Complete Mitogenome Analysis of Five Leafhopper Species of Idiocerini (Hemiptera: Cicadellidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Sequencing and Genome Assembly
2.3. Annotation and Analysis
2.4. Relationships with the Mitogenomes of Published Idiocerini
3. Results
3.1. Genome Organization and Base Composition
3.2. PCGs and Codon Usage
3.3. Transfer RNAs and Ribosomal RNAs
3.4. Non-Synonymous and Synonymous Substitutions
3.5. Control Region
3.6. Relationships with the Mitogenomes of Published Idiocerini
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernt, M.; Braband, A.; Schierwater, B.; Stadler, P.F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogenet. Evol. 2013, 69, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernt, M.; Bleidorn, C.; Braband, A.; Dambach, J.; Donath, A.; Fritzsch, G.; Golombek, A.; Hadrys, H.; Jühling, F.; Meusemann, K.; et al. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol. Phylogenet. Evol. 2013, 69, 352–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delsuc, F.; Kuch, M.; Gibb, G.C.; Karpinski, E.; Hackenberger, D.; Szpak, P.; Martínez, J.G.; Mead, J.I.; McDonald, H.G.; MacPhee, R.D.E.; et al. Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Curr. Biol. 2019, 29, 2031–2042.e6. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Hasegawa, H.; Cooley, J.R.; Simon, C.; Yoshimura, J.; Cai, W.; Sota, T.; Li, H. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups. Mol. Biol. Evol. 2019, 36, 1187–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauro, D.S.; Gower, D.J.; Zardoya, R.; Wilkinson, M. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol. Biol. Evol. 2013, 23, 227–234. [Google Scholar] [CrossRef]
- Chen, M.L.; Liu, J.; Chen, D.L.; Guo, X.G. Complete mitochondrial genome of a blue-tailed skink Plestiodon capito (Reptilia, Squamata, Scincidae) and comparison with other Scincidae lizards. Genetica 2013, 148, 229–241. [Google Scholar] [CrossRef]
- Tian, L.L.; Guo, X.G. Complete mitochondrial genomes of five racerunners (Lacertidae: Eremias) and comparison with other lacertids: Insights into the structure and evolution of the control region. Genes 2022, 13, 726. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [Green Version]
- Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 1992, 141, 173–216. [Google Scholar]
- Fang, Q.Q.; Ge, Z.L. The taxonomic research on Idiocerini. J. Anhui Agricul. Coll. 1983, 2, 8–21. [Google Scholar]
- Dietrich, C.H.; Thomas, M.J. New Eurymeline leafhoppers (Hemiptera, Cicadellidae, Eurymelinae) from Eocene Baltic amber with notes on other fossil Cicadellidae. ZooKeys 2018, 726, 131–143. [Google Scholar] [CrossRef]
- Xue, Q.Q.; Dietrich, C.H.; Zhang, Y. Phylogeny and classification of the leafhopper subfamily Eurymelinae (Hemiptera: Cicadellidae) inferred from molecules and morphology. Syst. Entomol. 2020, 45, 687–702. [Google Scholar] [CrossRef]
- Luo, X.; Chen, Y.; Chen, C.; Pu, D.; Tang, X.B.; Zhang, H.; Lu, D.H.; Mao, J.H. Characterization of the complete mitochondrial genome of Empoasca sp. (Cicadellidae: Hemiptera). Mitochondrial DNA Part B 2019, 4, 1477–1478. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Chen, X.X.; Li, C.; Song, Y.H. The complete mitochondrial genome of Empoascanara sipra (Hemiptera: Cicadellidae: Typhlocybinae) with phylogenetic consideration. Mitochondrial DNA Part B 2020, 5, 260–261. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.C.Y. Phylogeny of the Genus of Idiocerus Based on the Complete Mitochondrial Genomes. Master’s Thesis, Inner Mongolia Normal University, Hohhot, China, 2021. [Google Scholar]
- Reineke, A.; Karlovsky, P.; Zebitz, C.P. Preparation and purification of DNA from insects for AFLP analysis. Insect Mol. Biol. 1998, 7, 95–99. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MaPreduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, S.A.; Lesin, M.V.; Nikolenko, I.S.; Pham, S.; Prjibelskl, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comp. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Web BankIt. Available online: http://www.ncbi.nlm.nih.gov/BankIt/index.html (accessed on 10 May 2022).
- Web BLAST. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 10 May 2022).
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- MITOS Web Server. Available online: http://mitos.bioinf.uni-leipzig.de/index.py (accessed on 10 May 2022).
- tRNAscan-SE Web Server. Available online: http://lowelab.ucsc.edu/tRNAscan-SE/ (accessed on 10 May 2022).
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, 54–57. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. Organellar Genome DRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandem Repeats Finder Web Server. Available online: http://tandem.bu.edu/trf/trf.html (accessed on 10 May 2022).
