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S1 Text

Acc: The Acc is expressed as the proportion of the model's correct predictions in 

all samples. The following formula can express it. 
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AUROC: This metric represents the area under the ROC curve, indicating the 

probability that the model ranks a random positive example higher than a random 

negative example. The following formula can express it. 
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AUPRC: This metric represents the area under the precision-recall curve and is a 

better indicator of model performance than ROC-AUC when the data are unbalanced. 

The following formula can express it. 
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S2 Text 

Encoding module: According to our encoding methods, the DNA sequence is encoded 

using the word2vec strategy [1], which can be represented as follows: 

�� = [��, ��, … , ��, … , ����, ����]             (S1) 

where oi represents the distributed representation of the i-th segment. To incorporate 

other four TF-DNA binding features into GHTNet, these features were generated as a 

feature matrix directly and signified by Sm, Sh, Sd, and Sc. And the dimension of these 

feature matrix is n × m and where m represents the number of these four types (i.e. for 

DNA shape, m = 14). These feature matrices can be represented as follows 

�� = [��, ��, … , ��, … , ����, ����]  (S2) 
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where mi, hi, di, and ci represent the Monte-Carlo simulation vector [2], histone ChIP-

seq value [3], DNase-seq value [4], and conservation score [5] corresponding to the i-

th of segment. Then, these feature matrices were fed into the C-Transformer module to 

capture long- and short-distance dependence. 

Pseudo siamese C-Transformer module: A pseudo siamese network [6] based on 

Transformer [7] were constructed, due to the various importance of different inputs. 

The input of this pseudo siamese network could be (i) [So] and [Sm, Sh, Sd, Sc], (ii) [So] 

and [Sm], (iii) [So] and [Sh], and (iv) [So] and [Sh, Sd], where [·,·] represents 

concatenating them in the channel dimension (i.e. [Sm, Sh, Sd, Sc] means that concatenate 

four n × 14, n × 2, n × 1, and n × 1 matrices into n × 18 dimension). Each input was 

first added with the position information P, which can solve the problem of polysemy 

= � + �                         (S6)

here, P represents positional encoding, as the model parameter, which is a n × 1 

weight matrix, initialized to 0.01. Then �� was fed into the multi-head self-attention 

layer to capture position dependency information. A residual network was used in 

this layer, and followed by layer normalization. As shown in formula S7: 
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where A represents the output of multi-head self-attention; MultiHead( · ) represents the 

multi-head attention mechanism; LM( · ) stands for layer normalization operation. 

Specifically, multi-head self-attention mechanism can be shown as follows: 
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where Hi represents the output of the i-th attention head; ��
�

, ��
�, ��

� represent the 

weight matrix; Concat(·) means concatenation operation. Using ���  for scaling to 

prevent the inner product of ����
�

�����
��

�
 from being too large, where dk = dmodel /

h. And h = dmodel // 2 indicates the number of attention head, where dmodel is equal to the

input feature dimension.

Next, A was fed into the C-FFN, which added convolution operation to the FFN. C-

FFN can be defined as follows:

�� = ���� ������, ��(�), ��(�)��  (S10) 
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where M represents the output of C-FFN; Wm(0), Wc(0),Wm(1) are the weight matrices of 

the corresponding network; bm(0), bc(0), bc(1) are the bias matrices of the corresponding 

network. Specifically, Wc(0) represents convolution filters, each of which is a l × γ matrix 

with l = 3 and γ = dmodel × 2 and can extract low-range features. Followed by max 

pooling layer that can downsampling to the activation score vectors to reduce the 

dimension. The shapes of M0 and M are [n, dmodel × 2] and [n, dmodel], respectively. 

Finally, a residual layer and layer normalization were used: 

�′ = ��(� + �)                                          (S3) 

where �′  represent the output of one C-Transformer layer. After a forward 

pass through L = 2 layers, we got the final output of this module Z, where L represents 

the number of C-Transformer layers. 
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Pseudo siamese CNN module: CNN [8] was used to extracrt gene transcription 

binding features. For DNA sequence, it can be regarded as motif detector. When given 

input Z from pervious module, it can be defined as follows: 

�′ = ������� ����������(�, ��
�, ��

�)��                    (S14) 

where F' represents the extracted features.In this part, two convolutional layers were 

used and obtained the final output F. Specifically, Fd and Fo corresponded to the 

output of DNA sequence and other features in the Siamese network. Finally, we 

concatenated the output of the siamese network Fd and Fo and fed into a fully 

connected layer [9]. Formally, the above operations are defined as follows: 

= ������� �����������(��, ��), �� , ����                (S15) 

where ��  represents the predicted probability of the TF-DNA binding specificity 

in current sequence, which range from 0 to 1. This part only has one hidden layer 

with 925 neurons and used the ReLU activation function [10]. The final output layer 

only has two neurons and the Softmax activation function was used to obtain the final 

output. 

The steps for each input sequence is summarized in blow. 

Algorithm S1 GHTNet modeling 

Input: The DNA sequences containing TFBSs or non-TFBSs. 

Output: Prediction value yj of the current input sequence and all the learned parameters. 

