Comparative Analysis of the Chloroplast Genome of Cardamine hupingshanensis and Phylogenetic Study of Cardamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Extraction
2.2. Genome Sequencing, Assembly and Annotation
2.3. Structural Analysis and Genome Comparison
2.4. Dataset Construction and Phylogenetic Analysis
3. Results
3.1. General Features of the C. hupingshanensis cp Genome
3.2. Analysis of Codon Bias
3.3. Comparative Analysis of Genome Structure in Cardamine
3.4. Repeat Analysis
3.5. Phylogenetic Analysis
4. Discussion
4.1. Sequence Variations in Cardamine
4.2. Molecular Markers for Cardamine
4.3. Inferring the Phylogeny and Species Identification of Cardamine
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheo, T.; Lou, L.; Yang, G.; Al-Shehbaz, I. Cardamine. In Flora of China; Science Press: St. Louis, MO, USA; Beijing & Missouri Botanical Garden Press: Beijing, China, 2001; Volume 8. [Google Scholar]
- Carlsen, T.; Bleeker, W.; Hurka, H.; Elven, R.; Brochmann, C. Biogeography and Phylogeny of Cardamine (Brassicaceae). Ann. Mo. Bot. Gard. 2009, 96, 215–236. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A. The genera of Arabideae (Cruciferae, Brassicaceae) in the southeastern United States. J. Arnold Arbor. 1988, 69, 85–166. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A.; Beilstein, M.A.; Kellogg, E.A. Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Syst. Evol. 2006, 259, 89–120. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A. A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 2012, 61, 931–954. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A. Brassicaceae. In Flora of Pan-Himalaya; Deng, Y., Ed.; Science Press: Beijing, China, 2015; pp. 1–594. [Google Scholar]
- Appel, O.; Al-Shehbaz, I.A. Cruciferae. In the Families and Genera of Vascular Plants; Kubitzki, K., Bayer, C., Eds.; Springer: Berlin, Germany, 2002; Volume 5, pp. 75–170. [Google Scholar]
- Wu, L.; Liu, W.; Mu, C.; Al-Shehbaz, I.A. Cardamine hunanensis (Brassicaceae), a remarkable new species from Hunan (China) with fully bracteate racemes. Phytotaxa 2021, 512, 79–82. [Google Scholar] [CrossRef]
- Warwick, S.I.; Mummenhoff, K.; Sauder, C.A.; Koch, M.A.; Al-Shehbaz, I.A. Closing the gaps: Phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Syst. Evol. 2010, 285, 209–232. [Google Scholar] [CrossRef]
- Hu, S.; Sablok, G.; Wang, B.; Qu, D.; Barbaro, E.; Viola, R.; Li, M. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genom. 2015, 16, 306. [Google Scholar] [CrossRef] [Green Version]
- Lihova, J.; Marhold, K. Worldwide phylogeny and biogeography of Cardamine flexuosa (Brassicaceae) and its relatives. Am. J. Bot. 2006, 93, 1206–1221. [Google Scholar] [CrossRef]
- Marhold, K.; Lihova, J. Polyploidy, hybridization and reticulate evolution: Lessons from the Brassicaceae. Plant Syst. Evol. 2006, 259, 143–174. [Google Scholar] [CrossRef]
- Bai, H. A New Species of Cardamine (Brassicaceae) from Hunan, China. Novon 2008, 18, 135–137. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Liang, H. Cardamine hupingshanensis K. M. Liu, L, B. Chen, H. F. Bai & L. H. Liu-A Newly Recorded Species in Hubei, China. Hubei Agric. Sci. 2010, 49, 2160–2161. [Google Scholar]
- Liu, T.; Zheng, J.; Zhang, B. Research status and prospect of Cardamine. Shaanxi J. Agric. Sci. 2012, 4, 127–129. [Google Scholar]
- Zhou, Y.; Tang, Q.; Wu, M.; Mou, D.; Liu, H.; Wang, S.; Zhang, C.; Ding, L.; Guo, J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci. Rep. 2018, 8, 2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilon-Smits, E.; Colin, F. Selenium Metabolism in Plants. Int. Urogynecology J. 2016, 27, 225–241. [Google Scholar]
