Pancreatic Associated Manifestations in Pediatric Inflammatory Bowel Diseases
Abstract
:1. Introduction
2. Methods
3. Extraintestinal Manifestations of IBDs
4. Role of Genetics in Pediatric Pancreatitis and Its Association with IBD
5. Pancreatic Manifestations of IBDs
5.1. Acute Pancreatitis
Diagnosis of Acute Pancreatitis
5.2. Drugs-Induced Pancreatitis
5.3. Idiopathic Pancreatitis
5.4. Autoimmune Pancreatitis
5.5. Asymptomatic Elevation of Pancreatic Enzymes
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Burisch, J.; Jess, T.; Martinato, M.; Lakatos, P.L.; ECCO-EpiCom. The burden of inflammatory bowel disease in Europe. J. Crohn’s Colitis 2013, 7, 322–337. [Google Scholar] [CrossRef] [Green Version]
- Greuter, T.; Bertoldo, F.; Rechner, R.; Straumann, A.; Biedermann, L.; Zeitz, J.; Misselwitz, B.; Scharl, M.; Rogler, G.; Safroneeva, E.; et al. Extraintestinal manifestations of pediatric inflammatory bowel disease: Prevalence, presentation, and anti-TNF treatment. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, C.; Schölmerich, J. Extraintestinal manifestations and complications in IBD. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 585–595. [Google Scholar] [CrossRef]
- Kim, J.M.; Cheon, J.H. Pathogenesis and clinical perspectives of extraintestinal manifestations in inflammatory bowel diseases. Intest. Res. 2020, 18, 249–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.J.; Kang, B.; Choe, B.H. The difference in extraintestinal manifestations of inflammatory bowel disease for children and adults. Transl. Pediatr. 2019, 8, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Harbord, M.; Annese, V.; Vavricka, S.R.; Allez, M.; Barreiro-de Acosta, M.; Boberg, K.M.; Burisch, J.; De Vos, M.; De Vries, A.M.; Dick, A.D.; et al. The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J. Crohn’s Colitis 2016, 10, 239–254. [Google Scholar] [CrossRef]
- Annese, V. A review of extraintestinal manifestations and complications of inflammatory bowel disease. Saudi J. Med. Med. Sci 2019, 7, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Antonini, F.; Pezzill, R.; Angelelli, L.; Macarri, G. Pancreatic disorders in inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016, 7, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Wagatsuma, K.; Hirayama, D.; Yokoyama, Y.; Nakase, H. The etiology of pancreatic manifestations in patients with inflammatory bowel disease. J. Clin. Med. 2019, 8, 916. [Google Scholar] [CrossRef] [Green Version]
- Le Large-Guiheneuf, C.; Hugot, J.P.; Faure, C.; Munck, A.; Mougenot, J.F.; Navarro, J.; Cézard, J.P. Pancreatic involvement in inflammatory bowel diseases in children. Arch. Pediatr. 2002, 9, 469–477. [Google Scholar] [CrossRef]
- Knafelz, D.; Panetta, F.; Monti, L.; Bracci, F.; Papadatou, B.; Torre, G.; Dall’Oglio, L.; Diamanti, A. Chronic pancreatitis as presentation of Crohn’s disease in a child. World J. Gastroenterol. 2013, 19, 5204–5206. [Google Scholar] [CrossRef]
- Cardile, S.; Randazzo, A.; Valenti, S.; Romano, C. Pancreatic involvement in pediatric inflammatory bowel diseases. World J. Pediatr. 2015, 11, 207–211. [Google Scholar] [CrossRef]
- Hart, P.A.; Zen, Y.; Chari, S.T. Recent advances in autoimmune pancreatitis. Gastroenterology 2015, 149, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Scheers, I.; Palermo, J.J.; Freedman, S.; Wilschanski, M.; Shah, U.; Abu-El-Haija, M.; Barth, B.; Fishman, D.S.; Gariepy, C.; Giefer, M.J.; et al. Autoimmune pancreatitis in children: Characteristic features, diagnosis, and management. Am. J. Gastroenterol. 2017, 112, 1604–1611. [Google Scholar] [CrossRef]
