimates of 154 studies and stress the importance of always
reporting detailed information (on traits, inbreeding coefficients, and models used) along with
inbreeding depression estimates.
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1. Introduction

Inbreeding depression refers to the decrease in mean phenotypic value with increased
levels of inbreeding [1,2]. The phenomenon of inbreeding depression was already docu-
mented in the 19th century by Charles Darwin, who studied 57 plant species and observed
that the offspring of self-fertilized plants were shorter, weighed less, flowered later, and
produced fewer seeds than the offspring of unrelated plants [3,4]. Since Darwin’s time,
inbreeding depression has been documented for a wide range of plant and animal species
and for both wild and domestic populations [5–10].

Inbreeding depression is caused by an increase in homozygosity associated with
inbreeding, which reduces the expression of dominance effects [1,2]. When dominance
effects are on average favorable (i.e., when there is directional dominance in the favorable
direction), the reduced expression of dominance effects results in a decrease in mean
phenotypic value. In the absence of epistasis, the expected decrease in mean phenotypic
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value is linear and equals −F ∑
i

2piqidi, where F is the genome-wide inbreeding coefficient,

di is the dominance effect at locus i, and pi and qi are the allelic frequencies at locus i [1,2]. In
the presence of epistasis, the relationship between mean phenotypic value and inbreeding
may be nonlinear. Although deviations from linearity have been observed in some livestock
populations (e.g., [11–14]), it is difficult to determine whether such deviations are truly the
result of epistasis or are due to statistical artifacts [2]. Hence, a linear relationship between
mean phenotypic value and inbreeding is commonly assumed.

The degree of inbreeding depression may differ across traits. Differences across traits
may exist due to variation in the (relative) size of dominance effects, in the extent to which
dominance effects act in the same direction or not, and in the role of epistasis. Meta-analyses
among wild, zoo, and laboratory animal populations have suggested stronger inbreeding
depression for primary fitness traits (e.g., fecundity, survival and development) than for
morphometric traits (e.g., adult body size) and physiological traits (e.g., metabolic markers
and parasite resistance) [2,6,7]. More recent analyses in wild and livestock populations,
however, do not necessarily support this hypothesis [8,10].

Traditionally, the degree of inbreeding depression is quantified as the slope of the linear
regression of phenotypes on pedigree-based inbreeding coefficients. With the increasing
availability of genomic information, in particular single nucleotide polymorphism (SNP)
data, pedigree inbreeding can be replaced by SNP-based inbreeding measures [15–17].
SNP-based measures include the percentage of homozygous SNPs [18], inbreeding derived
from the diagonal of a genomic-relationship matrix (GRM) [19,20], and inbreeding based on
runs of homozygosity (ROH) [21]. SNP-based measures may better predict homozygosity
across the genome and, consequently, may better capture the negative consequences
of homozygosity than pedigree inbreeding [22,23]. Among SNP-based measures, some
may better estimate inbreeding depression than others. Various simulation studies have
compared the use of different SNP-based measures for estimating inbreeding depression,
with somewhat mixed results [22,24–28]. It would be valuable to summarize the findings
from empirical studies comparing inbreeding depression estimates obtained from different
pedigree-based and SNP-based measures of inbreeding.

In this study, we performed a meta-analysis of inbreeding depression estimates in
livestock, based on 154 studies published from 1990 to 2020. Thereby, we extend the
meta-analysis of Leroy [10], who evaluated 57 studies. Our objective was to assess and
compare inbreeding depression estimates (1) across different trait groups, and (2) across
different pedigree-based and SNP-based measures of inbreeding. In addition, we stress the
importance of reporting detailed information (on traits, inbreeding measures, and models)
along with inbreeding depression estimates to facilitate meta-analyses in future.

2. Materials and Methods
2.1. Literature Search

A literature search was performed in Web of Science [29] and Scopus [30] on December
29, 2020. Species included were cattle, pig, chicken, sheep, goat, horse, and rabbit (as in
Leroy [10]). The search phrase was (“inbreeding depression” OR “effect* of inbreeding”) AND
(cattle OR cow* OR bull* OR pig* OR chicken* OR sheep* OR goat* OR horse* OR rabbit*). In
total, 696 hits from Web of Science and 532 hits from Scopus were obtained. After merging
these hits and removing duplicates, 766 unique studies remained.

