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Abstract

:

Inborn errors of immunity (IEI) include a large group of inherited diseases sharing either poor, dysregulated, or absent and/or acquired function in one or more components of the immune system. Next-generation sequencing (NGS) has driven a rapid increase in the recognition of such defects, though the wide heterogeneity of genetically diverse but phenotypically overlapping diseases has often prevented the molecular characterization of the most complex patients. Two hundred and seventy-two patients were submitted to three successive NGS-based gene panels composed of 58, 146, and 312 genes. Along with pathogenic and likely pathogenic causative gene variants, accounting for the corresponding disorders (37/272 patients, 13.6%), a number of either rare (probably) damaging variants in genes unrelated to patients’ phenotype, variants of unknown significance (VUS) in genes consistent with their clinics, or apparently inconsistent benign, likely benign, or VUS variants were also detected. Finally, a remarkable amount of yet unreported variants of unknown significance were also found, often recurring in our dataset. The NGS approach demonstrated an expected IEI diagnostic rate. However, defining the appropriate list of genes for these panels may not be straightforward, and the application of unbiased approaches should be taken into consideration, especially when patients show atypical clinical pictures.
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1. Introduction


Inborn errors of immunity (IEI) include a large heterogeneous group of inherited diseases sharing either poor, dysregulated, or absent and/or acquired function in one or more components of the immune system. More than 400 different monogenic immune disorders and corresponding genes have been identified to date, and many new others are continuously being recognized [1]. Some of these disorders are chronic and severe, and timely diagnosis can allow identifying targeted drug treatment(s) and/or the suitable conditioning regimen when bone marrow transplantation is needed [2,3,4]. With the exception of IgA deficiency (1/300–1/500), IEI are more frequent than previously believed, with an estimated overall prevalence of 1 in 1200 live births [5], and can be classified based on whether the affected component belongs to either the adaptive or innate immune system [6]. A distinction is also made with secondary immune deficiencies resulting from other causes such as viral or bacterial infections, malnutrition, treatments that induce immunosuppression, or immunoglobulin loss [5,7].



In recent years, novel monogenic disorders characterized by clinical signs of immune dysregulation have been identified in the group of IEI and defined as primary immuno-regulatory disorders (PIRDS) [8]. The majority of them belong to the clinical spectrum of autoimmune lymphoproliferative syndrome (ALPS) or common variable immunodeficiency (CVID), showing most of the clinical signs and symptoms (such as autoimmunity and chronic benign lymphoproliferation) without completely fulfilling the diagnostic criteria [9,10], and for this reason, they are also often named ALPS-like or CVID-like disorders.



The diagnostic approach to IEI has been dominated, thus far, by time-consuming phenotypic and functional characterization [10,11,12]. More recently, molecular genetic testing has emerged as an essential tool often providing a conclusive diagnosis also in atypical cases, assisting in genetic counseling, prenatal diagnosis, carrier identification, and precision therapeutics. Genetic testing has also allowed drawing genotype-phenotype correlations, often lacking due to reduced penetrance and variable expressivity, to disclose the wide phenotypic heterogeneity due to allelic series, and to reveal many genetically diverse but phenotypically overlapping diseases [13,14,15]. The advent of next-generation sequencing (NGS) has driven the rapid increase in recognizable IEI, also leading to the discovery of new genes implicated in well-defined biological pathways [16,17,18,19,20,21,22,23,24]. This enabled the characterization of new disorders, and the attribution of new clinical phenotypes to underlying genetic variants of already known diseases, thus narrowing the gap between hematology, immunology, and rheumatology [25]. Indeed, the multifaceted phenotype of IEI, including infections, autoimmunity, autoinflammation, allergy, and/or malignancy, is challenging, with many implications for effective diagnostic work-up, relevant treatment, and correct follow-up [21,26,27].



Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have allowed detecting around 150 new variants (nearly 40% of all currently known mutations) thus far [22]. However, gene panels are faster and cheaper than unbiased sequencing and provide a much more limited number of variants to interpret, thus raising fewer interpretation problems than WES/WGS. Indeed, cost, accessibility, and interpretation are major challenges to using genetic testing for the evaluation of IEI [28].



After testing three different NGS-based gene panels in patients affected with IEI, we report the variants detected, their frequency and recurrence, and the associated diseases, thus contributing to disclosing the wide genetic variability of lymphoproliferation, autoimmune/idiopathic cytopenia, autoinflammation, and bone marrow failure.




2. Materials and Methods


2.1. Patient Recruitment


Patients referred to both the Hematology Unit and Center for Autoinflammatory Diseases and Immunedeficiencies of the Istituto Giannina Gaslini were selected either retrospectively and still undiagnosed or prospectively for new referrals, independently of age, sex, and ethnicity. Inclusion criteria were considered the presence of at least one of the following: (i) single-/multilineage bone marrow failure (BMF), (ii) autoimmune hemolytic anemia, (iii) neutropenia, (iv) chronic ITP, (v) multilineage autoimmune cytopenia, (vi) benign chronic lymphoproliferation lasting > 6 months, (vii) clinical/biochemical signs of autoimmunity or autoinflammation requiring treatments. All adult subjects provided written informed consent to participate in this study, while parental consent was obtained for children, as approved by the Istituto Gaslini Ethical Committee.




2.2. Study Design


DNA was isolated from peripheral blood samples of patients, and parents when available, and extracted by using QIAamp DNA Blood Midi kit (Qiagen, Germantown, MD, USA). The quality and quantity of DNA thus obtained were determined by a Nanodrop.



To genetically define patients with either unclassified cytopenias (either central or peripheral) or autoinflammation on the background of an underlying immune dysregulation, from December 2015 to December 2019, we designed three consecutive gene panels (Supplementary Table S1). These were used on three successive and non-overlapping temporal periods. Overall, genes were selected according to different purposes, based on the 2017 report of the International Union of Immunological Societies (IUIS) [19] as well as the most up-to-date literature reports [29]. Chronologically, the first panel (Emato-Immunological Panel) included 146 genes related to marrow failure, cytopenia, and immune dysregulation. The second panel (Comprehensive Immune Dysregulation Panel) contained 312 genes responsible for a wide IEI spectrum, mostly not included in the first one. Based on the results achieved with these first two panels, the third one (Hematological Routine Panel) was a synthesis panel with 58 genes, sharing a core set of 52 genes with the two above panels, originally aimed to become a routine diagnostic tool for a majority of newly identified cases presenting the above features.




2.3. Library Design and Sequencing, Bioinformatic Analysis, and Sanger Validation


Patients were subjected to massive parallel sequencing and successive bioinformatics analyses as described in the Supplementary Information and Supplementary Tables S2 and S3.