- Wang, J.J.; Yang, M.F.; Dai, R.H.; Li, H.; Wang, X.Y. Characterization and phylogenetic implications of the complete mitochondrial genome of Idiocerinae(Hemiptera: Cicadellidae). Int. J. Biol. Macromol. 2018, 120, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.C.Y.; Dong, H.R.; Di, X.C.; Tian, L.L.; Zhang, B. Complete mitochondrial genome of Populicerus confusus (Hemiptera: Cicadellidae: Idiocerinae). Mitochondrial DNA Part B 2020, 5, 2958–2959. [Google Scholar] [CrossRef]
- Choudhary, J.S.; Naaz, N.; Das, B.; Bhatt, B.P.; Prabhakar, C.S. Complete mitochondrial genome of Idioscopus nitidulus (Hemiptera: Cicadellidae). Mitochondrial DNA Part B 2018, 3, 191–192. [Google Scholar] [CrossRef] [Green Version]
- Dai, R.H.; Wang, J.J.; Yang, M.F. The complete mitochondrial genome of the leafhopper Idioscopus clypealis (Hemiptera: Cicadellidae: Idiocerinae). Mitochondrial DNA Part B 2018, 3, 32–33. [Google Scholar]
- Shan, L.C.Y.; Di, X.C.; Luo, H.; Zhang, B. The complete mitochondrial genome of the leafhopper Idiocerus herrichii (Hemiptera: Cicadellidae: Idiocerinae). Mitochondrial DNA Part B 2020, 5, 1465–1466. [Google Scholar] [CrossRef] [Green Version]
- Di, X.C.; Dong, H.R.; Shan, L.C.Y.; Tian, L.L.; Zhang, B. The complete mitochondrial genome of Metidiocerus sp. Mitochondrial DNA Part B 2020, 5, 2752–2753. [Google Scholar] [CrossRef]
- Ma, M.R.; Li, Z.N.; Guo, X.G.; Zhang, B. The complete mitochondrial genome of Metidiocerus impressifrons (Kirschbaum, 1868) (Hemiptera: Cicadellidae: Idiocerinae). Mitochondrial DNA Part B 2022, 7, 372–373. [Google Scholar] [CrossRef]
- Di, X.C.; Shan, L.C.Y.; Luo, H.; Zhang, B. The complete mitochondrial genome of Rhytidodus viridiflavus (Hemiptera: Cicadellidae: Idiocerinae). Mitochondrial DNA Part B 2020, 5, 1321–1322. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Wu, Y.F.; Dai, R.H.; Yang, M.F. Comparative mitogenomes of six species in the subfamily Iassinae (Hemiptera: Cicadellidae) and phylogenetic analysis. Int. J. Biol. Macromol. 2020, 149, 1294–1303. [Google Scholar] [CrossRef]
- Yuan, X.; Xiong, K.; Li, C.; Song, Y. The complete mitochondrial genome of Limassolla lingchuanensis (Hemiptera: Cicadellidae: Typhlocybinae). Mitochondrial DNA Part B 2020, 5, 229–230. [Google Scholar] [CrossRef]
- Wang, J.J.; Dai, R.H.; Li, H.; Zhan, H.P. Characterization of the complete mitochondrial genome of Japanagallia spinosa and Durgades nigropicta (Hemiptera: Cicadellidae: Megophthalminae). Biochem. Syst. Ecol. 2017, 74, 33–41. [Google Scholar] [CrossRef]
- GenBank. Available online: https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 10 May 2022).
- Zhang, D.; Gao, F.; Li, W.X.; Jakovlić, I.; Zou, H.; Zhang, J.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Erixon, P.; Svennblad, B.; Britton, T.; Oxelman, B. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst. Biol. 2003, 52, 665–673. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Rannala, B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 2004, 53, 904–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Nguyen, M.A.T.; Haeseler, A.V. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FigTree. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 10 May 2022).