Further filtering was performed with the aim to identify studies that reported inbreed-
ing depression as linear regression coefficients (b-values). Studies were discarded when (i)
they were published before 1990; (ii) they were about non-target species (e.g., guinea pigs,
horseshoe bats, or rabbiteye blueberries); (iii) they were about non-livestock populations
(e.g., wild or zoo populations); (iv) they did not report trait means nor standard deviations;
(v) they did not report b-values, but effects of inbreeding classes; (vi) they used quadratic or
exponential regression models, in which the quadratic/exponential effects were significant;
(vii) it was unclear if the effects were reported per 1%, 10%, or 100% increase in inbreeding;
or (viii) when the full article was not available through the library services of Wageningen
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University & Research. After filtering using these criteria, a total of 143 studies remained.
An additional eight studies, which were included in the meta-analyses of Leroy [10] or
Bezdíček [31] and were not found with the above search strategy, were added to the dataset.
Another three studies that were published at the beginning of 2021 were also added. The
final dataset included 154 studies [11,12,32–183].

2.2. Inbreeding Depression Estimates and Trait Classification

A total of 2321 inbreeding depression estimates were retrieved from the 154 studies.
Studies typically reported multiple estimates for different traits, for different breeds, for
direct and parental inbreeding effects and/or for different inbreeding measures. The
number of estimates per study ranged from 1 to 436, with a mean of 15.2 and a median of 6.
The complete dataset is available in the Supplementary Materials (Table S1).

To reduce the number of unique traits in the analyses, similar traits were combined into
a single trait. For example, traits like calving interval, days open, and the interval between
calving and insemination were combined into a single trait “fertility interval”. Traits
were classified into six trait groups: reproduction/survival, weight/growth, production,
conformation, health, and other traits. Classification into trait groups was similar as in
Leroy [10], plus an extra group of health traits, which included somatic cell score (SCS),
disease traits, and locomotion.

For each trait, the favorable phenotypic direction was determined. For traits where the
favorable direction was an increase in mean phenotypic value (e.g., milk yield or body size),
the b-values were used with their original sign. For traits where the favorable direction
was a decrease (e.g., SCS or mortality), the sign of b-values was changed. Traits with an
optimum or an unclear favorable direction (e.g., foot angle or meat pH) were excluded
from the analyses (n = 197 estimates, so that 2124 estimates remained).

2.3. Comparison across Traits and Trait Groups

To enable comparison across traits and trait groups, b-values were scaled by dividing
them by the trait mean (to obtain bm) or trait standard deviation (SD; to obtain bs). Not
every study reported trait means and SDs. Consequently, the number of available estimates
for bm and bs equaled 2094 and 1519, respectively. For the comparison across traits and
trait groups, SNP-based estimates were excluded (n = 257 for bm and n = 255 for bs). In
addition, outliers that were more than 3 SDs away from the mean were excluded (n = 19 for
bm and n = 5 for bs). After these edits, 1818 and 1259 pedigree-based estimates remained
for bm and bs, respectively. Descriptive statistics for bm and bs were calculated in R [184].
Skewness and kurtosis were determined with the package “moments” [185]. The following
model was then applied:

Yijk = µ + POPULATIONi + TRAIT_GROUPj + Eijk

where Yijk was the inbreeding depression estimate (either bm or bs); POPULATIONi was
the effect of the ith population; TRAIT_GROUPj was the effect of the jth trait group; and
Eijk was the error term. Population was defined as the combination of study and breed.
Study and breed were combined into a single effect, because many studies focused on a
single breed, and breeds were often investigated in a single study. The model was run with
the “glm” function in R [184]. Estimated marginal means (EMMs), also known as least
square means, were obtained for the different trait groups with the function “emmeans”
from the package “emmeans” [186]. Pairwise comparisons between EMMs were performed
with the function “pwpm” in emmeans [186], which applies Tukey–Kramer’s procedure to
account for multiple testing [187,188]. To study potential differences between individual
traits, the same model as above was used, but with TRAITj instead of TRAIT_GROUPj.
In the latter analysis, traits with less than 10 records were excluded.
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2.4. Comparison across Inbreeding Measures

For the comparison across inbreeding measures, the following measures were consid-
ered: pedigree inbreeding (FPED), inbreeding based on ROH (FROH), inbreeding derived
from the diagonal of a GRM (FGRM), inbreeding derived from the diagonal of a GRM
computed with allele frequencies of 0.5 (FGRM0.5), and the percentage of homozygous
SNPs (HOM). Note that FGRM0.5 and HOM are equivalent, except for a difference in scale,
with FGRM0.5 = 2HOM − 1 (Appendix A). Measures based on GRMs were combined into
FGRM, no matter which GRM was used. Measures based on ROH were considered as FROH ,
regardless of the criteria used to identify ROH (which can vary substantially, e.g., [189]).