3. Results


A total of 272 unrelated patients (142 male and 130 female, mean age 15.5 years), already assessed through conventional clinical evaluations and found to be affected with ALPS, CVID, and other PIRDS (n = 164), bone marrow failure (n = 40), idiopathic neutropenia (n = 35), systemic autoinflammatory disease (SAID) (n = 12), immune deficiencies other than PIRDS (n = 11), autoimmune hemolytic anemia (AIHA) (n = 6), hemophagocytic lympho-histiocytosis (HLH) (n = 2), complement defect (n = 1), and hyper-eosinophilia (n = 1), were tested for possible variants of genes, selected as described above. A total of 68 of the 272 enrolled patients (25%) had undergone previous genetic studies, as reported for those shown in Table 1, Table 2, and Supplementary Table S4, together with the candidate gene(s) tested earlier [30,31]. In no case did these previous analyses identify the causal gene.



According to the experimental design reported in Figure 1, 51, 69, and 152 patients were tested using three consecutive panels including 146, 312, and 58 genes, respectively, one patient (ID38) having been analyzed in both panels 1 and 2 to increase the chances for genetic definition. The gene composition of the three panels is reported in Supplementary Table S1.



A total of 197 rare variants, representing 247 alleles, were detected across the three panels, validated through Sanger sequencing, and assessed for their potential effects. As summarized in Table 3, 47 of them are predicted to be pathogenic or likely pathogenic, 33 variants have a probable effect on the phenotype, though with an unknown significance, and the remaining 117 variants are very heterogeneous but expected to have no effect on the clinical phenotype. The total 197 variants are distributed across the 272 patients, with variable proportions of them carrying 0, 1, 2, and ≥3 variants, as reported in Table 3. Overall, 24 variants recur among the patients.



3.1. Pathogenic or likely Pathogenic Variants Detected


The 47 variants predicted pathogenic or likely pathogenic, representing 57 alleles detected in 51 patients, are reported in Table 1. According to the classification criteria described in the “Supplementary Information”, only 42 out of these 57 variant alleles, carried by 37 patients, account for the associated phenotypes. These 37 patients, shown in the gray lines in Table 1, carry causative (pathogenic/likely pathogenic) variants of genes, compatible, to a variable extent, with their clinics, showing a zygosity consistent with the inheritance mode of the disease, thus yielding a 37/272 (13.6%) diagnostic rate. A total of 12 of the 47 pathogenic or likely pathogenic variants (25.5%) are reported in neither the GnomAD v.3 database (https://gnomad.broadinstitute.org/ (accessed on 14 January 2021)) [32] nor the dbSNP, having been detected here for the first time. Finally, five variants, one variant, and one variant recur in two, three, and four patients, respectively, thus strengthening their role in the immune dysregulation of the corresponding patients.



Some of the pathogenic or likely pathogenic variants found in patients showing both typical and atypical clinical manifestations already have functional evidence/suggestions; however, in other cases, the variant effect is still uncertain/not confirmed.



Patient ID32 showed three different causative variants. One rare STAT3 variant was a somatic mosaicism, being present in the DNA extracted from peripheral blood but not in the DNA extracted from a different source. Two other rare variants affected the two different alleles of the ADA2 gene: indeed, the parents turned out to carry one variant each (p.Leu188Pro for the mother, and p.Thr187Pro for the father). The ADA2 deficiency (DADA2) in this patient and her sister, having the same ADA2 genotype, manifested with ALPS-like symptoms, as already reported for some DADA2 cases [33,34,35].



Patient ID1176 carried two rare alleles of the MVK gene, being a compound heterozygote for c.503_508delTGAAGG (p.Leu168_Asp170delinsHis), transmitted from his mother, and c.1129G>A (p.Val377Ile), transmitted from his father. This genotype is consistent with an MKD diagnosis that was clinically complicated with an onset characterized by ALPS-like symptoms.



Patients ID15, ID39, ID94, and ID97 are homozygous for the deleterious RAG1, LRBA, NCF1, and IL7R gene variants, respectively, in three of which, except for ID97, the parents demonstrated being heterozygotes. These cases are consistent with the autosomal recessive inheritance of the corresponding diseases and with the clinical features of the patients [36,37].



Patient ID226 carried multiple pathogenic or likely pathogenic variants that may have contributed to the disease outcome. In fact, though the ELANE mutation alone, unreported in the GnomAD database thus far, can explain the cyclic neutropenia of this patient, we cannot exclude that TNFRSF13B, present with a variant showing no homozygotes in the same database, may also be involved in the clinical phenotype [38].



Patients ID80 and ID260 carried pathogenic variants in the X-linked IKBKG and the CARD11 genes, respectively, showing a clinical overlap between IEI and bone marrow failure, in line with what was recently demonstrated [34]. The CARD11 variant is unreported thus far.



On the other hand, most of the 13 patients shown in the blank lines in Table 1 are heterozygous for variants that, though predicted with a causative effect, are responsible for recessively inherited phenotypes. These patients are therefore expected to be asymptomatic carriers for the respective diseases, with the immune dysregulation disorders they are affected by likely caused by variants of other genes untested here or by the presence of a null allele undetected in trans at the same locus. Indeed, among these latter cases, the TNFRSF13B p.Glu117Glyfs*35 variant, though predicted to be of an unknown significance, found in the ID100 patient (see Table 2 and next paragraph) might account for, either alone or with the heterozygous AIRE p.Glu517Ter variant (Table 1), her ALPS-like phenotype.



Finally, patient ID10 carried a yet unreported pathogenic variant of the complement component 9 (C9), whose defects still have an undefined mode of inheritance [39], with no consistent symptoms.



Disorders that had a more accurate diagnosis were immunodeficiency (2/11, 18%), SAID (2/12, 16.7%), ALPS/ALPS-like (25/164, 15.2%), BMF (5/40, 12.5%), and undefined neutropenia (4/35, 11.4%), while no patient affected by HLH, AIHA, complement defect, and hyper-eosinophilia could be genetically assessed. A genetic confirmation of the clinical suspicion could not be achieved for 235/272 patients (86%) that have therefore remained unexplained, with either rare (probably) damaging variants in genes unrelated to their phenotype, variants of unknown significance in genes consistent with their clinics, or apparently inconsistent benign, likely benign, or VUS variants.




3.2. Variants of Unknown Significance with a Probable Effect on the Phenotype


Among these latter undiagnosed cases, the patients and corresponding variants reported in Table 2 deserve to be taken into account. This is the case of variants classified as having an unknown significance, as unreported thus far in association with corresponding diseases, being in fact very rare with pathogenicity scores predicting damaging effects. Indeed, these 33 variants were selected as potentially having a probable effect on patients’ phenotypes based on: (i) frequency in the general population (F < 0.005), (ii) in silico prediction of adverse functional effects, namely, CADD > 20 and/or DANN > 0.98, with at least one of the FATHMM, SIFT, and PROVEAN software packages predicting a damaging effect, and (iii) showing a single occurrence, with no other cases carrying the same variant.



