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Abstract: Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are two pregnancy-specific
placental disorders with high maternal, fetal, and neonatal morbidity and mortality rates worldwide.
The identification biomarkers involved in the dysregulation of PE and IUGR are fundamental for
developing new strategies for early detection and management of these pregnancy pathologies.
Several studies have demonstrated the importance of long non-coding RNAs (lncRNAs) as essential
regulators of many biological processes in cells and tissues, and the placenta is not an exception. In
this review, we summarize the importance of lncRNAs in the regulation of trophoblasts during the
development of PE and IUGR, and other placental disorders.

Keywords: long non-coding RNAs; preeclampsia; intrauterine growth restriction

1. Introduction

The placenta constitutes the interface for fetal-maternal intercommunication and has
a crucial role in regulating fetal resources. Thus, this organ is vital for fetal well-being; is
responsible for providing protection and delivering oxygen and nutrients to the growing
fetus [1–3]. Defects that compromise placenta function are related to a wide range of
pregnancy disorders that can alter fetal growth, produce late pregnancy disorders, and
even lifelong metabolic reprogramming both in the mother and the offspring [4,5].

Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are two pregnancy-
specific multisystem disorders that are significant contributors to maternal, fetal, and
neonatal morbidity and mortality rates worldwide. PE is a heterogeneous and multi-
systemic pregnancy-associated disorder present in up to 5% of pregnancies worldwide
and is clinically characterized as de novo development of hypertension (>140/90 mmHg)
accompanied with proteinuria (>0.3 g in 24 h urine) at 20 weeks of gestation [6,7]. This
pathology is associated with an increased risk of maternal and fetal morbidity and mor-
tality. Approximately two-thirds of preeclamptic pregnancies are complicated with fetal
growth restriction and increased susceptibility to chronic diseases later in life [8]. On the
other hand, IUGR is defined as a failure of the fetus to reach a predetermined growth
potential. It affects 10–15% of all pregnancies, and it is associated with increased risk
for immediate (metabolic and hematological disturbances, disrupted thermoregulation,
respiratory distress, necrotizing enterocolitis, retinopathy of prematurity) and long-term
(cardiovascular diseases, dyslipidemia, type 2 diabetes mellitus, obesity, and metabolic
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syndrome) consequences for the offspring [9,10]. Furthermore, PE and IUGR can quickly
progress to life-threatening disorders [11–15].

Identifying molecules or genes dysregulated in PE and IUGR is fundamental for
understanding their physiopathology and can contribute decisively to developing early
detection and management strategies. In recent years, long non-coding RNAs (lncRNAs)
have gained importance as regulators of gene expression in several biological processes in
humans and other organisms. These RNA molecules are currently a hot topic in biological
research due to their essential regulatory mechanisms in mammalian homeostasis and
pathogenesis [16–18]. Regulation of lncRNAs has been linked to essential roles in many
fundamental biological processes, including development, metabolism, immunity, cancer,
and epigenetic control [19–24]. The placenta is not excluded by the control of these non-
coding RNAs, although relatively few studies have focused on the role of lncRNAs during
placenta development and the onset of placental-associated disorders.

Due to the essential role of lncRNAs in gene regulation, these molecules have been
highlighted as potential biomarkers for the diagnosis and prognosis of different patholo-
gies such as various cancer types, pregnancy pathologies, cardiovascular diseases, and
neurodegenerative disorders, among others [25–32]. A better understanding of the role of
lncRNAs in normal and abnormal placental development can be of the utmost importance
to explain the processes underlying the pathogenesis of some pregnancy complications.
Therefore, identifying lncRNAs of placental origin in conditions that endanger maternal
and fetal health can shed light on developing new predictive and therapeutic strategies
against placental disorders such as PE or IUGR.

2. LncRNAs: Definition and Classification

The central dogma of molecular biology indicates that DNA is transcribed into a
messenger RNA, which serves as a template for protein synthesis [33]. In this dogma,
proteins have been the main protagonists of cellular functions, while RNA functions have
only been described as an intermediary between DNA sequences and the proteins they
encode. However, less than 2% of the genomic sequences encode for proteins, while
almost 90% of the entire genome is actively transcribed [34–36]. In recent years, several
studies have revealed a series of RNAs that have no potential to encode proteins but are
involved in different cellular processes, offering new perspectives on the centrality of
RNA in the dogma of molecular biology [19,33,37,38]. These transcripts are known as
non-coding RNAs (ncRNAs), and many of them have been shown to play a crucial role in
the development and epigenetic regulation of gene expression. Interestingly, identifying
specific profiles of ncRNAs has also been linked to different diseases [19,39,40].