- Zhu, Y.; Pilon-Smits, E.; Zhao, F.; Williams, P.; Meharg, A. Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 2009, 14, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Dobrogojski, J.; Adamiec, M.; Lucinski, R. The chloroplast genome: A review. Acta Physiol. Plant. 2020, 42, 98. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.; Yu, M.; Chang, W. Chloroplast genomes: Diversity, evolution and applications in genetic engineering. Genome Biol. 2016, 17, 2–29. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zerges, W. Translational regulation in chloroplasts for development and homeostasis. Biochim. Biophys. Acta 2015, 9, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, S.; Asakura, Y.; Imai, M.; Nakahira, Y.; Kotani, Y.; Hashiguchi, Y.; Nakai, Y.; Takafuji, K.; Bedard, J.; Hirabayashi-Ishioka, Y.; et al. A Ycf2-FtsHi Heteromeric AAA-ATPase Complex Is Required for Chloroplast Protein Import. Plant Cell 2018, 30, 2677–2703. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Ge, X.; Cano, A.; Millan Salazar, B.G.; Deng, Y. Comparative analysis of chloroplast genomes for five Dicliptera species (Acanthaceae): Molecular structure, phylogenetic relationships, and adaptive evolution. Peerj 2020, 8, e8450. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yang, J.; Jin, L.; Wang, S.; Yang, Z.; Ji, Y. Plastome phylogenomics of the East Asian endemic genus Dobinea. Plant Divers. 2021, 43, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Tang, D.; Wei, K.; Qin, F.; Li, L.; Lin, Y.; Zhu, Y.; Khan, A.; Kashif, M.H.; Miao, J. The complete chloroplast genome sequence of the medicinal plant Sophora tonkinensis. Sci. Rep. 2020, 10, 12473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, T.; Shu, X.; Wang, N.; Zhuang, W.; Wang, Z. Complete Chloroplast Genomes and Comparative Analyses of L. chinensis, L. anhuiensis, and L. aurea (Amaryllidaceae). Int. J. Mol. Sci. 2020, 21, 5729. [Google Scholar] [CrossRef]
- Wu, H.; Ma, P.-F.; Li, H.-T.; Hu, G.-X.; Li, D.-Z. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae). Plant Divers. 2021, 43, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Mwanzia, V.M.; He, D.-X.; Gichira, A.W.; Li, Y.; Ngarega, B.K.; Karichu, M.J.; Kamau, P.W.; Li, Z.-Z. The complete plastome sequences of five Aponogeton species (Aponogetonaceae): Insights into the structural organization and mutational hotspots. Plant Divers. 2020, 42, 334–342. [Google Scholar] [CrossRef]
- Olmstead, R.G.; Palmer, J.D. Chloroplast DNA systematics: A review of methods and data analysis. Am. J. Bot. 1994, 81, 1205–1224. [Google Scholar] [CrossRef]
- Weng, M.-L.; Blazier, J.C.; Govindu, M.; Jansen, R.K. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol. 2013, 31, 645–659. [Google Scholar] [CrossRef] [Green Version]
- Wicke, S.; Schneeweiss, G.M.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amor, M.D.; Johnson, J.C.; James, E.A. Identification of clonemates and genetic lineages using next-generation sequencing (ddRADseq) guides conservation of a rare species, Bossiaea vombata (Fabaceae). Perspect. Plant Ecol. Evol. Syst. 2020, 45, 125544. [Google Scholar] [CrossRef]
- Chang, A.C.G.; Lai, Q.; Chen, T.; Tu, T.; Wang, Y.; Agoo, E.M.G.; Duan, J.; Li, N. The complete chloroplast genome of Microcycas calocoma (Miq.) A. DC. (Zamiaceae, Cycadales) and evolution in Cycadales. Peerj 2020, 8, e8305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Wang, J.; Deng, Y. The Complete Chloroplast Genomes of Echinacanthus Species (Acanthaceae): Phylogenetic Relationships, Adaptive Evolution, and Screening of Molecular Markers. Front. Plant Sci. 2018, 9, 1989. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Guo, S.; Xu, J.; He, L.; Carlson, J.E.; Hou, X. Phylogenetic analysis based on chloroplast genome uncover evolutionary relationship of all the nine species and six cultivars of tree peony. Ind. Crops Prod. 2020, 153, 112567. [Google Scholar] [CrossRef]