Comparisons were made within studies and within traits. There were 12 studies
that reported b-values for at least two of the above-mentioned inbreeding mea-
sures [129,134,138,146,155,157,160,168,173,177,181,183]. These studies all reported trait
means and SDs, which were used to calculate bm and bs. The dataset used for the com-
parisons is provided in the Supplementary Materials (Table S2). A direct comparison
of bm and bs is inappropriate, because of scale differences between FPED, FROH , FGRM,
FGRM0.5, and HOM [26]. For example, HOM measures the probability of alleles being
“identical by state” (IBS) and typically has a mean of 60 to 70% and a SD of 1 to 2%,
whereas FPED measures the probability of alleles being “identical by descent” (IBD)
with reference to the founder generation and typically has a lower mean and larger SD
than HOM (Table S2). To account for such differences, bm and bs were standardized by
multiplying them by the SD of the inbreeding measure in the corresponding population,
so that they were expressed per 1 SD increase in inbreeding (rather than per 1%). For
one of the twelve studies [134], scaling was not possible because SDs of inbreeding
measures were not reported. This study was therefore excluded from the comparison
across inbreeding measures.

Significance of b-values was also compared across inbreeding measures. Test statistics

were calculated as
(

b
se(b)

)2
and these test-statistics were compared to a chi-square distri-

bution with one degree of freedom to obtain approximate p-values (following the Wald
test). Smaller p-values indicate a more significant association between inbreeding and
phenotypic value and suggest more predictive power to detect inbreeding depression.

3. Results
3.1. Inbreeding Depression Estimates for Different Traits and Trait Groups

Across all studies and traits, the median (mean) pedigree-based bm and bs equaled
−0.13 (−0.22) and −0.59 (−0.71), respectively. In other words, a 1% increase in FPED was
associated with a median decrease in phenotypic value of 0.13% of a trait’s mean, or 0.59%
of a trait’s SD. The distributions of bm and bs showed substantial kurtosis (i.e., were heavily
tailed) and were somewhat negatively skewed (Figure 1).
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For each trait group, except for the group “other traits”, the mean and median bm
and bs were negative (Figure 2). After correcting for the effect of population, the EMMs
of bm and bs for all groups, except “other traits”, were all negative and most were sig-
nificantly below zero (Table 1). The EMMs for bm and bs for “other traits” were positive
but not significantly different from zero (P > 0.05). When ignoring the “other traits” and
comparing groups based on bm, production traits and reproduction/survival traits showed
the most depression (EMMs of −0.308 and −0.302, respectively) and conformation traits
showed the least depression (EMM of −0.142). The difference between production and
reproduction/survival traits on one hand, and conformation traits on the other hand, was
also significant (P < 0.05), whereas other pairwise comparisons were not (Table S3). When
comparing trait groups based on bs, weight/growth traits showed the most depression
(EMM of −1.071) and reproduction/survival traits showed the least depression (EMM of
−0.410). For bs, there were no significant pairwise comparisons between EMMs of trait
groups (except with the group “other traits”; Table S4).
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Figure 2. Violin plots of inbreeding depression estimates per trait group. Estimates are expressed as a percentage of a trait’s
mean (bm) or as a percentage of a trait’s SD (bs). Boxplots are also shown, indicating the median, 25th and 75th quantiles
and the mean (×) for each group. For bm and bs, there were respectively 40 and 39 extreme estimates outside the range of
this figure.

When running a model with individual traits instead of trait groups, the EMMs for
individual traits showed substantial variation (Table S5). For bm, the EMMs ranged from
−0.938 to 0.321, with the vast majority below zero (39 out of 44, of which 19 with P < 0.05).
The EMMs above zero were not significant (P > 0.05). For bs, the EMMs ranged from −1.938
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to 1.522, with the majority being below zero (26 out of 29, of which there were eight with
P < 0.05) and only one EMM was significantly larger than zero (P < 0.05).

Table 1. Estimated marginal means of inbreeding depression estimates per trait group with standard errors (SEs). Inbreeding
depression estimates are expressed as percentage of a trait’s mean (bm) or as percentage of a trait’s SD (bs). The number of
estimates (N) and the p-value for testing the mean against zero are also shown.

bm bs

Trait Group N Estimate (SE) p-Value N Estimate (SE) p-Value

Reproduction/survival 590 −0.302 (0.032) <0.001 349 −0.410 (0.182) 0.024
Weight/growth 417 −0.227 (0.039) <0.001 231 −1.071 (0.244) <0.001
Conformation 419 −0.142 (0.046) 0.002 396 −0.487 (0.210) 0.020
Production 319 −0.308 (0.040) <0.001 216 −0.753 (0.215) <0.001
Health 39 −0.268 (0.099) 0.007 35 −0.891 (0.464) 0.055
Other traits 34 0.129 (0.103) 0.213 32 0.826 (0.471) 0.079