- Dotson, J.L.; Hyams, J.S.; Markowitz, J.; LeLeiko, N.S.; Mack, D.R.; Evans, J.S.; Pfefferkorn, M.D.; Griffiths, A.M.; Otley, A.R.; Bousvaros, A.; et al. Extraintestinal manifestations of pediatric inflammatory bowel disease and their relation to disease type and severity. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 140–145. [Google Scholar] [CrossRef]
- Jose, F.A.; Garnett, E.A.; Vittinghoff, E.; Ferry, G.D.; Winter, H.S.; Baldassano, R.N.; Kirschner, B.S.; Cohen, S.A.; Gold, B.D.; Abramson, O.; et al. Development of extraintestinal manifestations in pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2009, 15, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duricova, D.; Leroyer, A.; Savoye, G.; Sarter, H.; Pariente, B.; Aoucheta, D.; Armengol-Debeir, L.; Ley, D.; Turck, D.; Peyrin-Biroulet, L.; et al. Extra-intestinal manifestations at diagnosis in paediatric- and Elderly-onset ulcerative colitis are associated with a more severe disease outcome: A population-based study. J. Crohn’s Colitis 2017, 11, 1326–1334. [Google Scholar] [CrossRef] [Green Version]
- Duricova, D.; Sarter, H.; Savoye, G.; Leroyer, A.; Pariente, B.; Armengol-Debeir, L.; Bouguen, G.; Ley, D.; Turck, D.; Templier, C.; et al. Impact of extra-intestinal manifestations at diagnosis on disease outcome in pediatric- and elderly-onset Crohn’s disease: A French population-based study. Inflamm. Bowel Dis. 2019, 25, 394–402. [Google Scholar] [CrossRef]
- Jansson, S.; Malham, M.; Paerregaard, A.; Jakobsen, C.; Wewer, V. Extraintestinal manifestations are associated with disease severity in pediatric onset inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Vavricka, S.R.; Brun, L.; Ballabeni, P.; Pittet, V.; Prinz Vavricka, B.M.; Zeitz, J.; Rogler, G.; Schoepfer, A.M.; Swiss IBD Cohort Study Group. Frequency and risk factors for extraintestinal manifestations in the Swiss inflammatory bowel disease cohort. Am. J. Gastroenterol. 2011, 106, 110–119. [Google Scholar] [CrossRef]
- Cohen, S.; Padlipsky, J.; Yerushalmy-Feler, A. Risk factors associated with extraintestinal manifestations in children with inflammatory bowel disease. Eur. J. Clin. Nutr 2020, 74, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.A.; Chun, P.; Hwang, E.H.; Mun, S.W.; Lee, Y.J.; Park, J.H. Clinical features and extraintestinal manifestations of Crohn disease in children. Pediatr. Gastroenterol. Hepatol. Nutr. 2016, 19, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, K.; Mao, Z.; Luo, Y.; Xue, Y.; Zhang, Y.; Wang, X.; Zhang, L.; Gu, S.; Dou, D. Association between Inflammatory Bowel Disease and Pancreatitis: A PRISMA-Compliant Systematic Review. Gastroenterol. Res. Pract. 2020, 2020, 7305241. [Google Scholar] [CrossRef] [PubMed]
- Abu-El-Haija, M.; Valencia, C.A.; Hornung, L.; Youssef, N.; Thompson, T.; Barasa, N.W.; Wang, X.; Denson, L.A. Genetic variants in acute, acute recurrent and chronic pancreatitis affect the progression of disease in children. Pancreatology 2019, 19, 535–540. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, C.L.; Hu, R.; Shen, C.Y.; Zeng, M.; Wu, C.Q.; Chen, T.W.; Chen, C.; Tang, M.Y.; Xue, H.D.; et al. Genetic polymorphisms: A novel perspective on acute pancreatitis. Gastroenterol. Res. Pract. 2017, 2017, 5135172. [Google Scholar] [CrossRef] [Green Version]
- Vue, P.M.; McFann, K.; Narkewicz, M.R. Genetic mutations in pediatric pancreatitis. Pancreas 2016, 45, 992.e6. [Google Scholar] [CrossRef]