The six patients shown in the gray lines in Table 2 are those carrying variants that affect genes whose defects are consistent with the corresponding patients’ clinics and with zygosity concordant with the inheritance mode of the disease, thus likely accounting for the associated phenotypes. The case of patient ID2 is particularly evocative in the light of the de novo occurrence of her PRKCD variant. Indeed, none of these variants of unknown significance have ever been found in homozygotes, except for the TERT variant p.Glu441del detected in the heterozygous state in patient ID203 and also in two homozygotes in the GnomAD v.3 database. For this reason, this variant is unlikely to have had an impact on the resulting patient’s phenotype, which may be sustained, instead, by a TNFRSF13B variant already reported in Table 1.



Assuming these additional five patients as solved cases, the diagnostic yield would increase to a further 5/272 (1.8%) rate. The overall success rate achieved in the present study, considering the sole patients carrying probably causative variants reported in Table 1 and Table 2, was therefore 42/272 (15.4%), with 9/51 (17.6%), 16/69 (23.2%), and 17/152 (11.2%) from the first to the third panels, respectively. Interestingly, given the 146, 312, and 58 genes in panels 1, 2, and 3, a correlation between the number of genes in each panel and the proportion of patients whose diagnosis could be confirmed can be proposed.




3.3. Wide Genetic Variability in Immune Dysregulation Disorders: Low-Impact Variants


The remaining 117 variants, representing 157 alleles, given 10 variants recurring twice, 2 variants recurring 3 times, 2 variants recurring 5 times, and 3 variants each recurring in 6, 7, and 8 unrelated patients, are reported in Supplementary Table S4. These were classified as benign, likely benign, or variants of unknown significance, the last classification presumably having a low impact on patients’ phenotypes due to either a frequency of >0.005 in the general population, in silico prediction of tolerant/neutral functional effects, with CADD < 20 and/or DANN < 0.98, or at least one of the FATHMM, SIFT, and PROVEAN software packages predicting no damaging effect.



Despite the improbable role of any of these 117 variants in the corresponding patients’ clinical phenotypes, we depicted those lines reporting variants that seem to have reasons to still be considered in gray. These total 21 variants, representing 51 alleles, mostly predicted with a benign effect (36/51, 70.6%) and, in some cases, already detected in homozygotes of the general population (see Supplementary Table S4). These variants show a high degree of recurrence, including from 2 to 8 patients carrying the same variant for a total of 39 alleles present in more than one patient (39/51, 76.4%). The p.His159Tyr TNFRSF13C variant, for instance, has an 8.2 × 10−3 frequency in the European non-Finnish population of the GnomAD v.3 database and has also been found in three homozygotes, but it is present in 8/272 (2.94 × 10−2) patients, that is, it is 3.6 times more frequent in our case set. Similarly, the p.Arg202His TNFRSF13B and the p.Pro501Leu CASP10 variants, both undetected thus far in homozygosity, each present in 2/272 patients, and the p.Met309Ile ADA2 variant present in 3/272 patients are nearly 7, 26, and 6 times more frequent in our dataset than in the general population, respectively. However, further analyses, carried out by using a more appropriate set of Italian healthy controls, are required before assessing the potential involvement of these rare recurring variants in the susceptibility of the corresponding diseases. Furthermore, although the frequency of the p.Ser312Cys PIK3CD variant appears to be comparable between the general population (0.0187) and our set of patients (0.0257), and 45 homozygotes are reported in the GnomAD database, molecular studies in vitro have shown an altered function [34]. In addition, some of the above 21 variants affect genes whose impact in immune dysregulation may need to be re-evaluated, such as TNFRSF13B [40], RAG1 [41,42], TNFRSF13C [43], CASP10 [44], and PIK3CD [34].





4. Discussion


Inborn errors of immunity (IEI) are clinically heterogeneous entities arising from defects in genes involved in immunity whose effects extend well beyond susceptibility to infection, including multiorgan autoimmunity, hematological diseases, or autoinflammatory conditions. Although IEI are considered Mendelian disorders, massive targeted sequencing of undiagnosed patients has not led to a significant improvement in the diagnostic yield, but rather to a growing discovery of new variants often presenting imperfect inheritance patterns and wide phenotypic heterogeneity, thus complicating the diagnostic assessment. A polygenic mode of inheritance has also been postulated in some cases [15].



This prompted us to develop three different temporarily consecutive next-generation sequencing (NGS)-based gene panels that were used to test patients presenting with complex and/or atypical phenotypes highly suggestive of IEI and yet undiagnosed after testing candidate genes by the traditional Sanger sequencing protocol [45]. Indeed, atypical presentations may be missed when focusing on given phenotypes, and, conversely, larger NGS-based gene panels can lead to identifying variants unseen before and/or in genes whose contribution to a given disease phenotype is not yet completely established [25].



Consistent with such expectations, the rare variants filtered at first turned out to be pathogenic or likely pathogenic, either associated with compatible phenotypes or, conversely, affecting genes unrelated to the patient’s disease. In addition, we could also detect variants of unknown significance, extremely rare with significant damaging scores, in genes consistent with the corresponding phenotypes, as well as heterozygous variants, predicted either as damaging or tolerated, in genes responsible for autosomal recessive traits. Finally, a vast multitude of rare benign, likely benign, or VUS variants, apparently unable to explain the underlying diseases, were also found.



The demand for NGS-based testing has grown rapidly due to its advantages compared to conventional genetic testing (higher mutation yields, more genes simultaneously tested, much larger patient sets under study) without, however, a corresponding increase in the rate of detection of causative variants, the yield of the most focused panels for different diseases varying in the literature from 15–25% to 40–50% [11,12,16,17,19,43,46]. Even with the use of clinical exome sequencing (CES), the diagnostic yield did not exceed 32% [23].



In agreement with statistics already reported in the literature [47], here, we obtained 37/272 (13.6%) patients for whom a genetic diagnostic confirmation could be achieved, given the detection of pathogenic and likely pathogenic variants consistent with the corresponding disorders and mode of inheritance. Though taking VUS variants into consideration for diagnostic purposes may be questionable, variant classification is subjected to change as new information emerges, making the prediction of variant effects deeply dynamic. For this reason, we also tentatively took into account variants of unknown significance in potentially causative genes, found in 6/272 patients, to obtain an overall rate of 43/272 (15.8%). The proportion of solved cases across the three gene panels adopted reflects a relationship with the gene panel extensions, consistent with the most severe historical cases having been tested in gene panel 1. Thus, if a careful selection of patients can lead to higher diagnostic rates even in smaller gene panels, larger panels have the advantage of allowing the detection of overlaps (i.e., variant co-occurrences) that do not seem casual, such as in the recently demonstrated interplay between BMF and immune deregulation [34].



Finding novel variants in a known gene, especially if classified with an uncertain significance, may require additional investigations to prove their association with specific phenotypic patterns [28], that is, more than mere in silico predictions [48,49]. The effect of some variants of the CASP10 and PIK3CD genes, found in patients showing symptoms and laboratory alterations similar to ALPS patients (the so-called ALPS undefined, or ALPS-U), but not fully matching the 2009 NIH revised diagnostic criteria [11], was investigated through proper functional tests, allowing confirmation of their postulated pathogenicity [34,44,45].