3.2. Inbreeding Depression Estimates for Pedigree-Based and SNP-Based Measures of Inbreeding

Standardized bm and bs generally correlated well across different inbreeding measures
(Figures 3 and 4). The highest correlations were found between FGRM0.5 and HO (0.97 for
bm and 0.94 for bs). Correlations between FROH and HOM, and correlations between FGRM
and FGRM0.5, were also high (i.e., ≥0.9). The lowest correlations were found between FROH
and FGRM (0.27 for bm and 0.52 for bs) and between FGRM and HOM (0.24 for bm and 0.47
for bs), although it should be noted that these correlations were low due to a single study
(shown in purple in Figures 3 and 4).
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Figure 3. Relationship between inbreeding depression estimates expressed as percentage of a trait’s mean per 1 standard
deviation increase in inbreeding (bm * SD(F)) across different measures of inbreeding. The data points (colored per study)
and linear trendline are shown (lower triangle) as well as the density curve for each inbreeding measure (diagonal) and
the correlation and regression equation (upper triangle). Note that slopes of the linear trendline differ from 1, which is
also expected when correlations between inbreeding measures themselves are not equal to 1. FPED = pedigree inbreeding;
FROH = inbreeding based on runs of homozygosity; FGRM = inbreeding from genomic relationship matrix (studies in pink
and purple used VanRaden’s method 2, and light blue Yang’s method); FGRM0.5 = inbreeding from genomic relationship
matrix with allele frequencies fixed to 0.5; HOM = percentage of homozygous SNPs.
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When comparing the significance of inbreeding depression estimates, SNP-based
inbreeding measures generally had lower p-values than pedigree inbreeding (Table 2). For
example, FROH had a lower p-value than FPED in 30 out of 38 comparisons (79%). In these
comparisons, the median p-value was 0.026 for FROH and 0.131 for FPED. Similarly, the
p-values for FGRM, FGRM0.5 and HOM were lower than those for FPED in the majority of
comparisons (7 out of 7 for FGRM, 21 out of 26 for FGRM0.5, and 15 out of 18 for HOM).

Among the SNP-based measures, no consistent differences in p-values were observed
(Table 2). For example, the percentage of comparisons in which the second measure had
a lower p-value than the first measure was 57% for the comparisons between FROH and
FGRM, 56% between FROH and HOM, and 50% between FGRM0.5 and HOM. The latter was
expected because of the equivalence of FGRM0.5 and HOM (Appendix A). In the comparison
between FROH and FGRM0.5, FROH had a lower p-value in 25 out of 40 comparisons (62%),
but the median p-value was very similar for the two measures (0.037 vs. 0.036). In the com-
parison between FGRM and HOM, FGRM had a lower p-value in 10 out of 14 comparisons
(71%), whereas the median p-value was smaller for HOM than for FGRM (0.009 vs. 0.071).
In the comparison between FGRM and FGRM0.5, FGRM0.5 had a lower p-value in 100% of the
comparisons, but this was based on only three comparisons in a single study.
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Table 2. Comparison of p-values of inbreeding depression estimates based on different pedigree-based and SNP-based
inbreeding measures. Comparisons were made within studies and for each combination of two inbreeding measures, where
both inbreeding measures had an unfavorable effect on the phenotype.

Comparisons P2 < P1

Measure 1 Measure 2 N Studies N Comparisons Median P1 Median P2 N % of Total

FPED FROH 8 38 0.131 0.026 30 79
FPED FGRM 1 7 0.186 <0.001 7 100
FPED FGRM0.5 4 26 0.046 0.005 21 81
FPED HOM 4 18 0.238 0.029 15 83
FROH FGRM 1 7 0.307 0.238 4 57
FROH FGRM0.5 5 40 0.037 0.036 15 38
FROH HOM 4 34 0.158 0.170 19 56
FGRM FGRM0.5 1 3 0.046 0.002 3 100
FGRM HOM 2 14 0.071 0.009 4 29

FGRM0.5 HOM 1 20 0.280 0.170 10 50

P1 = p-value of measure 1; P2 = p-value of measure 2.

4. Discussion

In this meta-analysis, 154 studies were evaluated. The objective was to assess and
compare the degree of inbreeding depression across different trait groups and across
different pedigree-based and SNP-based measures of inbreeding.

Across all studies and traits, a 1% increase in pedigree inbreeding was associated
with a median (mean) decrease in phenotypic value of 0.13% (0.22%) of a trait’s mean, or
0.59% (0.71%) of a trait’s standard deviation. These effects are similar to the mean bm of
0.14% and mean bs of 0.56% reported by Leroy [10]. Distributions of bm and bs showed
substantial kurtosis and were negatively skewed (Figure 1). The observed kurtosis might
be the result of the final distribution being a mixture of underlying distributions with
the same mean, but different SD (where studies with small sample size have a larger SD
of estimates). Such a mixture can have a higher kurtosis than the separate distributions,
as illustrated in Figure 5. The observed negative skewness could be due to publication
bias [7,8,190]. Multiple studies explicitly stated that non-significant estimates were not
reported (e.g., [93,130,147,178]). Omitting non-significant results does not necessarily
introduce bias, as long as results in both directions are equally likely to be omitted. To
further investigate the presence of publication bias, we retrieved the number of records
per study (when reported) and made a funnel plot with bm on the x-axis and the number
of records on the y-axis (Figure 6). As expected, the funnel plot showed more variation
in bm-estimates for studies with few records compared to studies with many records. In
addition, for studies with relatively few records, positive inbreeding effects were relatively
scarce compared to negative outliers, suggesting indeed some degree of publication bias.