- Li, H.; Leavengood, J.M., Jr.; Chapman, E.G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.P.; Zhou, X.G.; Cai, W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. Biol. Sci. 2017, 284, 1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 1977, 267, 275–276. [Google Scholar] [CrossRef]
- Castellana, S.; Vicario, S.; Saccone, C. Evolutionary patterns of the mitochondrial genome in Metazoa: Exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biol. Evol. 2011, 3, 1067–1079. [Google Scholar] [CrossRef] [Green Version]
- Magnus, W.J.; da Rute, R.F.; Louis, B.; Michael, M.H. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.). Mol. Phylogenet. Evol. 2016, 95, 161–170. [Google Scholar]
- Yang, Z.; Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef]
- Gao, S.; Tian, X.; Chang, H.; Sun, Y.; Wu, Z.; Cheng, Z.; Dong, P.; Zhao, Q.; Ruan, J.; Bu, W. Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion 2018, 38, 41–47. [Google Scholar] [CrossRef]
- Ji, H.; Xu, X.; Jin, X.; Yin, H.; Luo, J.; Liu, G.; Zhao, Q.; Chen, Z.; Bu, W.; Gao, S. Using high-resolution annotation of insect mitochondrial DNA to decipher tandem repeats in the control region. RNA Biol. 2019, 16, 830–837. [Google Scholar] [CrossRef]
- Xu, X.; Ji, H.; Jin, X.; Cheng, Z.; Yao, X.; Liu, Y.; Zhao, Q.; Zhang, T.; Ruan, J.; Bu, W.; et al. Using pan RNA-seq analysis to reveal the ubiquitous existence of 5’ and 3’ end small RNAs. Front. Genet. 2019, 10, 105. [Google Scholar] [CrossRef]
Species | Family | Subfamily | Collection Date | Coordinates | Collection Site |
---|---|---|---|---|---|
N. dentimus Xue & Zhang, 2014 | Cicadellidae | Eurymelinae | June 2020 | 30.08293° N, 118.14638° E | Tangkou Town, Huangshan District, Anhui Province, China |
New species of a new genus | Cicadellidae | Eurymelinae | July 2020 | 27.37167° N, 119.76870° E | Sankui Town, Taishun County, Zhejiang Province, China |
S. salicicola (Flor, 1861) | Cicadellidae | Eurymelinae | July 2020 | 40.43336° N, 111.96360° E | Shengle Town, Ringer County, Inner Mongolia Autonomous Region, China |
P. opacus (Anufriev, 1978) | Cicadellidae | Eurymelinae | June 2020 | 24.97987° N, 102.28578° E | Dashiao Town, Luping County, Yunnan Province, China |
P. consimilis (Vilbaste, 1968) | Cicadellidae | Eurymelinae | July 2020 | 27.78046° N, 119.79011° E | Huangqiao Protection Station, Wuyanling National Nature Reserve, Taishun County, Zhejiang Province, China |
Taxon | Family | Subfamily | Accession Number | Length (bp) | Reference |
---|---|---|---|---|---|
N. dentimus (Xue & Zhang, 2014) | Cicadellidae | Eurymelinae | ON601496 | 14,815 | This study |
New species of a new genus | Cicadellidae | Eurymelinae | ON601498 | 15,044 | This study |
S. salicicola (Flor, 1861) | Cicadellidae | Eurymelinae | ON510775 | 14,733 | This study |
P. opacus (Anufriev, 1978) | Cicadellidae | Eurymelinae | ON601497 | 14,815 | This study |
P. consimilis (Vilbaste, 1968) | Cicadellidae | Eurymelinae | ON510776 | 14,825 | This study |
Liocratus salicis | Cicadellidae | Eurymelinae | MG813490 | 16,436 | [30] |
Paroceruslaurifoliae | Cicadellidae | Eurymelinae | MH433622 | 16,811 | [30] |
Populicerusconfusus | Cicadellidae | Eurymelinae | MT341642 | 16,395 | [31] |
Populiceruspopuli | Cicadellidae | Eurymelinae | MH492318 | 16,494 | [30] |
Idioscopusnitidulus | Cicadellidae | Eurymelinae | KR024406 | 15,287 | [32] |
Idioscopusclypealis | Cicadellidae | Eurymelinae | MF784430 | 15,393 | [33] |
Idiocerus herrichii | Cicadellidae | Eurymelinae | MN935487 | 15,489 | [34] |
Idioscopus sp. | Cicadellidae | Eurymelinae | MH492317 | 15,423 | [30] |
Koreocerus koreanus | Cicadellidae | Eurymelinae | MW916101 | 15,594 | Liu’s unpublished data |
Metidiocerus sp. | Cicadellidae | Eurymelinae | MT554451 | 15,079 | [35] |
Metidiocerus impressifrons | Cicadellidae | Eurymelinae | MW963341 | 16,426 | [36] |
Rhytidodus viridiflavus | Cicadellidae | Eurymelinae | MN935488 | 16,842 | [37] |
Outgroup | |||||
Batracomorphus lateprocessus | Cicadellidae | Iassinae | MG813489 | 15,356 | [38] |
Limassolla lingchuanensis | Cicadellidae | Typhlocybinae | MN605256 | 15,716 | [39] |
Durgades nigropicta | Cicadellidae | Megophthalminae | KY123686 | 15,974 | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Yang, W.; Si, C.; Guo, X.; Zhang, B. Complete Mitogenome Analysis of Five Leafhopper Species of Idiocerini (Hemiptera: Cicadellidae). Genes 2022, 13, 2000. https://doi.org/10.3390/genes13112000
Tian L, Yang W, Si C, Guo X, Zhang B. Complete Mitogenome Analysis of Five Leafhopper Species of Idiocerini (Hemiptera: Cicadellidae). Genes. 2022; 13(11):2000. https://doi.org/10.3390/genes13112000
Chicago/Turabian StyleTian, Lili, Wenxin Yang, Chengyan Si, Xianguang Guo, and Bin Zhang. 2022. "Complete Mitogenome Analysis of Five Leafhopper Species of Idiocerini (Hemiptera: Cicadellidae)" Genes 13, no. 11: 2000. https://doi.org/10.3390/genes13112000
APA StyleTian, L., Yang, W., Si, C., Guo, X., & Zhang, B. (2022). Complete Mitogenome Analysis of Five Leafhopper Species of Idiocerini (Hemiptera: Cicadellidae). Genes, 13(11), 2000. https://doi.org/10.3390/genes13112000