- Palermo, J.J.; Lin, T.K.; Hornung, L.; Valencia, C.A.; Mathur, A.; Jackson, K.; Fei, L.; Abu-El-Haija, M. Genophenotypic analysis of pediatric patients with acute recurrent and chronic pancreatitis. Pancreas 2016, 45, 1347.e52. [Google Scholar] [CrossRef]
- Kumar, S.; Ooi, C.Y.; Werlin, S.; Abu-El-Haija, M.; Barth, B.; Bellin, M.D.; Fishman, D.S.; Freedman, S.D.; Gariepy, C.; Giefer, M.J.; et al. Risk factors associated with pediatric acute recurrent and chronic pancreatitis: Lessons from INSPPIRE. JAMA Pediatr. 2016, 170, 562.e9. [Google Scholar] [CrossRef]
- Uc, A.; Husain, S.Z. Pancreatitis in Children. Gastroenterology 2019, 156, 1969–1978. [Google Scholar] [CrossRef]
- Mayerle, J.; Sendler, M.; Hegyi, E.; Beyer, G.; Lerch, M.M.; Sahin-Tóth, M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019, 156, 1951–1968.e1. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Sun, X.T.; Weng, X.L.; Zhou, D.Z.; Sun, C.; Xia, T.; Hu, L.H.; Lai, X.W.; Ye, B.; Liu, M.Y.; et al. Comprehensive screening for PRSS1, SPINK1, CFTR, CTRC and CLDN2 gene mutations in Chinese paediatric patients with idiopathic chronic pancreatitis: A cohort study. BMJ Open 2013, 3, e003150. [Google Scholar] [CrossRef]
- Masson, E.; Chen, J.M.; Audrezet, M.P.; Cooper, D.N.; Ferec, C. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: Data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. PLoS ONE 2013, 8, e73522. [Google Scholar] [CrossRef] [Green Version]
- Weiss, F.U.; Laemmerhirt, F.; Lerch, M.M. Acute pancreatitis: Genetic risk and clinical implications. J. Clin. Med. 2021, 10, 190. [Google Scholar] [CrossRef]
- Grabarczyk, A.M.; Oracz, G.; Wertheim-Tysarowska, K.; Kujko, A.A.; Wejnarska, K.; Kolodziejczyk, E.; Bal, J.; Koziel, D.; Kowalik, A.; Gluszek, S.; et al. Chymotrypsinogen C genetic variants, including c.180TT, are strongly associated with chronic pancreatitis in pediatric patients. JPGN 2017, 65, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, F.F.; Kempeneers, M.A.; van Santvoort, H.C.; Zwinderman, A.H.; Issa, Y.; Boermeester, M.A. Meta-analysis and field synopsis of genetic variants associated with the risk and severity of acute pancreatitis. BJS Open 2020, 4, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Van Bodegraven, A.A.; Curley, C.R.; Hunt, K.A.; Monsuur, A.J.; Linskens, R.K.; Onnie, C.M.; Crusius, J.B.; Annese, V.; Latiano, A.; Silverberg, M.S.; et al. Genetic variation in myosin IXB is associated with ulcerative colitis. Gastroenterology 2006, 131, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Núñez, C.; Oliver, J.; Mendoza, J.L.; Gómez-García, M.; Piñero, A.; Taxonera, C.; Díaz-Rubio, M.; López-Nevot, M.A.; de la Concha, E.G.; Nieto, A.; et al. MYO9B polymorphisms in patients with inflammatory bowel disease. Gut 2007, 56, 1321–1322. [Google Scholar] [CrossRef] [Green Version]
- Nijmeijer, R.M.; van Santvoort, H.C.; Zhernakova, A.; Teller, S.; Scheiber, J.A.; de Kovel, C.G.; Besselink, M.G.; Visser, J.T.; Lutgendorff, F.; Bollen, T.L.; et al. Association analysis of genetic variants in the myosin IXB gene in acute pancreatitis. PLoS ONE 2013, 8, e85870. [Google Scholar] [CrossRef] [Green Version]