Across trait groups, there were some differences in mean bm and bs (Table 1, Tables S3 and S4).
These differences, however, were not consistent for bm and bs and did not support the
hypothesis that primary fitness traits such as survival and reproduction exhibit more in-
breeding depression than other traits. In fact, when comparing the EMMs of bs across trait
groups, reproduction/survival traits showed the least inbreeding depression (except for
the group “other traits”). This is similar to Leroy [10], who reported EMMs for bm and bs of
−0.222 and −0.336 for reproduction/survival, of −0.092 and −0.473 for conformation, of
−0.24 and −0.563 for weight/growth, of −0.351 and −0.817 for production, and of −0.093
and −0.488 for other traits. The relatively mild EMM of bs for reproduction/survival traits
could be the result of such traits generally showing more phenotypic variation due to envi-
ronmental sources, which is in analogy with the observation that reproduction/survival
traits generally have lower heritabilities than other traits, whereas coefficients of genetic
variation (also known as “evolvabilities”) tend to be more similar across trait groups [191].
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The hypothesis that fitness traits exhibit more inbreeding depression is largely based
on results from wildlife and laboratory populations. In a survey among laboratory popula-
tions of Drosophila melanogaster, Lynch and Walsh [2] observed a high degree of inbreeding
depression for primary fitness traits such as viability, fertility and egg production, and
a low degree of inbreeding depression for morphological traits. In a meta-analysis of
non-domestic animal populations, DeRose and Roff [6] also reported more inbreeding
depression for life history traits (fecundity, survival and development) than for morpholog-
ical traits (adult body size). They reported a median bm and bs of −0.47 and −1.45 for life
history traits and of −0.09 and −0.59 for morphological traits. Coltman and Slate [7] per-
formed a meta-analysis on correlations between phenotypes and two measures of genetic
variation at microsatellite loci, multilocus heterozygosity (MLH), and mean squared allele
size differences (d2). Using data from domestic and non-domestic populations, they found
significant correlations for life history traits (0.0856 for MLH and 0.0479 for d2) and smaller
non-significant correlations for morphometric traits (0.0052 for MLH and 0.0038 for d2)
and physiological traits (0.0075 for MLH and 0.0055 for d2). It should be noted that these
estimates were obtained while not accounting for dependence between estimates from the
same studies and the same populations within studies. When they analyzed the average
per trait group within study units (“study unit average” approach), the difference between
correlations for the different trait groups decreased and confidence intervals overlapped [7].
Chapman et al. [8] found similar results. In their meta-analysis of heterozygosity-fitness
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correlations, they also found that the study unit average approach resulted in smaller differ-
ences in correlations across trait groups than when they treated all records independently.
They additionally used a linear mixed model to account for a population effect, which
resulted in even more similar correlations across trait groups than the study unit average
approach, with confidence intervals that strongly overlapped. With the mixed model, they
found a mean correlation (and confidence interval) between phenotype and MLH of 0.098
(0.0674–0.1293) for life history traits, of 0.0611 (0.0302-0.0919) for morphometric traits, and
of 0.0809 (0.0048–0.1560) for physiological traits [8]. Thus, although the empirical results
are equivocal, there are indications from wild and laboratory populations that fitness traits
might exhibit more inbreeding depression.

There are also theoretical arguments why primary fitness traits would show more
inbreeding depression than traits less related to fitness. Inbreeding depression depends on
directional dominance, as indicated by the expected inbreeding depression that (in absence
of epistasis) equals −F ∑

i
2piqidi [1,2]. To exhibit inbreeding depression, a trait should be

influenced by dominance effects (resulting in dominance variance) and, more importantly,
these dominance effects should be favorable on average. For traits strongly under direc-
tional selection such as a primary fitness trait like survival, the average dominance effect is
expected to be favorable, because fixation occurs more quickly for loci with an unfavorable
dominance effect [2]. For a trait that is less related to fitness as well as for traits under
stabilizing selection, directional dominance is expected to be less pronounced because of
the lower directional selection pressure.