The non-coding transcripts are classified into two broad groups according to their
size: ncRNAs with 200 or less nucleotides (nt), namely, small RNAs; and non-coding RNAs
greater than 200 nucleotides also know as long non-coding RNAs (lncRNAs). Within
the former group we can highlight microRNAs (miRNAs), RNAs that interact with PIWI
(piRNA), and small RNAs of endogenous interference (siRNA). Their primary function
is associated with gene transcriptional silencing [41–44]. On the other hand, lncRNAs,
which represent the most diverse and extensive group of ncRNAs, are involved in different
biological processes, such as imprinting, cell cycle control, nucleus-cytoplasm transport,
nuclear architecture, transcriptional and post-transcriptional regulation, and epigenetic
regulation, among others [19,20,33,37,38,45–49].

Most lncRNAs are structurally similar to messenger RNAs, but they lack an open
reading frame. Many of these lncRNAs are transcribed by the RNA polymerase II, capped
at the 5′ end, and polyadenylated at the 3′ end. They can interact directly with DNA
or RNAs through base pairing, just as they can interact with proteins through their sec-
ondary and tertiary structures. They are located both in the nucleus and in the cytoplasm,
and they are expressed at very low space-time levels during the development of cells,
tissues, and organs, which suggests they have functions that can affect any of those pro-
cesses [19,39,40,50–53]. Moreover, lncRNAs can regulate gene expression through multiple
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molecular mechanisms. These mechanisms include: (i) Acting as molecular “decoys”
binding to transcription factors mimicking their target site and preventing binding to their
targets [54], (ii) acting as molecular “guides,” to allow the correct localization of a specific
protein complex (i.e., recruiting chromatin-modifying enzymes to target genes) [55], (iii)
work as molecular “scaffolds” by recruiting epigenetic modifiers (i.e., ribonucleoprotein
complex), (iv) act as miRNAs “sponges,” preventing their union to their target site [56,57],
or (v) can act as enhancer-derived RNAs (eRNAs), which are transcribed at the loci of en-
hancers and are involved in gene activation and in the formation of higher-order chromatin
structures [58–60]. Thus, depending on their nature, lncRNAs can be involved in both gene
silencing and transcriptional activation [20,33,36,48,49,61].

Specific lncRNAs may be involved in the onset of different pathologies [17,19,20,23,62],
and pregnancy-related complications are an example of this phenomenon. Placental-related
disorders such as PE and IUGR result from defective early placental development, which
later impacts placental function and, thereby, the mother and fetus’s health [4,7–9,13]. LncR-
NAs can play a crucial role in a healthy and functional placenta and may present aberrantly
over- or under-expressed pathologies with inadequate placentation (Figure 1). Therefore,
due to their highly tissue- and disease-specific expression, it is crucial to study lncRNAs in
order to understand these diseases and to be able to develop new therapeutic targets and
preventive strategies. Thus far, using these ncRNAs remains relatively unexplored in novel
drug targets or diagnostic biomarkers in pregnancy-related pathologies.
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Figure 1. Overview of lncRNA associated with Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR). The green
and red arrows indicate upregulated or downregulated lncRNAs, respectively, in these pregnancy pathologies. Created
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3. Etiopathogenesis of Placental Related Diseases

The establishment of a functional placenta is essential for normal fetal development
and the maintenance of pregnancy. When the blastocyst approaches the epithelia of the
endometrium during the window of implantation, the outer epithelial monolayer of cells,
the trophectoderm, differentiates into two regions: (i) Syncytiotrophoblast, a multi-nucleic
cell outer layer that penetrates the uterine epithelium, allowing the embryo to embed
itself within the endometrium; and (ii) mononuclear cytotrophoblast cells that proliferate
to form cell columns that invade into maternal tissues [63–65]. From the tips of these
anchoring villi structures, extravillous cytotrophoblast (EVT) cells emerge. These cells are
highly migratory, proliferative, and invasive [66]. Trophoblast invasion of the endometrium
involves attachment of these cells to the extracellular matrix and then degradation of this
matrix with the subsequent migration [66]. There are two populations of EVT: Interstitial
cytotrophoblasts, which invade the entire endometrium and the superficial myometrium,
and endovascular cytotrophoblasts, which invade the lumen of the spiral arteries and
transform them from high-resistance vessels into large, dilated vessels with increased
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blood flow at a much-reduced pressure [65,67]. When trophoblast cells fail to effectively
invade the maternal decidua or sufficiently remodel uterine arteries, severe pregnancy
complications such as pregnancy loss, IUGR, and PE occur.