Our attention was also attracted by a number of other genes whose variants, despite apparently not being correlated with disease phenotypes as either benign, likely benign, or of uncertain significance, may have had an impact in the respective conditions, such as the case of the remarkably high frequency of heterozygous RAG1 variants (8/149 = 5.37%), affecting either the zinc binding domain (Zn-BD) (p.Asp887Asn; p.Asn968Lys; p.Ser982Tyr) or the nonamer binding domain (NBD) (p.Gln407Glu; p.Arg449Lys). In particular, the p.Asn968Lys variant is very close to the conserved catalytic amino acid p.Glu965, thus likely altering the structure of the catalytic domain and the DNA binding capability, and for this reason, it is reported as likely pathogenic (https://www.ncbi.nlm.nih.gov/clinvar/variation/36713/ (accessed on 7 January 2021)) [50]. Some of the variants we detected, despite being mono-allelic, may have a biological impact on the clinical phenotype, or, in the most evocative cases, undetected null alleles affecting noncoding or regulatory portions of the gene could account for the second allele in RAG1-associated recessive disorders [41,51].



The TNFRSF13B and TNFRSF13C genes also provided variants illustrating the often complicated and unclear genotype-phenotype correlations. Indeed, mutations of the former gene, also known as TACI, though rare, have already shown to vary between disease susceptibility and pathogenesis, with clinical presentation ranging from unaffected to severe immunodeficiency and also occurring in healthy controls [49,52,53]. Nonetheless, asymptomatic family members have been reported with detectable in vitro B cell defects, thus suggesting that the penetrance of some mutations could be higher in cells than for the clinical phenotype [54]. The TNFRSF13B gene is also present in our dataset with heterozygous variants, such as p.Ala181Glu, known to represent risk factors not enabling a genetic diagnosis [40,55].



On the other hand, the p.His159Tyr variant of the TNFRSF13C gene, though supposed to be benign, has a CADD score = 26.6, with two out of three software packages predicting a damaging effect, and it recurred in eight unrelated patients with a frequency in our dataset 3.6-fold higher than the frequency reported by GnomAD, a circumstance suggestive of a role, even marginal, in the disease manifestation.



Finally, we cannot rule out possible synergistic effects of multiple variants of different genes present in a number of patients reported in Table 1 and Table 2. This is the case of ID35, 86, 88, 90, 100, and 203, where pathogenic variants, likely pathogenic variants, or variants of unknown significance and a probable effect on the phenotype of two different genes might account, either alone or in a digenic mode of transmission, for the corresponding IEI disorders. Unfortunately, with the exception of ID100 whose two variants were both inherited from her father, thus excluding a digenic transmission, parental pairs for all the other patients were unavailable to prove inheritance from both parents.



Among the unsolved patients, namely, those left with no genetic diagnosis, we cannot exclude the possibility of novel genetic/clinical entities, especially in the light of the many atypical cases included in our cohort. Indeed, novel genetic causes of IEI are likely to be enriched in negative cases that can also include (1) defects in genes not included in our panel because they are not yet described in the literature, even in the case of the use of the CES [23], (2) defects located in regulatory regions not sequenced by targeted panels, and (3) missed detection of copy number variants (CNVs) and regions of homozygosity [56,57]. This limitation of our study might indeed account for a proportion of those cases that are heterozygotes for variants of genes responsible for recessive conditions, with undetected large indels affecting the second apparently normal allele. Given the suitability of unbiased approaches for broader genomic analysis, whole-exome sequencing or whole-genome sequencing may become a second-tier approach in IEI and autoinflammatory diseases to achieve a molecular diagnosis, especially in complex cases presenting atypical phenotypes or combinations of inflammatory phenotypes with immune defects.




5. Conclusions


The NGS approach applied to IEI demonstrated performances in line with the expectations. However, due to the remarkably variable clinical presentations and genetic diversity, defining the appropriate list of genes to design these panels may not be straightforward. In our experience, given a heterogeneous patient set, the best resolution was obtained using the widest panels, a result obviously expected and an observation testifying in favor of the application of unbiased approaches, especially when patients show atypical clinical pictures. Finally, focusing on the functional study of the many emerging variants, especially those of uncertain significance, will become an urgent need to reconcile inconsistent correlations between genotypes and clinical findings.
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Figure 1. Breakdown of a total of 272 patients with unclassified cytopenias (either central or peripheral), immune dysregulation, autoimmunity, and autoinflammation that underwent genetic tests at the Gaslini Institute from 2015 to 2019, through the three consecutive overlapping gene panels shown at the bottom. 
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Table 1. Pathogenic and likely pathogenic variants detected among 272 patients affected with inborn errors of immunity.
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Total Variants Called

	
Filtered Variants ‡

	
Gene

	
Inherit. of Associated Phenotype

	
Variants §

	
ClinVar

	
Zygosity

	
Variant Classific. *

	
dbSNP (#rs)

	
CADD Score

	
Frequency (gnomAD)

	
DANN Score

	
FATHMM

	
SIFT

	
PROVEAN

	
Cases with Same Variant (#)

	
Parental Inheritance/de novo

	
Previous Genetic Tests

	
Clinical Phenotype

	
Consensus ***






	
6

	
F

	
592

	
17

	
TNFRSF13B

	
AD/AR

	
p.C104R

	
conflicting

	
HET

	
P

	
34557412

	
25.8

	
3.92 × 10−3

	
0.9172

	
D

	
D

	
D

	
4

	
M

	

	
ALPS-like

	
1




	
10

	
F

	
1335

	
21

	
C9

	
-

	
p.C125 *

	
-

	
HET

	
LP

	
na

	
32

	
-

	
0.985

	
-

	
-

	
-

	
1

	
M

	

	
ALPS-like

	
4




	
15

	
M

	
516

	
16

	
RAG1

	
AR

	
p.R507Q

	
-

	
HOMO

	
LP

	
143969029

	
28.7

	
6.57 × 10−6

	
0.9994

	
T

	
D

	
D

	
1

	
M, F

	

	
ALPS-like

	
1




	
19

	
F

	
497

	
14

	
IKBKG

	
XLR

	
p.E125K

	
B/LB

	
HET

	
LP

	
148695964

	
28

	
1.50 × 10−3

	
0.9991

	
D

	
D

	
D

	
2

	
M WT F na

	

	
ALPS-like

	
2




	
22

	
M

	
528

	
12

	
TNFRSF13B

	
AD/AR

	
p.C193 *

	
conflicting

	
HET

	
LP

	
72553885

	
35

	
5.68 × 10−5

	
0.985

	
-

	
-

	
-

	
2

	
F

	

	
ALPS-like

	
1




	
32

	
F

	
594

	
11

	
STAT3

	
AD

	
p.K658R

	
LP

	
HET

	
LP

	
na

	
25.5

	
-

	
0.999

	
D

	
T

	
N

	
1

	
Somatic

	

	
ALPS-like

	
1




	
ADA2

	
AR

	
p.L188P

	
uncertain significance

	
HET

	
LP

	
760102576

	
26.8

	
1.97 × 10−5

	
0.999

	
D

	
D

	
D

	
1

	
M

	