Given that directional dominance is a function of how much a trait has been selected
upon, the results of this meta-analysis (and that of Leroy [10]) are in line with expectation.
Livestock populations are typically under directional selection for a combination of produc-
tion, conformation, growth, reproduction, survival, behavioral and health traits (in addition
to natural selection on primary fitness traits). Hence, all of these trait groups may show a
similar degree of directional dominance and, consequently, a similar degree of inbreeding
depression. This is also in line with the relative dominance variance (i.e., the proportion
of dominance variance over phenotypic variance), which appears to be similar across
trait groups in livestock. For example, Doekes et al. [192] compared estimates of relative
dominance variance across five studies in cattle and found no clear differences between
yield, fertility, and health traits. Thus, any breeding goal trait in livestock can be considered
under selection just as a fitness trait and may exhibit considerable inbreeding depression.

The efficiency of selection against (partially) deleterious alleles is increased by inbreed-
ing, a process called purging [193,194]. Since livestock populations typically have relatively
small effective population sizes (although they may have very large census sizes), purging
can be efficient to reduce the inbreeding load in these populations [194]. Since purging acts
on all traits under selection, it is not expected to cause differences in the degree of inbreed-
ing depression between traits under selection. Nevertheless, the effective population size
influences purging [193,194] and it would be interesting to study the association between
effective population size and observed inbreeding depression.

In this meta-analysis, we compared inbreeding depression estimates across different
pedigree-based and SNP-based measures by standardizing bm and bs (expressing them per
1 SD increase in the inbreeding measure) and by comparing p-values based on reported b-
values and corresponding standard errors. Alternatively, it has been suggested to compare
correlations between inbreeding measures and phenotype [26]. The use of correlations,
however, was unfeasible in this meta-analysis, because most livestock studies report
inbreeding depression as b-values obtained from animal models.

Standardized bm- and bs-estimates correlated well across the different pedigree-based
and SNP-based inbreeding measures (Figures 3 and 4). These correlations are expected
to be largely driven by the correlations between the underlying inbreeding estimators
and, with that in mind, they also followed expectation. For example, the high correlations
between inbreeding depression estimates for HOM and FROH (0.96 for bm and 0.92 for bs)
are in line with the high reported correlations between the coefficients of HOM and FROH



Genes 2021, 12, 926 11 of 21

in the underlying studies (e.g., 0.81 [129], 0.94 [157], and 0.86 [181]). Similarly, the moderate
correlations between inbreeding depression estimates for FPED and FROH (0.52 for bm and
0.65 for bs) are in line with the moderate reported correlations between the coefficients of
FPED and FROH in the underlying studies (of e.g., 0.66 [168], 0.63 [177], and 0.60 [181]). p-
values of inbreeding depression estimates were smaller for SNP-based inbreeding measures
than for pedigree inbreeding (Table 2). SNP-based measures may be more accurate than
pedigree inbreeding because the former account for Mendelian sampling (e.g., [195]) and do
not depend on pedigree completeness and quality (e.g., [196]). Since measurement errors
in the independent variable lead to downward bias in the estimated slope (a statistical
phenomenon called “regression dilution”), regression on less accurate pedigree-based
coefficients may result in smaller b-values than regression on more accurate SNP-based
coefficients. The benefit of using SNP-based measures will, among others, depend on the
number of SNPs in relation to the genome length and effective population size (e.g., [23]).
Having more SNPs available is expected to allow for a better estimation of the realized
inbreeding and, therefore, of the realized inbreeding depression. In addition, when SNP-
based measures depend on allele frequencies in the population (e.g., FGRM), a sufficient
number of individuals is required to accurately estimate allele frequencies.

Since the scale of inbreeding measures strongly influences b-values, only pedigree-
based estimates were used for the comparison between trait groups. One may argue that
the pedigree-based comparison of b-values across studies is also inappropriate because the
scale of FPED differs across populations (due to differences in pedigree depth). To account
for differences in scale of FPED, we initially considered the SD of FPED as an explanatory
variable in our model. However, since this SD was available for less than a third of
the estimates, and since its effect was not significant in the preliminary analyses, it was
removed from the final model (as presented in the Materials and Methods). A population
effect, defined as breed within study, was included in the model, which indirectly may
have accounted for the population-specific SD of inbreeding coefficients.