Trophoblast cells are often compared to invasive carcinoma cells since both can invade,
migrate, and evade immune response [68]. Increasing evidence has revealed the key roles
of lncRNAs in proliferation, survival, angiogenesis, migration, and cancer cell invasion [69].
In the last few years, functional studies on well-characterized choriocarcinoma cell lines
representing villous and extravillous trophoblast phenotype (BeWo, JAR, and JEG-3), first-
trimester trophoblast cell lines (HTR-8/SVneo and Swan-71), and primary trophoblast
cell cultures reported some lncRNAs involved in regulatory mechanisms in trophoblasts
activity, such as H19, HOTAIR, MALAT1, SPRY4-IT1, and MEG3 [70]. The potential
mechanisms underlying the action of these and others lncRNAs in trophoblasts will be
discussed in each pathology to elucidate the potential role of these molecules.

4. LncRNAs in Preeclampsia

Dysfunctional placentation is believed to be an underlying vital cause of PE. The
placenta consists of the fetal portion, which predominantly involves trophoblastic cell
proliferation, migration, invasion, and the maternal component, involving decidualization,
crucial for the development of the placenta. From the fetal portion of the placenta, several
lncRNAs regulate or influence the cell cycle, then affecting trophoblastic cell proliferation,
invasion, migration, and apoptosis, leading to placental dysfunction and PE [71]. Numer-
ous reports have described the aberrant expression of lncRNAs in plasma or placentae
samples collected from women with PE (Figure 1). For instance, the lncRNA SH3PXD2A-
AS1, which was found upregulated in term placentae from PE women, is reported to be
involved in placenta development by recruiting the CCCTC-binding factor (CTCF) to the
promoter regions of SH3PXD2A and CCR7, thus inhibiting the transcription of these two
essential factors that are involved in invasion and migration of early trophoblast cells [70].
Another lncRNA described as upregulated in placentas from PE patients is the lncRNA
H19 [72]. This molecule spans 2600-nt and predominantly resides in the cytoplasm with
a minor fraction in the nucleus [73]. Moreover, lncRNA H19 is regulated by paternal
imprinting (maternally expressed) in villous, interstitial trophoblast, cytotrophoblast, and
syncytiotrophoblast [74]. Interestingly, overexpression of H19 in JEG-3 and HTR-8/SVneo
cells reduced cell viability and increased invasion and autophagy accompanied by the
activation of the PI3K/AKT/mTOR pathways [72]. Zuo et al. demonstrated that the
lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) regulated trophoblast cell invasion and
migration by affecting the epithelial–mesenchymal transition. Specifically, the authors
demonstrated that SPRY4-IT1 binds directly to HuR and mediates the β-catenin expression
associated with the epithelial–mesenchymal transition in HTR-8/SVneo cells [75]. A differ-
ent study further demonstrated that the silencing of lncRNA SPRY4-IT1 in HTR-8/SVneo
cells enhanced cell migration and proliferation but reduced the response of these cells to
apoptosis. Moreover, the expression of this lncRNA was higher in severe preeclamptic pla-
centae as compared with normal placentae, suggesting that SPRY4-IT1 might be associated
with the pathogenesis of PE and might provide a new target for its early diagnosis and
treatment [76].