	
1




	
ADA2

	
AR

	
p.T187P

	
-

	
HET

	
LP

	
752890414

	
26.3

	
3.99 × 10−6

	
0.996

	
T

	
D

	
D

	
1

	
F

	




	
35

	
F

	
640

	
13

	
CTLA4

	
AD

	
p.C58S fs*13

	
P

	
HET

	
LP

	
na

	
-

	
-

	
0.991

	
-

	
-

	
-

	
1

	
M

	
Sanger FAS

	
ALPS-like

	
1




	
39

	
M

	
661

	
8

	
LRBA

	
AR

	
p.R655 *

	
-

	
HOMO

	
P

	
199750191

	
42

	
6.58 × 10−6

	
0.998

	
-

	
-

	
-

	
1

	
M, F

	

	
ALPS-like

	
1




	
51

	
F

	
655

	
11

	
ELANE

	
AD

	
c.597 +1G>A

	
P

	
HET

	
P

	
1555710005

	
26.7

	
-

	
0.907

	
-

	
-

	
-

	
1

	
na

	

	
Neutropenia

	
1




	
64

	
F

	
1928

	
33

	
RPS19

	
AD

	
p.R62W

	
P

	
HET

	
P

	
104894711

	
24.9

	
-

	
0.999

	
D

	
-

	
-

	
1

	
M

	

	
BMF

	
1




	
66

	
M

	
683

	
10

	
SMARCAL1

	
AR

	
p.R499W

	
-

	
HET

	
LP

	
1302790588

	
25.3

	
3.98 × 10−6

	
0.9987

	
D

	
D

	
D

	
1

	
na

	

	
ALPS-like

	
4




	
75

	
F

	
718

	
12

	
RAG1

	
AR

	
p.Q407E

	
LP

	
HET

	
LP

	
na

	
25.1

	
-

	
0.986

	
T

	
D

	
N

	
1

	
M

	
Sanger ELANE

	
ALPS-like

	
2




	
80

	
M

	
1225

	
14

	
IKBKG

	
XLR

	
p.E125K

	
B/LB

	
HEMIZIG

	
LP

	
148695964

	
28

	
1.50 × 10−3

	
0.9991

	
D

	
D

	
D

	
2

	
M

	

	
ALPS-like

	
1




	
86

	
M

	
1470

	
21

	
C8B

	
AR

	
p.R428 *

	
P

	
HET

	
P

	
41286844

	
41

	
3.98 × 10−6

	
0.9984

	
-

	
-

	
-

	
1

	
na

	

	
BMF

	
4




	
FAN1

	
AR

	
p.M86G fs*14

	
-

	
HET

	
LP

	
758406790

	
-

	
1.19 × 10−5

	
-

	
-

	
-

	
-

	
1

	
na

	

	
2




	
88

	
F

	
1386

	
22

	
TNFRSF13B

	
AD/AR

	
p.C104Y

	
LP

	
HET

	
LP

	
72553879

	
24.7

	
1.58 × 10−4

	
0.7764

	
D

	
D

	
D

	
2

	
na

	

	
ALPS-like

	
1




	
90

	
M

	
1105

	
16

	
NHEJ1

	
-

	
p.R57 *

	
P

	
HET

	
P

	
118204451

	
37

	
7.95 × 10−6

	
0.997

	
-

	
-

	
-

	
1

	
na

	

	
ALPS-like

	
1




	
92

	
M

	
1196

	
18

	
C7

	
-

	
R521S

	
P

	
HET

	
LP

	
121964920

	
22.3

	
2.35 × 10−3

	
0.9973

	
T

	
D

	
D

	
1

	
F

	

	
ALPS-like

	
1




	
93

	
M

	
131

	
3

	
TNFRSF13B

	
AD/AR

	
p.C193 *

	
conflicting

	
HET

	
LP

	
72553885

	
36

	
3.99 × 10−6

	
0.985

	
-

	
-

	
-

	
2

	
na

	

	
ALPS-like

	
1




	
94

	
F

	
1292

	
22

	
NCF1

	
AR

	
p.W193 *

	
P

	
HOMO

	
P

	
145360423

	
36

	
5.53 × 10−4

	
0.995

	
D

	
-

	
-

	
1

	
M, F

	

	
Immune-deficiency

	
1




	
97

	
M

	
815

	
28

	
IL7R

	
AR

	
p.C118Y

	
P

	
HOMO

	
LP

	
193922641

	
19.9

	
3.95 × 10−5

	
0.9369

	
T

	
T

	
D

	
1

	
na

	
Sanger TERC, TERT

	
Immune-deficiency

	
1




	
100

	
F

	
1614

	
22

	
AIRE

	
AR

	
p.E517 *

	
-

	
HET

	
P

	
na

	
48

	
-

	
0.994

	
-

	
-

	
-

	
1

	
F

	

	
ALPS-like

	
4




	
105

	
F

	
1517

	
26

	
AIRE

	
AR

	
p.R9W

	
LP

	
HET

	
LP

	
na

	
23.6

	
-

	
0.998

	
D

	
D

	
D

	
1

	
na

	
Sanger FAS

	
ALPS-like

	
4




	
106

	
F

	
703

	
25

	
RNASEH2B

	
AR

	
p.A177T

	
P/LP

	
HET

	
P

	
75184679

	
24

	
1.45 × 10−3

	
0.9967

	
D

	
T

	
N

	
1

	
na

	

	
BMF

	
2




	
109

	
F

	
1603

	
26

	
TMEM173

	
AD

	
p.V155M

	
P

	
HET

	
P

	
587777610

	
24.7

	
2.63 × 10−5

	
0.999

	
T

	
D

	
N

	
1

	
na

	

	
SAID

	
1




	
113

	
F

	
1780

	
35

	
CASP8

	
AR

	
p.R494 *

	
-

	
HET

	
P

	
1368296717

	
37

	
3.98 × 10−6

	
0.996

	
-

	
-

	
-

	
1

	
na

	
Sanger TERC

	
Immune-deficiency

	
2




	
114

	
F

	
1123

	
10

	
TNFRSF13B

	
AD/AR

	
p.L69T fs*12

	
conflicting

	
HET

	
LP

	
72553875

	
22.8

	
3.09 × 10−4

	
-

	
-

	
-

	
-

	
3

	
na

	

	
ALPS-like

	
1




	
120

	
M

	
1736

	
33

	
TNFRSF13B

	
AD/AR

	
p.S194 *

	
P

	
HET

	
P

	
121908379

	
36

	
-

	
-

	
-

	
-

	
-

	
1

	
na

	

	
ALPS-like

	
1




	
131

	
M

	
1450

	
25

	
STAT3

	
AD

	
p.R152W

	
P

	
HET

	
LP

	
869312890

	
25.7

	
0.00

	
0.998

	
T

	
D

	
D

	
1

	
na

	
Sanger FAS

	
ALPS-like

	
1




	
135

	
M

	
1095

	
28

	
SH3BP2

	
AD

	
p.T531I

	
-

	
HET

	
LP

	
746860671

	
21.7

	
3.98 × 10−6

	
0.9927

	
T

	
D

	
N

	
1

	
na

	