No clear differences in effect sizes and p-values were found between inbreeding
depression estimates for FROH , FGRM, FGRM0.5, and HOM (Figures 3 and 4 and Table 2).
However, it is difficult to draw firm conclusions, because of (1) the limited number of
empirical studies directly comparing the different measures; (2) the arbitrary definitions of
especially FROH , with many different criteria that are often not fully reported [189]; and
(3) not knowing the true inbreeding depression. These limitations can be partly overcome
in simulation studies. Various simulations studies have been performed to investigate
which SNP-based measure might be most appropriate to estimate inbreeding depression.
Keller et al. [22] investigated the correlation between different inbreeding measures and the
homozygous mutation load (HML), which they defined as the number of homozygous loci
for rare alleles (with MAF < 0.5) in an individual. They found that FROH had more power to
detect HML than FPED or excess of SNP-by-SNP homozygosity. Kardos et al. [24] found that
SNP-based measures (using 35k SNPs) better explained the variation in realized genomic
IBD than FPED (with 20 generations known). They also found that FROH and the excess of
SNP-by-SNP homozygosity explained very similar amounts of variation in realized IBD.
Yengo et al. [25] used the SNP data of humans and simulated inbreeding depression by
assigning phenotypic effects to samples of SNPs. They reported that FGRM from Yang’s
method [20] performed best. This is a SNP-by-SNP measure with high weight on rare alleles
that is also known as FUNI (“inbreeding based on the correlation of uniting gametes”). In
their study, FROH resulted in the overestimation of inbreeding depression. In the study of
Nietlisbach et al. [27], in contrast, FROH provided unbiased results, whereas FGRM from
Yang’s method [20] resulted in upwardly biased inbreeding depression estimates. Recently,
Caballero et al. [28] showed that these (seemingly) contradictory results might be explained
by population characteristics. They found that inbreeding depression estimates obtained
from FROH were appropriate for populations with small effective sizes (e.g., Ne = 100), but
were downwardly biased for populations with large effective sizes (e.g., Ne = 5000), unless
sufficiently long ROHs (>5 Mb) were used. Inbreeding depression estimates based on
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FGRM from Yang’s method [20], on the other hand, were upwardly biased for populations
with small effective sizes, but were nearly unbiased for populations with large effective
sizes. They also studied FGRM from VanRaden’s method 2 [19] and FHOM, the latter being
a measure of the deviation from Hardy–Weinberg frequencies that has a correlation of 1
with HOM and FGRM0.5 when base allele frequencies are known. These measures always
underestimated inbreeding depression. Overall, Caballero et al. [28] concluded that it
depends on the population as to which SNP-based inbreeding measure is most appropriate
to estimate inbreeding depression.

Aside from providing more powerful measures to detect inbreeding depression,
genomic data offer additional opportunities to study the genetic background of inbreeding
depression. First, the length of ROHs can be used to study the effect of the age of inbreeding
on inbreeding depression, in addition to already existing pedigree-based methods [168,177].
Recent inbreeding may be more harmful than ancient inbreeding, as a result of purging.
Using genomic time series, the process of purging could also be studied in more detail.
Second, SNP-data can be used to search for genomic regions associated with inbreeding
depression (e.g., through ROH scans [192,197,198]). It should be noted, however, that such
methods are prone to statistical issues such as multiple testing and tend to go against
the infinitesimal model (i.e., the idea that inbreeding depression is predominantly caused
through many loci with small effects). Third, with genomic data, it has become possible
to study the role of regulatory mechanisms such as methylation, in explaining inbreeding
depression [199]. Last, genomic data may help to shed more light on the role of partial
dominance, overdominance, and epistasis in explaining inbreeding depression.

Various studies were excluded from this meta-analysis, because they lacked detailed
information on the inbreeding depression estimates. Here, we therefore list recommen-
dations on how to report inbreeding depression estimates. First, it is important to report
descriptive statistics of the traits that are investigated (number of animals, mean, SD,
etc.). This allows future studies, among others, to scale b-values (e.g., to bm and bs) and to
investigate the effect of population size on the results (as e.g., in Figure 6). The descriptive
statistics should be provided for the individuals used in the analysis and, when multiple
populations or subgroups (e.g., breeds, sexes, or age classes) are studied, statistics should be
reported for each population separately. Second, it is important to provide details on how
inbreeding measures were calculated. For FPED, for example, this includes information on
pedigree completeness such as the complete generation equivalent or number of complete
generations. Again, such statistics should be reported for the individuals used in the analy-
sis and not (only) for the entire pedigree. For FROH , the criteria and approach to identify
ROHs should be fully explained. Third, descriptive statistics on the inbreeding measures
(distribution, mean, SD) should be provided to enable scaling (as e.g., in Figures 3 and 4).
Fourth, when estimating b-values, it is important to correct for appropriate fixed effects as
well as for additive genetic effects [200] (e.g., with an animal model). Fifth, it should be
clearly stated whether b-values are expressed per 1%, 10%, or 100% increase in inbreeding.
Sixth, for traits such as litter size, calving ease, and success of insemination, it should be
clearly stated whether b-values correspond to a regression of phenotypes on inbreeding
of the offspring/litter, on inbreeding of the dam (‘maternal’), or on inbreeding of the sire
(‘paternal’). Seventh, b-values should be reported with standard errors and sufficient
decimal places to facilitate calculation of test statistics. Eighth, it is important to also report
non-significant and/or favorable effects to prevent publication bias. Last, it would be
valuable to provide estimates of the effective population size, when available, because
the effective population size influences the amount of genetic purging in the population
and, thus, the degree of inbreeding depression. Overall, these recommendations should
contribute to enable comparisons of inbreeding depression estimates across studies and
facilitate meta-analyses in future.
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5. Conclusions