1：The DNA sequence is divided into k-mer base segments, which are represented by the feature 

matrix �� according to the word list calculated by word2vec. Meanwhile, the DNA shape, histone 

modification feature, DNase data and conservation score were extracted based on the current DNA 

sequence and expressed as feature matrices ��，��，��，��. The above process can be seen in 

Equations (S1), (S2), (S3), (S4), and (S5).; 

2：Initialize all the parameters Θ of neural network; 

3：while Epoch < MaxEpoch and Eearly stop==False do 

4：  Compute the output of the C-Transformer module according to Equation (S6)-(S13); 

5：  Using CNN to extract feature. according to Equation (S14); 

7：  Compute the prediction value yj of the current input sequence according to Equation (S15); 

8：  Compute the loss L; 

9：  Update the parameters Θ; 

10： Epoch = Epoch+1 

11：end while 



Main notations used in this paper is summarized in blow. 

References 

1. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:13013781. 2013. 

2. Li J, Sagendorf JM, Chiu T-P, Pasi M, Perez A, Rohs R. Expanding the

repertoire of DNA shape features for genome-scale studies of transcription factor 

binding. Nucleic acids research. 2017;45(22):12877-87. 

3. Park PJ. ChIP–seq: advantages and challenges of a maturing technology.

Nature reviews genetics. 2009;10(10):669-80. 

4. Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping

active gene regulatory elements across the genome from mammalian cells. Cold Spring 

Harbor Protocols. 2010;2010(2):pdb. prot5384. 

5. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al.

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. 

Genome research. 2005;15(8):1034-50. 

6. Chopra S, Hadsell R, LeCun Y, editors. Learning a similarity metric

discriminatively, with application to face verification. 2005 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition (CVPR'05); 2005: IEEE. 

7. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.

Attention is all you need. Advances in neural information processing systems. 2017;30. 

8. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE. 1998;86(11):2278-324.

Notations Description 
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��，�� 

The feature encoding matrix of DNA sequence, DNA shape, histone 

modification, chromatin accessibility, and conservation score, respectively. 

��, ��, ℎ�, ��, �� The values of the DNA encoding vector, Monte-Carlo simulation vector, histone 

modification vector, chromatin accessibility vector, and conservation score 

vector corresponding to the i-th nucleotide. 

P Position information. 

W,b Weight matrix and bias vector, respectively. 

H Mulit-head attention. 

� The output of the mulit-head attention. 

�，�� The original feature matrix and the feature matrix with position information. 

� Combined latent feature. 

�′，� The output of one C-Transformer layer and final output of N C-Transformer 

layer. 

� Combined latent feature. 

�� , ��� Ground-true and predicted probability of i-th input sequence. 

Θ All the parameters in our model. 

Θ All the parameters in our model. 
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Legends for Supplementary Tables 

Supplementary Table S1. The datasets we used, which can be divided t into three 

categories according to the research content. 

Supplementary Table S2. Performance comparison of different TFs on different 

tissues. 

Supplementary Table S3. Mean performance of GHTNet (with k-mer = 2, 3, 4, 

5, 6) on 86 ChIP-Seq human TF datasets. 

Supplementary Table S4. Results of cross-species studies, suggesting a high 

degree of conservation between humans and mice. 

Supplementary Table S5. Architecture of our proposed model GHTNet. 

Legends for Supplementary Figures 

Supplementary Figure S1. The Skip-gram model. Predicting the probability of 

multiple words by inputting one word.  

Supplementary Figure S2. The architecture of GHTNet-One feature. When the 

input has only one type of feature, we modified the model to retain only half of GHTNet 

and its parameters were set in the similar way as the original. 

Supplementary Figure S3. Performance of GHTNet and GHTNet-DNA in 

comparison with five baseline models across three evaluation metrics on 86 human 

datasets. 

Supplementary Figure S4. Importance analysis of two histone modifications and 

DNase across three evaluation metrics on 86 human datasets. 

Supplementary Figure S5. Performance comparison of with three different 

inputs across three evaluation metrics on 86 human datasets. 

Supplementary Figure S6. The extraction process and calculation process of 



attention map and attention score. 

Supplementary Figure S7 Motifs similarity comparison. The −log2($P$-value), 

−log2($E$-value), and −log2($q$-value) derived from TOMTOM. A total of 78 motifs

(known motifs) from GHTNet can be matched to the JASPAR or TRANSFAC, and 14

motifs (undocumented motifs) do not have any matches (pie chart).

Supplementary Figure S8. Contribution analysis of three histone modifications 

across 50 datasets in AD46 tissue. 

Supplementary Figure S9. Contribution analysis of three histone modifications 

was analyzed by constructing five datasets of equal size through random sampling of 

each class of samples. 

Supplementary Figure S10. Average expression levels of H3K27ac, H3K27me3, 

and H3K4me3 of negative samples for CTCF in five groups. 

Supplementary Figure S11. Comparison of the similarity between CTCF motifs 

identified by GHTNet and validated motifs in different tissues. 

Supplementary Figure S12. The encoding process of DNA sequences. 

Supplementary Figure S13. Performance comparison between GHTNet and 

Transformer. 