	
ALPS

	
3




	
139

	
M

	
174

	
11

	
SBDS

	
AR

	
c.258+2T>C

	
P

	
HET

	
P

	
113993993

	
33

	
3.88 × 10−3

	
-

	
-

	
-

	
-

	
2

	
na

	
Sanger FAS, ADA2

	
ALPS-like

	
2




	
162

	
M

	
106

	
4

	
TNFRSF13B

	
AD/AR

	
p.C104R

	
conflicting

	
HET

	
P

	
34557412

	
25.8

	
3.92 × 10−3

	
0.9172

	
D

	
D

	
D

	
4

	
na

	
Sanger TERC, TINF2

	
BMF

	
1




	
178

	
M

	
111

	
5

	
SBDS

	
AR

	
c.25 +2T>C

	
P

	
HET

	
P

	
113993993

	
33

	
3.88 × 10−3

	
-

	
-

	
-

	
-

	
2

	
na

	

	
Hystocytosis

	
4




	
182

	
M

	
169

	
11

	
RAB27A

	
AR

	
p.I181M

	
uncertain significance

	
HET

	
LP

	
139025012

	
17.7

	
9.19 × 10−5

	
0.9953

	
T

	
D

	
N

	
1

	
na

	

	
AIHA

	
4




	
192

	
F

	
129

	
3

	
FAS

	
AD

	
c.650_651+3del CTGTA insAGTG

	
uncertain significance

	
HET

	
LP

	
na

	
14.95

	
3.98 × 10−6

	
0.8238

	
-

	
-

	
-

	
1

	
na

	

	
ALPS-like

	
1




	
203

	
F

	
140

	
6

	
TNFRSF13B

	
AD/AR

	
p.L69T fs*12

	
conflicting

	
HET

	
LP

	
72553875

	
22.8

	
3.09 × 10−4

	
-

	
-

	
-

	
-

	
3

	
na

	

	
ALPS

	
1




	
206

	
F

	
148

	
4

	
SBDS

	
AR

	
p.K62 *

	
P/LP

	
HET

	
P

	
120074160

	
45

	
1.67 × 10−4

	
0.996

	
-

	
-

	
-

	
1

	
na

	

	
BMF

	
2




	
209

	
M

	
144

	
4

	
TNFRSF13B

	
AD/AR

	
p.C172Y

	
uncertain significance

	
HET

	
LP

	
751216929

	
22.2

	
1.90 × 10−4

	
0.7465

	
D

	
D

	
D

	
1

	
na

	
Sanger TERC

	
ALPS

	
1




	
220

	
M

	
141

	
4

	
TERT

	
AD

	
p.E429 *

	
-

	
HET

	
LP

	
na

	
32

	
-

	
0.994

	
-

	
-

	
-

	
1

	
F

	
Sanger TERC, TINF2

	
BMF

	
1




	
226

	
F

	
122

	
6

	
TNFRSF13B

	
AD/AR

	
p.C104Y

	
LP

	
HET

	
LP

	
72553879

	
24.7

	
1.58 × 10−4

	
0.7764

	
D

	
D

	
D

	
2

	
na

	

	
Neutropenia

	
1




	
ELANE

	
AD

	
p.P139L

	
P/LP

	
HET

	
P

	
137854448

	
23.6

	
-

	
0.999

	
D

	
D

	
D

	
2

	
na

	

	
1




	
242

	
M

	
127

	
2

	
TINF2

	
AD

	
p.R282C

	
P

	
HET

	
P

	
121918545

	
26.9

	
0.00

	
0.999

	
D

	
D

	
D

	
1

	
na

	

	
BMF

	
1




	
252

	
F

	
128

	
4

	
TNFRSF13B

	
AD/AR

	
p.L69T fs*12

	
conflicting

	
HET

	
LP

	
72553875

	
22.8

	
3.09 × 10−4

	
-

	
-

	
-

	
-

	
3

	
na

	

	
ALPS

	
1




	
253

	
M

	
154

	
12

	
ELANE

	
AD

	
p.P139L

	
P/LP

	
HET

	
P

	
137854448

	
23.6

	
-

	
0.999

	
D

	
D

	
D

	
2

	
na

	
Sanger HAX1

	
Neutropenia

	
1




	
1176

	
M

	
832

	
16

	
MVK

	
AR

	
p.L168_ D170 delinsHis

	
uncertain significance

	
HET

	
LP

	
na

	
-

	
-

	
-

	
-

	
-

	
-

	
1

	
na

	
Sanger MVK, TNFRSF1A

	
ALPS-like

	
1




	
p.V377I

	
conflicting

	
HET

	
P **

	
28934897

	
15.11

	
1.47 × 10−3

	
0.981

	
D

	
T

	
N

	
1

	
na




	
2130

	
F

	
1834

	
16

	
NOD2

	
AD

	
p.W709 *

	
-

	
HET

	
LP

	
776701942

	
36

	
8.03 × 10−6

	
0.985

	
-

	
-

	
-

	
1

	
F

	
PMID: 26386126

	
SAID

	
1




	
260

	
F

	
118

	
4

	
CARD11

	
AD

	
p.M1I

	
uncertain significance

	
HET

	
P

	
na

	
22.4

	
-

	
-

	
T

	
D

	
-

	
1

	
na

	

	
Neutropenia

	
1




	
288

	
F

	
122

	
6

	
LRBA

	
AR

	
p.Q2717 *

	
-

	
HET

	
P

	
na

	
50

	
-

	
-

	
-

	
-

	
-

	
1

	
na

	

	
ALPS-like

	
1




	
p.E946 *

	
-

	
HET

	
LP

	
777413769

	
24.2

	
3.94 × 10−5

	
-

	
-

	
-

	
-

	
1

	
na

	




	
285

	
M

	
132

	
5

	
TNFRSF13B

	
AD/AR

	
p.I87N

	
conflicting

	
HET

	
LP

	
72553877

	
24.6

	
3.48 × 10−4

	
-

	
D

	
D

	
-

	
1

	
na

	

	
ALPS-like

	
1




	
303

	
M

	
110

	
4

	
FAS

	
AD

	
p.H282R fs*14

	
-

	
HET

	
LP

	
na

	
-

	
-

	
-

	
-

	
-

	
-

	
1

	
na

	

	
ALPS-like

	
1




	
307

	
M

	
117

	
4

	
TNFRSF13B

	
AD/AR

	
p.C104R

	
conflicting

	
HET

	
P

	
34557412

	
25.8

	
3.92 × 10−3

	
0.9172

	
D

	
D

	
D

	
4

	
na

	

	
ALPS-like

	
1




	
313

	
M

	
138

	
3

	
FAS

	
AD

	
p.Gly66C

	
-

	
HET

	
P

	
na

	
34

	
-

	
-

	
D

	
D

	
-

	
1

	
na

	