- Prager, M.; Durmus, T.; Büttner, J.; Molnar, T.; de Jong, D.J.; Drenth, J.P.; Baumgart, D.C.; Sturm, A.; Farkas, K.; Witt, H.; et al. Myosin IXb variants and their pivotal role in maintaining the intestinal barrier: A study in Crohn’s disease. Scand. J. Gastroenterol. 2014, 49, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.J.; Xu, X.L.; Yao, G.L.; Yu, Q.; Zhu, C.F.; Kong, Z.J.; Zhao, H.; Tang, L.M.; Qin, X.H. MYO9B gene polymorphisms are associated with the risk of inflammatory bowel diseases. Oncotarget 2016, 7, 58862–58875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Yang, X.K.; Wang, X.; Zhao, M.Q.; Zhang, C.; Tao, S.S.; Zhao, W.; Huang, Q.; Li, L.J.; Pan, H.F.; et al. A meta-analysis of the relationship between MYO9B gene polymorphisms and susceptibility to Crohn’s disease and ulcerative colitis. Hum. Immunol. 2016, 77, 990–996. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Wang, L.; Zhang, Q. Association between IL-1β, IL-8, and IL-10 polymorphisms and risk of acute pancreatitis. Genet. Mol. Res. 2015, 14, 6635–6641. [Google Scholar] [CrossRef]
- Sternby, H.; Hartman, H.; Johansen, D.; Thorlacius, H.; Regnér, S. IL-6 and CRP are superior in early differentiation between mild and non-mild acute pancreatitis. Pancreatology 2017, 17, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bai, J.; He, B.; Wang, N.; Wang, H.; Liu, D. Weak association between the interleukin-8 rs4073 polymorphism and acute pancreatitis: A cumulative meta-analysis. BMC Med. Gen. 2019, 20, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadayakkara, D.K.; Beatty, P.L.; Turner, M.S.; Janjic, J.M.; Ahrens, E.T.; Finn, O.J. Inflammation driven by overexpression of the hypoglycosylated abnormal Mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas 2010, 39, 510–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cucinotta, U.; Romano, C.; Dipasquale, V. Diet and nutrition in pediatric inflammatory bowel diseases. Nutrients 2021, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Kurashima, Y.; Kigoshi, T.; Murasaki, S.; Arai, F.; Shimada, K.; Seki, N.; Kim, Y.G.; Hase, K.; Ohno, H.; Kawano, K. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat. Commun. 2021, 12, 1067. [Google Scholar] [CrossRef]
- Jakimiec, P.; Zdanowicz, K.; Kwiatek-Sredzinska, K.; Filimoniuk, A.; Lebensztejn, D.; Daniluk, U. Pancreatic Disorders in Children with Inflammatory Bowel Disease. Medicina 2021, 57, 473. [Google Scholar] [CrossRef]
- Rasmussen, H.H.; Fonager, K.; Sørensen, H.T.; Pedersen, L.; Dahlerup, J.F.; Steffensen, F.H. Risk of acute pancreatitis in patients with chronic inflammatory bowel disease. A Danish 16-year nationwide follow-up study. Scand. J. Gastroenterol. 1999, 34, 199–201. [Google Scholar] [CrossRef]
- Munk, E.M.; Pedersen, L.; Floyd, A.; Nørgård, B.; Rasmussen, H.H.; Sørensen, H.T. Inflammatory bowel diseases, 5-aminosalicylic acid and sulfasalazine treatment and risk of acute pancreatitis: A population-based case-control study. Am. J. Gastroenterol. 2004, 99, 884–888. [Google Scholar] [CrossRef]
- Morinville, V.D.; Husain, S.Z.; Bai, H.; Barth, B.; Alhosh, R.; Durie, P.R.; Freedman, S.D.; Himes, R.; Lowe, M.E.; Pohl, J.; et al. Definitions of pediatric pancreatitis and survey of present clinical practices. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Tél, B.; Stubnya, B.; Gede, N.; Varjú, P.; Kiss, Z.; Márta, K.; Hegyi, P.J.; Garami, A.; Hegyi, E.; Szakács, Z.; et al. Inflammatory bowel diseases Eìelevate the risk of developing acute pancreatitis: A meta-analysis. Pancreas 2020, 49, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, M.; Strisciuglio, C.; Illiceto, M.T.; Cardile, S.; Guariso, G.; Vignola, S.; Aloi, M.; D’Altilia, M.R.; Alvisi, P.; Salvatore, S.; et al. Natural history of pancreatic involvement in paediatric inflammatory bowel disease. Dig. Liver Dis. 2015, 47, 384–389. [Google Scholar] [CrossRef]