Inbreeding has an unfavorable effect on livestock traits. Based on this meta-analysis,
a 1% increase in pedigree inbreeding is associated with a median decrease in phenotypic
value of 0.13% of a trait’s mean, and 0.59% of a trait’s SD. Various trait groups (i.e.,
reproduction/survival, weight/growth, conformation, production, and health) show a
similar degree of inbreeding depression. p-values of inbreeding depression estimates
for SNP-based inbreeding measures were smaller than those for pedigree inbreeding,
suggesting more power for SNP-based measures. There were no consistent differences in p-
values for percentage of homozygous SNPs, inbreeding based on ROH or inbreeding based
on a genomic relationship matrix. Comparisons between measures, however, are difficult
because of the limited number of studies that directly compares them, the different scales
of measures, and arbitrary definitions for particularly ROH-based inbreeding. To facilitate
comparisons across studies in future, we highly recommend always reporting detailed
information about inbreeding depression estimates (on traits, inbreeding coefficients, and
models used).
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Appendix A

In this appendix, it is explained why inbreeding based on the diagonal of a GRM com-
puted with allele frequencies of 0.5 (FGRM0.5) is equivalent to the percentage of homozygous
SNPs (HOM), except for a difference in scale, with FGRM0.5 = 2HOM − 1.

When using a GRM, inbreeding for animal j is typically calculated as the diagonal
element of the GRM for animal j minus one (i.e., Gjj − 1). For VanRaden’s method 1 [19],
the diagonal element of the GRM for animal j is:

Gjj =
∑N

i=1
(
xij − 2pi

)
∗
(
xij − 2pi

)
∑i 2piqi

where, at the ith SNP, xij is the count of allele A (coded as 0, 1 or 2) in animal j; pi is the
allele frequency of allele A and qi is the allele frequency of allele B; and N is the number of
SNPs. When allele frequencies of 0.5 are used, this simplifies to:

Gjj =
∑NSNP

i=1

(
x2

ij − 2xij + 1
)

0.5 ∗ N

https://www.mdpi.com/article/10.3390/genes12060926/s1
https://www.mdpi.com/article/10.3390/genes12060926/s1
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Since x2
ij − 2xij + 1 equals 1 when a SNP is homozygous (xij = 0 or xij = 2), or 0 if a

SNP is heterozygous (xij = 1), the numerator is the number of homozygous SNPs (Nhom):

Gjj =
Nhom

0.5 ∗ N

and, thus, Gjj equals two times the fraction of homozygous SNPs.
For VanRaden’s method 2 [19], which was initially proposed by Leutenegger et al. [201]

and Amin et al. [202], the diagonal element of the GRM for animal j is:

Gjj =
1
N ∑

i

(
xij − 2pi

)
∗
(
xij − 2pi

)
2piqi

which is the same as VanRaden’s method 1, except that the scaling occurs per SNP. When
allele frequencies of 0.5 are used, this equation simplifies to:

Gjj =
1
N ∑

i

x2
ij − 2xij + 1

0.5

Since
x2

ij−2xij+1
0.5 equals 2 when a SNP is homozygous (xij = 0 or xij = 2), or 0 if a SNP

is heterozygous (xij = 1), this equation becomes:

Gjj =
2 ∗ Nhom

N

and, thus, again Gjj equals two times the fraction of homozygous SNPs.
For Yang’s method [20], the diagonal element of the GRM for animal j is:

Gjj = 1 +
1
N ∑

i

x2
ij − (1 + 2pi)xij + 2p2

i

2piqi

When allele frequencies of 0.5 are used, this equation simplifies to:

Gjj = 1 +
1
N ∑

i

x2
ij − 2xij + 0.5

0.5

Since
x2

ij−2xij+0.5
0.5 equals 1 when a SNP is homozygous (xij = 0 or xij = 2), or −1 if a

SNP is heterozygous (xij = 1), this equation becomes:

Gjj = 1 +
Nhom − Nhet

N
= 1 +

Nhom − (N − Nhom)

N
= 1 +

Nhom
N

− N
N

+
Nhom

N
=

2 ∗ Nhom
N

where Nhet is the number of heterozygous SNPs. Thus, again, Gjj equals two times the
fraction of homozygous SNPs.

Since inbreeding for animal j is calculated as Gjj − 1, and Gjj is two times the fraction
of homozygous SNPs, FGRM0.5 = 2HOM − 1, for all three GRMs considered above.
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