Similarly, several other lncRNAs have been reported aberrantly overexpressed in PE
placental tissues: The lncRNA MIR503 host gene (MIR503HG), lncRNA INHBA-AS1, and
lncRNA uc003fir, which are involved in cell proliferation, invasion, and migration [77–79],

Among the lncRNAs that are downregulated in PE placentae MALAT1 [80], TUG1 [81],
MEG3 [82], and HOXA11-AS [83] showed an increase in cell arrest and apoptosis and
a decrease in cell proliferation and migration. RNA-seq analysis further indicated that
HOXA11-AS silencing preferentially regulated genes associated with trophoblast migration
and proliferation through association with repressive chromatin factors such as Ezh2 and
Lsd1 or by acting as miRNA sponge [83]. Furthermore, gain-of-function experiments
with TDGR1 and ZEB2-AS1, two lncRNAs related to developing different cancer tumors,
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have demonstrated an accelerated proliferation, migration, and invasion of trophoblast
cells [84,85]. In addition, Yin et al. has recently demonstrated that the expression of
the lncRNA-ATB was significantly lower in placenta tissues from preeclampsia patients,
compared to controls [86]. The LINC00473 is another example of a lncRNAs downregulated
in PE. This RNA regulates the invasion and migration of the trophoblast through Lsd1 and
miR-15a-5p [87,88].

Impaired placentation due to deficient trophoblast invasion leads to an impaired uter-
ine spiral artery remodeling and angiogenesis. Metastasis-associated lung adenocarcinoma
transcript-1 (MALAT1) lncRNA knockdown in HTR-8/SVneo suppressed migration and
invasion of these cells and inhibited tubule formation in endothelial cells when co-cultured
with trophoblast cells. This impairment of angiogenesis through MALAT1 silencing was
due to the downregulation of the angiogenic factor VEGF [89]. The suppressed migration,
invasiveness, and proliferation observed when MALAT-1 is silenced are also observed in
experiments using JEG-3 cells. Interestingly, this silencing induced cell cycle arrest at the
G0/G1 phase resulting in enhanced JEG-3 cells apoptosis. This process was accompanied by
elevated levels of the pro-apoptotic proteins, including cleaved caspase-3, cleaved caspase-
9, and cleaved poly (ADP-ribose) polymerase-1 (PARP-1) [80]. A different study confirmed
these findings and further demonstrated that MALAT1 promotes trophoblast migration
and invasion through FOS-induced EMT, highlighting new roles for MALAT1 in spiral
artery remodeling and its potential involvement in the pathogenesis of PE [90]. Lastly, Wu
et al. have identified that MALAT1 regulates the miR-206/IGF-1 axis, thereby modulating
trophoblast cells’ migration and invasion through the PI3K/Akt signal pathway [91].

From the maternal portion of the placenta, poor decidualization and spiral artery
remodeling could result in placental ischemia and PE [92,93]. The lncRNA HK2P1 and its
cognate gene HK2 were described as critical for glycolysis, angiogenesis, and decidualiza-
tion, showing a decreased expression in the decidua of severe PE [94].

A summary of the expression of lncRNAs in PE placentae is shown in Table 1.

Table 1. Summary of lncRNAs associated with PE.

lncRNA Expression in PE Cells or Tissue
Analyzed

Intersection Molecules
and Pathways

Cellular Processes
(Cell Line) References

CAAT1 Up Term placentae, PE Reduces the expression
of E2F1, cyclin D

Decreases proliferation
(JEG-3) [95]

DLX6-AS1 Up Term placentae, PE
Enhances ERP44

expression by sponging
miR-149–5p

Inhibits proliferation,
invasion, angiogenesis;
promotes cell apoptosis
(HTR-8/SVneo, JEG-3)

[96]

GAS5 Up Term placentae, PE
(C-section)

Regulates miR-21;
activates PI3K/AKT
signaling pathway

Inhibits proliferation,
migration, invasion

(HTR-8/SVneo JEG-3)
[97]

H19 Up Term placentae, PE
Activates

PI3K/AKT/mTOR
pathways

Promotes invasion and
autophagy; reduces cell
viability (HTR-8/SVneo,

JEG-3)

[72]

HEIPP Up Term placentae, PE
(C-section) Unknown Silencing HEIPP promotes

invasion (HTR-8/SVneo) [98]

HOTAIR Up Term placentae, PE Unknown

Regulation of
proliferation, invasion,

and apoptosis
(HTR-8/SVneo)

[99]
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Table 1. Cont.

lncRNA Expression in PE Cells or Tissue
Analyzed

Intersection Molecules
and Pathways

Cellular Processes
(Cell Line) References

INHBA-AS1 Up Term placentae,
ePE (C-section) Directly targets CENPB

Inhibits proliferation,
migration, and invasion;

promotes apoptosis
(HTR-8/SVneo)

[78]

Linc00261 Up
Term placentae,

severe PE
(C-section)