- Broide, E.; Dotan, I.; Weiss, B.; Wilschanski, M.; Yerushalmi, B.; Klar, A.; Levine, A. Idiopathic pancreatitis receding the diagnosis of inflammatory bowel disease is more frequent in pediatric patients. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.X.; Lowe, M.E.; Husain, S.Z. What have we learned about acute pancreatitis in children? J. Pediatr. Gastroenterol. Nutr. 2011, 52, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Ramos, L.R.; Sachar, D.B.; DiMaio, C.J.; Colombel, J.F.; Torres, J. Inflammatory Bowel Disease and Pancreatitis: A Review. J. Crohn’s Colitis 2016, 10, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fousekis, F.S.; Katsanos, K.H.; Theopistos, V.I.; Baltayiannis, G.; Kosmidou, M.; Glantzounis, G.; Christou, L.; Tsianos, E.V.; Christodoulou, D.K. Hepatobiliary and pancreatic manifestations in inflammatory bowel diseases: A referral center study. BMC Gastroenterol. 2019, 19, 48. [Google Scholar] [CrossRef]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S.; Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis–2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef]
- Wintzell, V.; Svanström, H.; Olén, O.; Melbye, M.; Ludvigsson, J.F.; Pasternak, B. Association between use of azathioprine and risk of acute pancreatitis in children with inflammatory bowel disease: A Swedish-Danish nationwide cohort study. Lancet Child. Adolesc. Health 2019, 3, 158–165. [Google Scholar] [CrossRef]
- Srinath, A.I.; Gupta, N.; Husain, S.Z. Probing the association of pancreatitis in inflammatory bowel disease. Inflamm. Bowel Dis. 2016, 22, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Levine, A.; Escher, J.C.; Griffiths, A.M.; Russell, R.K.; Dignass, A.; Dias, J.A.; Bronsky, J.; Braegger, C.P.; Cucchiara, S.; et al. Management of pediatric ulcerative colitis: Joint ECCO and ESPGHAN evidence-based consensus guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 340–361. [Google Scholar] [CrossRef] [PubMed]
- Heap, G.A.; Weedon, M.N.; Bewshea, C.M.; Singh, A.; Chen, M.; Satchwell, J.B.; Vivian, J.P.; So, K.; Dubois, P.C.; Andrews, J.M.; et al. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat. Genet. 2014, 46, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Jansen, L.E.; Rose, R.V.; Gregor, J.C.; Ponich, T.; Chande, N.; Khanna, R.; Yan, B.; Jairath, V.; Khanna, N.; et al. HLA-DQA1-HLA-DRB1 polymorphism is a major predictor of azathioprine-induced pancreatitis in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2018, 47, 615–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fousekis, F.S.; Theopistos, V.I.; Katsanos, K.H.; Christodoulou, D.K. Pancreatic involvement in inflammatory bowel disease: A Review. J. Clin. Med. Res. 2018, 10, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Martín-de-Carpi, J.; Moriczi, M.; Pujol-Muncunill, G.; Navas-López, V.M. Pancreatic involvement in pediatric inflammatory bowel disease. Front. Pediatr. 2017, 5, 218. [Google Scholar] [CrossRef] [Green Version]
- Roque Ramos, L.; DiMaio, C.J.; Sachar, D.B.; Atreja, A.; Colombel, J.F.; Torres, J. Autoimmune pancreatitis and inflammatory bowel disease: Case series and review of the literature. Dig. Liver Dis. 2016, 48, 893–898. [Google Scholar] [CrossRef]
- Pagliari, D.; Cianci, R.; Rigante, D. The Challenge of Autoimmune Pancreatitis. Pancreas 2019, 48, 605–612. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Ishiwatari, H.; Imai, K.; Kishida, Y.; Ito, S.; Hotta, K.; Yabuuchi, Y.; Yoshida, M.; Kakushima, N.; Takizawa, K.; et al. Steroid therapy and steroid response in autoimmune pancreatitis. Int. J. Mol. Sci. 2019, 21, 257. [Google Scholar] [CrossRef] [Green Version]