	
ALPS-like

	
1




	
316

	
M

	
147

	
7

	
TNFRSF13B

	
AD/AR

	
p.C104R

	
conflicting

	
HET

	
P

	
34557412

	
25.8

	
3.92 × 10−3

	
0.9172

	
D

	
D

	
D

	
4

	
na

	

	
ALPS-like

	
1








Blank lines report heterozygotes for variants that, though predicted with a causative effect, are either responsible for recessively inherited phenotypes or inconsistent with the clinical phenotype. Grey lines report patients with causative variants of genes compatible with their clinics, showing a zygosity consistent with the inheritance mode of the disease. T = tolerated; D = damaging; N = neutral. ‡ variants filtered according to location: exonic and splicesite ±5; function: missense, frameshift, stoploss, stopgain; frequency: MAF and EMAF ≤ 0.05. § only validated (true positive) variants are reported; variants that could not be validated (false positive) and variants not followed up (considered not to contribute to the phenotype) are not reported. Parental segregation: F = father; M = mother; na = not available. * variant classification is according to ACMG criteria as reported in the Varsome website (https://varsome.com/ (accessed on 14 January 2021)). ** classification is according to INFEVERS database (https://infevers.umai-montpellier.fr/web/search.php? (accessed on 14 January 2021) n = 3). *** CONSENSUS: 1. gene associated with the patient’s pathology + zygosity consistent with heredity + variant classified P/LP on Varsome. 2. gene associated with the patient’s pathology + zygosity NOT consistent with heredity + variant classified P/LP on Varsome. 3. gene NOT associated with the patient’s pathology + zygosity consistent with heredity + variant classified P/LP on Varsome. 4. gene NOT associated with the patient’s pathology + zygosity NOT consistent with heredity + variant classified P/LP on Varsome. ALPS = Autoimmune lymphoproliferative syndrome; SAID = Systemic AutoInflammatory Disorder; AIHA = Autoimmune hemolytic anemia; BMF = Bone Marrow Failure. DANN, FATHMM, SIFT and PROVEAN scores have been deduced by the Varsome website. CADD score was obtained from https://cadd.gs.washington.edu/ (accessed on 14 January 2021).
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Table 2. Variants of unknown significance with a probable effect on the phenotype, detected among 272 patients affected with inborn errors of immunity.
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ID

	
GENDER

	
Total Variants Called

	
Filtered Variants ‡

	
Gene

	
Inherit. of Associated Phenotype

	
Variant §

	
CLINVAR

	
Zygosity

	
Variant Classific. *

	
dbSNP (#rs)

	
CADD Score

	
Frequency (gnomAD)

	
DANN Score

	
FATHMM

	
SIFT

	
PROVEAN

	
Cases with Same Variant

	
Parental Inherit./de novo

	
Previous Genetic Tests

	
Clinical Phenotype






	
2

	
F

	
631

	
11

	
PRKCD

	
AR

	
p.G248S

	
-

	
HET

	
VUS

	
144320413

	
28.9

	
6.57 × 10−6

	
0.9989

	
D

	
D

	
D

	
1

	
de novo

	

	
ALPS-like




	
14

	
F

	
571

	
15

	
RAC2

	
AD

	
p.R68Q

	
-

	
HET

	
VUS

	
na

	
29.7

	
-

	
0.9996

	
T

	
D

	
D

	
1

	
na

	

	
ALPS-like




	
29

	
M

	
716

	
11

	
WRAP53

	
AR

	
p.G481S

	
-

	
HET

	
VUS

	
763828661

	
26.6

	
6.58 × 10−6

	
0.9985

	
D

	
D

	
D

	
1

	
na

	
Sanger TERC, TERT

	
BMF




	
35

	
F

	
640

	
13

	
LRBA

	
AR

	
p.D2294N

	
-

	
HET

	
VUS

	
939898061

	
26.3

	
7.97 × 10−6

	
0.999

	
T

	
D

	
D

	
1

	
M

	
Sanger FAS

	
ALPS-like




	
40

	
F

	
534

	
13

	
CARD11

	
AD

	
p.R967C

	
uncertain significance

	
HET

	
VUS

	
149857605

	
24.8

	
5.26 × 10−5

	
0.9988

	
T

	
D

	
D

	
1

	
M

	

	
ALPS-like




	
48

	
M

	
594

	
11

	
LYST

	
AR

	
p.R2624W

	
conflicting

	
HET

	
VUS

	
150306354

	
26.3

	
2.81 × 10−3

	
0.9991

	
T

	
D

	
D

	
1

	
M

	

	
Neutropenia




	
71

	
F

	
1762

	
28

	
RAG2

	
AR

	
p.G509D

	
-

	
HET

	
VUS

	
779267024

	
15.52

	
7.97 × 10−6

	
0.9969

	
D

	
D

	
N

	
1

	
na

	
Sanger TERC, TERT, TINF2, DKC1

	
ALPS-like




	
73

	
F

	
996

	
18

	
WDR1

	
AR

	
p.T478M

	
-

	
HET

	
VUS

	
186889066

	
25.5

	
7.68 × 10−4

	
0.9931

	
T

	
D

	
D

	
1

	
na

	

	
ALPS-like




	
86

	
M

	
1470

	
21

	
ATM

	
AR

	
p.R2912G

	
-

	
HET

	
VUS

	
376676328

	
26.2

	
2.04 × 10−4

	
0.9986

	
D

	
D

	
D

	
1

	
na

	

	
BMF




	
87

	
M

	
1827

	
21

	
AIRE

	
AR

	
p.R356W

	
-

	
HET

	
VUS

	
376901046

	
22.3

	
1.45 × 10−4

	
0.9979

	
D

	
D

	
D

	
1

	
na

	

	
BMF




	
BLNK

	
AR

	
p.G30R

	
-

	
HET

	
VUS

	
143109144

	
25.4

	
7.18 × 10−4

	
0.9993

	
-

	
D

	
D

	
1

	
na

	




	
88

	
F

	
1386

	
22

	
ATM

	
AR

	
p.Y67C

	
uncertain significance

	
HET

	
VUS

	
754033733

	
25.6

	
4.02 × 10−6

	
0.9975

	
T

	
D

	
D

	
1

	
na

	

	
ALPS-like




	
90

	
M

	
1105

	
16

	
CXCR4

	
AD

	
p.L125V

	
-

	
HET

	
VUS

	
1001278766

	
26.2

	
1.31 × 10−5

	
0.9974

	
T

	
D

	
D

	
1

	
na

	

	
ALPS-like




	
100

	
F

	
1614

	
22

	
TNFRSF13B

	
AD/AR

	
p.E117Gfs*35

	
uncertain significance

	
HET

	
VUS

	
na

	
-

	
-

	
-

	
-

	
-

	
-

	
1

	
F

	

	
ALPS-like




	
102

	
M

	
1961

	
34

	
RAG2

	
AR

	
p.L279P

	
uncertain significance

	
HET

	
VUS

	
na

	
26.7

	
-

	
0.9985

	
D

	
D

	
N

	
1

	
na

	