Targets the
mir-558/TIMP4 axis

Suppressed cell invasion
and migration, induced

cell apoptosis
(HTR-8/SVneo cells)

[100]

MIR503HG Up
Term placentae,

severe PE
(C-section)

Inhibits NF-κb pathway;
decreases protein levels
of MMP2, MMP9, and
snail; increases protein

level of E-cadherin

Suppresses proliferation,
invasion, migration;
promotes apoptosis

(HTR-8/SVneo, JEG-3)

[77]

NR_002794 Up Term placentae, PE Unknown
Inhibits proliferation,
migration; promotes
apoptosis (Swan-71)

[101]

RPAIN Up Term placentae,
epe (c-section)

Reduces the expression
of c1q

Inhibits proliferation and
invasion; promotes

apoptosis (HTR-8/SVneo)
[102]

SH3PXD2A-
AS1 Up Term placentae, PE Inhibits SH3PXD2A and

CCR7 transcription

Inhibits invasion,
migration, proliferation;

promotes cell death
(HTR8/SVneo)

[70]

SPRY4-IT1 Up Term placentae, PE
(C-section)

Binds directly to Hur
and mediates EMT

Inhibits invasion and
migration (HTR-8/SVneo) [75]

SPRY4-IT1 Up
Term placentae,

severe PE
(C-section)

Unknown

Inhibits proliferation,
migration, angiogenesis;

enhances apoptosis
(HTR-8/SVneo)

[76]

uc003fir Up Term placentae, PE Promotes CCL5 mRNA
expression

Promotes proliferation,
migration, invasion

(HTR-8/SVneo)
[79]

UCA1 Up Term placentae, PE
(C-section) Directly targets JAK2

Silencing of UCA1
promotes proliferation,

invasion; suppresses
apoptosis (HTR-8/SVneo,

JAR)

[103]

Linc00473 Down Term placentae, PE
(C-section)

Inhibits expression of
TFPI2 through binding

to LSD1

Inhibits cell proliferation,
migration, invasion,

angiogenesis; promotes
apoptosis (HTR-8/SVneo)

[87]

AGAP2-AS1 Down Term placentae, PE Direct target of FOXP1

Inhibits proliferation,
migration, invasion;
promotes apoptosis

(HTR-8/SVneo)

[104]

AK002210 Down Term placentae
and blood, PE

Mir-590-3p directly
targets AK002210

Inhibits proliferation,
migration, invasion

(HTR-8/SVneo)
[105]
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Table 1. Cont.

lncRNA Expression in PE Cells or Tissue
Analyzed

Intersection Molecules
and Pathways

Cellular Processes
(Cell Line) References

CRNDE Down Term placentae, PE
(C-section)

Negatively regulates
mir-1277

Suppresses proliferation,
invasion, migration and

EMT formation
(HTR-8/SVneo)

[106]

FAM99A Down Term placentae, PE
(C-section)

Increases expression of
cleaved caspase-3, -9

and Bax; inhibits
Wnt/β-catenin signaling

Suppresses migration,
invasion; increases

apoptosis (HTR-8/SVneo)
[107]

FOXD2-AS1 Down Plasma, PE Suppresses expression
of MMP2 and MMP9

Inhibits proliferation,
invasion, migration

(HTR-8/SVneo)
[108]

GASAL1 Down Term placentae, PE
(C-section)

Directly binds to SRSF1
protein

Inhibits proliferation,
invasion; increases

apoptosis rate
(HTR-8/SVneo, JAR)

[109]

HIF1A-AS2 Down Term placentae, PE
(C-section)

Recruits LSD1 and
epigenetically represses

PHLDA1

Inhibits proliferation,
migration, invasion;
increases apoptosis

(HTR-8/SVneo, JAR)

[110]

HOXA11-AS Down Term placentae, PE
Recruits Ezh2 and Lsd1

proteins to silence RND3
mRNA

Suppresses proliferation,
migration (HTR-8/SVneo,

JEG-3, JAR)
[83]

LINC00511 Down Term placentae, PE
(C-section) Direct target of AP2γ

Insufficient proliferation,
migration, invasion

(HTR-8/SVneo)
[111]

MALAT1 Down Term placentae, PE Unknown
Suppresses proliferation,

migration, invasion;
induces apoptosis (JEG-3)

[80]