- Kamisawa, T.; Chari, S.T.; Lerch, M.M.; Kim, M.H.; Gress, T.M.; Shimosegawa, T. Recent advances in autoimmune pancreatitis: Type 1 and type 2. Gut 2013, 62, 1373–1380. [Google Scholar] [CrossRef]
- Kołodziejczyk, E.; Wejnarska, K.; Oracz, G. Autoimmune pancreatitis in the paediatric population-review of the literature and own experience. Dev. Period. Med. 2016, 20, 279–286. [Google Scholar] [PubMed]
- Chen, L.; Mattman, A.; Seidman, M.A.; Carruthers, M.N. IgG4-related disease: What a hematologist needs to know. Haematologica 2019, 104, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Kim, D.; Ye, B.D.; Yang, S.K.; Kim, J.H.; Yang, D.H.; Jung, K.W.; Kim, K.J.; Byeon, J.S.; Myung, S.J.; et al. The characteristics of ulcerative colitis associated with autoimmune pancreatitis. J. Clin. Gastroenterol. 2013, 47, 520–525. [Google Scholar] [CrossRef]
- Ueki, T.; Kawamoto, K.; Otsuka, Y.; Minoda, R.; Maruo, T.; Matsumura, K.; Noma, E.; Mitsuyasu, T.; Otani, K.; Aomi, Y.; et al. Prevalence and clinicopathological features of autoimmune pancreatitis in Japanese patients with inflammatory bowel disease. Pancreas 2015, 44, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Suk Lee, Y.; Kim, N.H.; Hyuk Son, J.; Wook Kim, J.; Ki Bae, W.; Kim, K.A.; Sung Lee, J. Type 2 autoimmune pancreatitis with Crohn’s disease. Intern. Med. 2018, 57, 2957–2962. [Google Scholar] [CrossRef] [Green Version]
- Tsen, A.; Alishahi, Y.; Rosenkranz, L. Autoimmune pancreatitis and inflammatory bowel disease: An updated review. J. Clin. Gastroenterol. 2017, 51, 208–214. [Google Scholar] [CrossRef]
- Bolia, R.; Chong, S.Y.; Coleman, L.; MacGregor, D.; Hardikar, W.; Oliver, M.R. Autoimmune pancreatitis and IgG4 related disease in three children. ACG Case Rep. J. 2016, 3, e115. [Google Scholar] [CrossRef] [PubMed]
- Zen, Y.; Grammatikopoulos, T.; Hadzic, N. Autoimmune pancreatitis in children: Insights into the diagnostic challenge. J. Pediatr. Gastroenterol. Nutr. 2014, 59, e42–e45. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.A.; Levy, M.J.; Smyrk, T.C.; Takahashi, N.; Abu Dayyeh, B.K.; Clain, J.E.; Gleeson, F.C.; Pearson, R.K.; Petersen, B.T.; Topazian, M.D.; et al. Clinical profiles and outcomes in idiopathic duct-centric chronic pancreatitis (type 2 autoimmune pancreatitis): The Mayo Clinic experience. Gut 2016, 65, 1702–1709. [Google Scholar] [CrossRef]
- Lee, H.M.; Deheragoda, M.; Harrison, P.; Devlin, J.; Sellars, M.; Hadzic, N.; Dhawan, A.; Grammatikopoulos, T. Autoimmune pancreatitis in children: A single centre experience in diagnosis, management and long term follow up. Pancreatology 2019, 19, 169–176. [Google Scholar] [CrossRef]
- Cousin, E.; Cousin, I.; Aziz, K.; Chailloux, P.; Breton, E. Autoimmune pancreatitis and ulcerative rectocolitis in an Adolescent. Pediatrics 2018, 141, S456–S461. [Google Scholar] [CrossRef]
- Gouveia, C.I.; Oliveira, L.; Campos, A.P.; Cabral, J. Autoimmune pancreatitis with associated ulcerative colitis in a teenager. BMJ Case Rep. 2018, 11, e227888. [Google Scholar] [CrossRef] [PubMed]
- Scheers, I.; Palermo, J.; Freedman, S.J.; Wilschanski, M.; Abu-El-Haija, M.; Fishman, D.; Giefer, M.; Heyman, M.; Husain, S.; Lin, T. Autoimmune pancreatitis in children: Working guidelines for diagnosis and treatment. In Proceedings of the 5th World Congress of Pediatric Gastroenterology, Hepatology and Nutrition (WCPGHAN), Montreal, QC, Canada, 5–8 October 2016; Available online: http://hdl.handle.net/2078.1/175752 (accessed on 20 August 2021).