	
ALPS-like




	
103

	
M

	
1509

	
39

	
FANCA

	
AR

	
p.A430V

	
uncertain significance

	
HET

	
VUS

	
772567344

	
22.4

	
6.57 × 10−6

	
0.9947

	
D

	
T

	
D

	
1

	
na

	
Sanger TERC

	
ALPS-like




	
110

	
F

	
1349

	
16

	
NLRC4

	
AD

	
p.R492W

	
uncertain significance

	
HET

	
VUS

	
1317272776

	
22.3

	
3.98 × 10−6

	
0.9787

	
T

	
D

	
D

	
1

	
na

	

	
ALPS-like




	
STAT5B

	
AD/AR

	
p.R100C

	
uncertain significance

	
HET

	
VUS

	
199894785

	
32

	
7.24 × 10−5

	
0.9994

	
T

	
D

	
D

	
1

	
na

	




	
124

	
M

	
1443

	
19

	
CHD7

	
AD

	
p.S1406R

	
LP

	
HET

	
VUS

	
na

	
22.3

	
-

	
0.995

	
T

	
T

	
D

	
1

	
F

	

	
BMF




	
132

	
F

	
1607

	
23

	
C1S

	
AD

	
p.R534W

	
uncertain significance

	
HET

	
VUS

	
121909582

	
26.8

	
2.10 × 10−4

	
0.9992

	
D

	
D

	
D

	
1

	
na

	

	
ALPS-like




	
159

	
M

	
134

	
3

	
G6PC

	
AR

	
p.T267M

	
-

	
HET

	
VUS

	
145296477

	
21.6

	
7.56 × 10−5

	
0.998

	
T

	
T

	
N

	
1

	
na

	

	
ALPS-like




	
172

	
M

	
133

	
4

	
LRBA

	
AR

	
p.R2862C

	
conflicting

	
HET

	
VUS

	
145709687

	
27.5

	
1.47 × 10−3

	
0.9992

	
T

	
D

	
D

	
1

	
na

	

	
ALPS-like




	
174

	
M

	
134

	
6

	
AP3B1

	
AR

	
p.V315A

	
uncertain significance

	
HET

	
VUS

	
na

	
29.7

	
-

	
0.9986

	
T

	
D

	
D

	
1

	
na

	
Sanger FAS

	
ALPS-like




	
176

	
F

	
134

	
3

	
WAS

	
XLR

	
p.E131K

	
B/LB

	
HET

	
VUS

	
146220228

	
24.6

	
2.16 × 10−3

	
0.9991

	
D

	
D

	
D

	
1

	
na

	
Sanger FAS

	
ALPS-like




	
203

	
F

	
140

	
6

	
TERT

	
AD/AR

	
p.E441del

	
conflicting

	
HET

	
VUS

	
377639087

	
-

	
1.72 × 10−3

	
-

	
-

	
-

	
-

	
1

	
na

	

	
ALPS




	
204

	
M

	
140

	
6

	
ITK

	
AR

	
p.Y240C

	
uncertain significance

	
HET

	
VUS

	
na

	
27.4

	
-

	
0.9982

	
T

	
D

	
D

	
1

	
na

	

	
AIHA




	
205

	
M

	
155

	
6

	
CTC1

	
AR

	
p.P999H

	
uncertain significance

	
HET

	
VUS

	
780572571

	
16.72

	
3.19 × 10−5

	
0.9453

	
D

	
D

	
D

	
1

	
na

	
Sanger TERT, TERC

	
Neutropenia




	
214

	
M

	
131

	
4

	
CARD11

	
AD/AR

	
p.S439F

	
uncertain significance

	
HET

	
VUS

	
760856731

	
28.1

	
2.79 × 10−5

	
0.9979

	
T

	
D

	
D

	
1

	
na

	

	
Neutropenia




	
2130

	
F

	
1834

	
16

	
MPL

	
AD/AR

	
p.R537Q

	
-

	
HET

	
VUS

	
3820551

	
26

	
9.21 × 10−5

	
0.993

	
D

	
D

	
N

	
1

	
na

	
PMID: 26386126

	
SAID




	
2582

	
M

	
1703

	
34

	
STXBP2

	
-

	
p.I74F

	
-

	
HET

	
VUS

	
na

	
26.6

	
-

	
0.9899

	
D

	
D

	
D

	
1

	
na

	
PMID: 31325311

	
SAID




	
261

	
M

	
116

	
2

	
CARD11

	
AD/AR

	
p.V90F

	
-

	
HET

	
VUS

	
na

	
25.6

	
-

	
-

	
D

	
D

	
-

	
1

	
na

	

	
ALPS-like




	
301

	
M

	
107

	
9

	
PIK3CD

	
AD/AR

	
p.P864L

	
uncertain significance

	
HET

	
VUS

	
148984508

	
26

	
-

	
-

	
D

	
D

	
-

	
1

	
na

	

	
Neutropenia




	
315

	
F

	
129

	
3

	
FAS

	
AD

	
p.C135Y

	
uncertain significance

	
HET

	
VUS

	
na

	
25.5

	
-

	
-

	
D

	
D

	
-

	
1

	
na

	

	
ALPS-like








Blank lines report variants of unknown significance with a probable effect on the phenotype, unreported thus far in association with any disease phenotypes, being in fact very rare with pathogenicity scores predicting damaging effects. Gray lines report variants affecting genes consistent with the corresponding patient’s phenotype and with zygosity concordant with the inheritance mode of the disease. T = tolerated; D = damaging; N = neutral. ‡ Variants filtered according to location: exonic and splicesite ±5; function: missense, frameshift, stoploss, stop-gain; frequency: MAF and EMAF ≤ 0.05. § Only validated (true positive) variants are reported; variants that could not be validated (false positive) and variants not followed up (considered not to contribute to the phenotype) are not reported. * Variant classification according to ACMG criteria as reported on the Varsome website (https://varsome.com/ (accessed on 7 January 2021)). Parental segregation: F = father; M = mother; na = not available. ALPS = autoimmune lymphoproliferative syndrome; SAID = systemic autoinflammatory disorder; AIHA = autoimmune hemolytic anemia; BMF = bone marrow failure. DANN, FATHMM, SIFT, and PROVEAN scores were deduced by the Varsome website. CADD score was obtained from https://cadd.gs.washington.edu/ (accessed on 14 January 2021).
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Table 3. Distribution of variants among patients (A) and among predicted effects (B).
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A_Variant Distribution among the 272 Patients Studied




	
n = 0

	
n = 1

	
n = 2

	
n ≥ 3




	
103

	
114

	
38

	
17




	
37.9%

	
41.9%

	
14%

	
6.2%




	
B_Classification of the 197 Different Variants Detected




	
Pathogenic/Likely Pathogenic

	
VUS with a probable effect on the phenotype

	
VUS Low impact/Likely Benign/Benign




	
47

	
33

	
117
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