MALAT1 Down Term placentae, PE Unknown

Suppresses proliferation,
migration, invasion,

angiogenesis; induces
apoptosis (HTR-8/SVneo)

[89]

MALAT1 Down Term placentae,
ePE (C-section) Targets FOS

Inhibits migration and
invasion (HTR-8/SVneo,

JAR)
[90]

MALAT1 Down Term placentae, PE
(C-section)

Regulates
IGF-1/PI3K/Akt

signaling via directly
binding to mir-206

Restrains migration and
invasion (HTR-8/SVneo,

JEG-3)
[91]

MEG3 Down Term placentae, PE
(C-section)

NF-kb, Caspase-3, and
Bax increased following

MEG3 knockdown

Decreases migration;
increases apoptosis

(HTR-8/SVneo, JEG-3)
[82]

MVIH Down Term placentae, PE Unknown
Inhibits proliferation,

migration, and invasion
(HTR-8/SVneo, JEG-3)

[112]

SNHG12 Down Term placentae, PE
Promotes expression of

MMP-2 and MMP-9,
β-catenin

Inhibits proliferation,
migration, invasion

(HTR-8/SVneo)
[113]

SNHG14 Down Blood, PE Negatively regulates
mir-330-5p

Suppresses proliferation,
migration, invasion, EMT

(HTR-8/SVneo)
[114]
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Table 1. Cont.

lncRNA Expression in PE Cells or Tissue
Analyzed

Intersection Molecules
and Pathways

Cellular Processes
(Cell Line) References

TDRG1 Down Term placentae, PE
(C-section)

Targets and suppresses
mir-214-5p

Inhibits proliferation,
migration, invasion

(JEG-3)
[84]

TUG1 Down Term placentae, PE
(C-section)

Regulates MCL1,
VEGFA, and MMP2

through targeting
mir-29b

Inhibits proliferation,
invasion, angiogenesis;

promotes apoptosis
(HTR-8/SVneo, BeWo)

[115]

TUG1 Down Term placentae, PE
(C-section)

Inhibits RND3 through
binding to EZH2

Inhibits proliferation,
apoptosis, migration,

angiogenesis; increases
apoptosis (HTR-8/SVneo,

JEG-3)

[81]

ZEB2-AS1 Down Term placentae,
severe PE

Affects mir-149/PGF
axis

Suppresses proliferation,
migration, invasion

(HTR-8/SVneo)
[85]

Table Abbreviations: lncRNA, long noncoding RNA; Up, upregulated; Down, downregulated; PE, Preeclampsia; ePE, early-onset
Preeclampsia EMT, epithelial-to-mesenchymal transition; MMP, matrix metalloproteinase; C-section, Caesarean section.

5. LncRNA Regulation in the Decidua and Peripheral Blood

Different studies have shown differential expression of lncRNAs in the decidua of
patients with a history of PE. For example, Tong et al. studied the decidua basalis tissue
of early-onset PE (<34 weeks of gestation at delivery) and late-onset PE (>34 weeks of
gestation). They showed 32 differentially expressed lncRNAs, including the expression of
H19, which was significantly downregulated in term placentae of early-onset severe PE
patients [116]. Furthermore, H19 rs2107425 polymorphism was associated with a higher
risk of PE; on the other hand, the placental promoter hypermethylation of the H19 gene
was associated with a lower risk of PE [117].

An imbalance of the immune reaction in pregnancy, which predominantly involves T
cells, is thought to play an essential role in the development of PE. Dendritic cells (DCs)
are involved in the development of pregnancy immune tolerance. Lnc-DC is exclusively
expressed in human DCs and can affect the differentiation from monocytes and influence
T cell activation by activating the transcription factor STAT3 [118]. It has been shown
that T regulatory cells and dendritic cells are significantly decreased in the peripheral
blood of women with PE [119] but also found to be increased in the decidua of PE patients.
Zhang et al. found the expression of lnc-DC and p-STAT 3 to be increased in the decidua
of PE patients, suggesting over-maturation of decidual dendritic cells and a more pro-
inflammatory response as a possible underlying etiopathology for PE [120].

Finally, the changes in the expression of lncRNAs in peripheral maternal blood dur-
ing pregnancy have been proposed as possible biomarkers of PE. The expression level of
NONHSAT116812 and NONHSAT145880 that was significantly lower and higher, respec-
tively, in term placentae of PE women, strongly correlated with their expression on the
plasma of the same women 48h before delivery [121].