- Scheers, I.; Palermo, J.J.; Freedman, S.; Wilschanski, M.; Shah, U.; Abu-El-Haija, M.; Barth, B.; Fishman, D.S.; Gariepy, C.; Giefer, M.J.; et al. Recommendations for diagnosis and management of autoimmune pancreatitis in childhood: Consensus from INSPPIRE. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, D.; Maire, F.; Stefanescu, C.; Gornet, J.M.; Seksik, P.; Serrero, M.; Bournet, B.; Marteau, P.; Amiot, A.; Laharie, D.; et al. Features of autoimmune pancreatitis associated with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2018, 16, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Jasdanwala, S.; Babyatsky, M. Crohn’s disease and acute pancreatitis. A review of literature. JOP 2015, 16, 136–142. [Google Scholar]
Stage of AP | Pathological Event | Susceptibility Genes |
---|---|---|
Early Stage | Premature trypsinogen activation | PRSS1, SPINK1, CTRC |
NF-kB activation | Interleukin genes, antioxidant enzyme genes, ACE genes, MIF, iNOS, COX-2, MYO9B | |
Late Stage | Severity | TLR genes, CD14, MCP-1, HBD genes, MBL2 |
Complications | TNF-a genes, IL-10, TLR4 |
|
|
|
Type 1 AIP | Type 2 AIP | Pediatric AIP | |
---|---|---|---|
Age at diagnosis (years) | Adults (60s) | Adults (40s), adolescents | 13 (range 2–17) |
Sex | M > F | Equal distribution | M > F |
Symptoms | Painless obstructive jaundice, with or without a pancreatic mass | Abdominal pain, jaundice, weight loss, fatigue | |
Serum IgG4 elevation | >90% of cases | ¼ of cases | Uncommon |
Histology | Lymphoplasmacytic sclerosing pancreatitis with “storiform” fibrosis, obliterative phlebitis and IgG4+ plasma cells (>10 per high-power microscope field) | Idiopathic duct-centric pancreatitis with granulocytic epithelial lesions (GELs)(with or without lobular neutrophil infiltration) | Similar to Type 2 AIP |
Relapse rate | High (24–52%) | Low (0–27%) | Unknown |
Extra-pancreatic manifestations described | IgG4-related disease, Sclerosing cholangitis, Sialoadenitis, Retroperitoneal fibrosis, Interstitional nephritis | IBD in ≥30% of cases (mostly UC) | CD, UC, autoimmune glomerulonephritis, autoimmune hemolytic anemia |
Treatment in children | Oral prednisone, 1–1.5 mg/kg/day to a maximum of 40–60 mg given in 1 or 2 divided daily doses for 2–4 weeks. A watchful waiting approach may be considered. | ||
Response to steroids | Usually rapid (<2 weeks) | Extremely rapid | Usually rapid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucinotta, U.; Romano, C.; Dipasquale, V. Pancreatic Associated Manifestations in Pediatric Inflammatory Bowel Diseases. Genes 2021, 12, 1372. https://doi.org/10.3390/genes12091372
Cucinotta U, Romano C, Dipasquale V. Pancreatic Associated Manifestations in Pediatric Inflammatory Bowel Diseases. Genes. 2021; 12(9):1372. https://doi.org/10.3390/genes12091372
Chicago/Turabian StyleCucinotta, Ugo, Claudio Romano, and Valeria Dipasquale. 2021. "Pancreatic Associated Manifestations in Pediatric Inflammatory Bowel Diseases" Genes 12, no. 9: 1372. https://doi.org/10.3390/genes12091372
APA StyleCucinotta, U., Romano, C., & Dipasquale, V. (2021). Pancreatic Associated Manifestations in Pediatric Inflammatory Bowel Diseases. Genes, 12(9), 1372. https://doi.org/10.3390/genes12091372