6. LncRNA and Intrauterine Growth Restriction

The role of lncRNAs in IUGR have been less studied than in PE. However, like in PE,
disordered placentation is believed to be the underlying pathophysiology of IUGR. Hence,
it is essential to establish whether dysregulation of lncRNAs could also play a role in the
physiopathology of IUGR.

Several lncRNAs have shown differential expression in placentae of IUGR vs. nor-
mally grown fetuses. Medina-Bastidas et al. [122] identified a decrease of 98 lncRNAs and
an increase of 36 lncRNAs in IUGR-placentae compared to normal ones, evidencing the
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potentially critical role of the lncRNA as part of the pathophysiology of this disease. How-
ever, few of them have been thoroughly studied, which makes it difficult to understand
their definitive role in the etiopathology of the disease. From the placental dysfunction
perspective, the nuclear paraspeckle assembly transcript 1 (NEAT1) [123,124], abnormally
upregulated in cancer, has shown increased expression in the placentas of fetal-growth-
restricted fetuses. The increase in NEAT1 is thought to increase paraspeckles in villous
trophoblasts, leading to increased retention of mRNAs in their nuclei. Another lncRNA,
the MEG3 gene, suppresses cell growth and increases tumor suppressor p53. Placentae of
fetuses with intrauterine growth restriction were found to have decreased MEG3 expres-
sion [125]. As villous trophoblasts are crucial for placental development, this could lead to
placental dysfunction and fetal growth restriction. However, the exact causal mechanism is
unknown, and this association was not consistent in other studies [124].

Associations between pancreatic islet cell dysfunction/insulin production and fetal
growth restriction have been reported [126]. The taurine upregulated gene 1 (TUG1) is a
lncRNA that is believed to participate in cell growth and islet cell dysfunction in a model of
growth-restricted mice [127]. Moreover, silencing of TUG1 resulted in increased apoptosis
and decreased insulin secretion in pancreatic β cells [128], thus possibly influencing fetal
growth.

As in PE, epigenetics may play a significant role in the development of IUGR. Al-
teration of the H19 locus has been associated with fetal and placental growth pathol-
ogy [129,130], and in murine models lacking H19, they show a significant fetal/placenta
overgrowth [131]. H19 expression is regulated by the levels of methylation of CpG islands,
and the methylation levels of the H19 gene increase during pregnancy [132]. Alteration in
the methylation degree mechanism has been described in PE and IUGR [132]. Interestingly,
H19 is a multifunctional lncRNA that exerts its functions by (i) miRNA production of
miR-675, an evolutionarily conserved cell proliferation regulator and a placental growth
inhibitor [130,131], (ii) miRNA sponge for let-7 miRNA [133], and (iii) recruiting methyl-
CpG-binding domain protein 1 (MBD1), a DNA-methylation–dependent transcriptional
repressor [134]. On the other hand, H19 repression affects trophoblast migration and inva-
sion [73]. Gonzalez-Rodriguez et al. found that heritable growth restriction was associated
with changes in H19 gene expression and were reversible with diet supplementation in the
long term [73,135].

7. LncRNAs and Other Pregnancy-Related Disorders

Placenta previa increta/percreta (I/P) is a severe form of invasive placentation associ-
ated with massive peripartum hemorrhage. The pathogenesis of invasive placentation is
multidimensional, involving decidual deficiency, endomyometrial damage, and excessively
deep trophoblast invasion into the uterus [136]. Opposite to PE, which is associated with
shallow trophoblast invasion, Tseng and colleagues reported a significant overexpression
of MALAT-1 in I/P term placentae, compared to healthy pregnancy controls. Silencing
of this lncRNA in three trophoblast-like choriocarcinoma cells (BeWo, JAR, and JEG-3)
was sufficient to suppress the invasive ability of these cells, a process that was not corre-
lated with abnormal MMP-2 and MMP-9 enzyme activities [136]. These results suggest
that MALAT-1 might be involved in the regulation of trophoblast invasion during the
development of advanced invasive placentation. The maternally expressed gene 3 (MEG3)
is another lncRNA found to be downregulated in placental samples from PE patients
compared to samples collected from normotensive patients, and abnormal levels of MEG3
were shown to result in cellular dysfunctions of HTR-8/SVneo and JEG-3 trophoblast
cells [82]. Recently, Wang et al. have shown that ncRNA MEG3 is also involved in the
epithelial–mesenchymal transition in HTR-8/SVneo cells through miR-210, affecting the
activity of trophoblast migration and invasion [137].

Recurrent spontaneous abortion (RSA) is a common complication of human pregnancy
defined by two or more abortions before the 20th gestational week. The incidence of RSA
is approximately 1–5%, with an increasing tendency in recent years [138]. RSA occurrence
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is associated with trophoblast insufficiency and impaired remodeling of the spiral arteries
into low-resistance blood vessels. Yang et al. has recently reported that the expression of
the lncRNA-PVT1 is significantly reduced in tissues from RSA patients [138]. They also
demonstrated that knockdown of lncRNA-PVT1 significantly reduced adhesion, invasion,
autophagy, and mTOR expression in HTR-8/SVneo cells, which significantly increased
apoptosis. This study further revealed a novel regulatory pathway in which Yin Yang
1 (YY1), a transcription factor involved in the regulation of trophoblast invasiveness at
the maternal-fetal interface, can act directly on the lncRNA-PVT1 promoter to regulate its
transcription, which further affects trophoblast invasion by regulating autophagy via the
mTOR pathway [138].

8. LncRNA Transportation in EVs

Extracellular vesicles (EVs) are a heterogeneous class of small, phospholipid-coated
vesicles released into the extracellular environment by most cell types; this class includes
several subpopulations such as apoptotic bodies (500 nm to 2 µm diameter), microvesicles
(100 to 1000 nm diameter), and exosomes (30 to 150 nm diameter) [139–141]. Both classes of
EVs contain a complex cargo with different types of biomolecules such as proteins, lipids,
DNA, and RNA, which can act as intercellular messengers and coordinate critical biological
responses of the target cells [141–143]. Interestingly, the release and content of EVs are
related to the cell type and differ in normal and pathological states [144–148]. Furthermore,
different EVs have been identified, detected, and isolated from various body fluids like
blood, saliva, milk, amniotic liquid, lymph, and lachrymal [141,149]. Therefore, EVs and
their cargo can be used as pathology biomarkers if they can be detected effectively and
differ between normal and diseased tissue.

EV-associated RNAs are one of the most studied areas in EV research. Several studies
suggest that EV-associated RNAs such as miRNAs or lncRNAs have been shown to mediate
intercellular communication to be functional in recipient cells [142,150–152]. Diverse
groups have described the role of miRNAs associated with EVs, being the most well-
studied RNA molecule in EVs [142,148,153–155]. On the other hand, little is known about
the role of lncRNAs carried by EVs; however, these long RNAs are increasingly recognized
as essential mediators of EVs biological effects [156–159]. For example, Chen and colleagues
have demonstrated that exosomes derived from mesenchymal stem cells (MSCs) from
bone marrow origin carry the lncRNA H19, which can be transferred to trophoblast cells
and activate the protein kinase B (AKT) signaling pathway, thus increasing invasion and
migration and inhibiting apoptosis of HTR-8/SVneo trophoblast cells. These results suggest
that MSC-derived exosomes overexpressing H19 may be a novel direction for therapeutic
strategies against PE [157].

The placenta increases and releases a wide variety of EVs and molecules, supporting
the maternal physiology to adjust to fetal requirements during gestation. While identifying
EVs-associated miRNAs has started to be used as new pregnancy disease biomarkers, the
functional role of EVs-associated lncRNAs remains unknown, mainly in these pathologies.

9. Conclusions

Pregnancy complications such as preeclampsia and intrauterine growth restriction
contribute highly to maternal and fetal morbidity and mortality worldwide. Unfortunately,
such complications often remain undetected until the third trimester. Understanding the
origins and causes of these disorders and implementing effective screening will signifi-
cantly improve the outcomes of those pregnancies. In recent years, lncRNAs have gained
importance as regulators of gene expression in several biological processes in humans. A
growing body of evidence has reported the crucial involvement of lncRNAs in trophoblast
cells proliferation, invasion, migration, and apoptosis, which has inevitably linked lncR-
NAs to the onset of placental-related disorders. The identification of lncRNAs related to
normal and abnormal placental development can help understand the pathogenesis of
PE/IUGR complications and help develop new prediction and therapeutic strategies.
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