- Hishamuddin, M.S.; Lee, S.Y.; Ng, W.L.; Ramlee, S.I.; Lamasudin, D.U.; Mohamed, R. Comparison of eight complete chloroplast genomes of the endangered Aquilaria tree species (Thymelaeaceae) and their phylogenetic relationships. Sci. Rep. 2020, 10, 13034. [Google Scholar] [CrossRef] [PubMed]
- Niu, E.; Jiang, C.; Wang, W.; Zhang, Y.; Zhu, S. Chloroplast Genome Variation and Evolutionary Analysis of Olea europaea L. Genes 2020, 11, 879. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987, 19, 11–15. [Google Scholar]
- Jin, J.; Yu, W.; Yang, J.; Song, Y.; dePamphilis, C.; Yi, T.; Li, D. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Qu, X.J.; Moore, M.J.; Li, D.Z.; Yi, T.S. PGA: A software package for rapid, accurate, and fexible batch annotation of plastomes. Plant Methods 2019, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [Green Version]
- Schattner, P.; Brooks, A.N.; Lowe, T.M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005, 33, W686–W689. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Li, W.-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiryousefi, A.; Hyvonen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swofford, D. PAUP. In Phylogentic Analysis Using Parsimony (* and Other Methods) Version 4; Sinauer Associates Press: Sunderland, UK, 2003. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.-X.; Xian, Y.-F.; Xiang, L.; Zhang, D.; Shi, Y.-H.; Wu, M.-L.; Dong, G.-Q.; Ip, S.-P.; Lin, Z.-X.; Wu, L. Complete Chloroplast Genomes from Sanguisorba: Identity and Variation Among Four Species. Molecules 2018, 23, 2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzke, A.; Lysak, M.; Al-Shehbaz, I.; Koch, M.; Mummenhoff, K. Cabbage family affairs: The evolutionary history of Brassicaceae. Trends Plant Sci. 2011, 16, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, N.; Wolf, E.; Lysak, M.; Koch, M. A time-calibrated broad map of Brassicaceae species radiation and evolutionary history. Plant Cell 2015, 27, 2770–2784. [Google Scholar] [PubMed] [Green Version]
- Huang, C.; Sun, R.; Hu, Y.; Zeng, L.; Zhang, N.; Cai, L.; Zhang, Q.; Koch, M.; Al-Shehbaz, I.; Edger, P.; et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 2015, 33, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, L.; Shushkov, P.; Nevado, B.; Gan, X.; Al-Shehbaz, I.; Filatov, D.; Bailey, C.; M, T. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 2019, 222, 1638–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walden, N.; German, D.; Wolf, E.; Kiefer, M.; Rigault, P.; Huang, X.; Kiefer, C.; Schmickl, R.; Franzke, A.; Neuffer, B.; et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 2020, 11, 3795. [Google Scholar] [CrossRef]
- Mader, M.; Pakull, B.; Blanc-Jolivet, C.; Paulini-Drewes, M.; Bouda, Z.H.-N.; Degen, B.; Small, I.; Kersten, B. Complete Chloroplast Genome Sequences of Four Meliaceae Species and Comparative Analyses. Int. J. Mol. Sci. 2018, 19, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raubeson, L.A.; Peery, R.; Chumley, T.W.; Dziubek, C.; Fourcade, H.M.; Boore, J.L.; Jansen, R.K. Comparative chloroplast genomics: Analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. Bmc Genom. 2007, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.M.; Du, X.Y.; Guo, C.; Li, D.Z. Resolving robust phylogenetic relationships of core Brassicaceae using genome skimming data. J. Syst. Evol. 2021, 59, 442–453. [Google Scholar] [CrossRef]
- George, B.; Bhatt, B.S.; Awasthi, M.; George, B.; Singh, A.K. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr. Genet. 2015, 61, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Jurka, J.; Pethiyagoda, C. Simple Repetitive DNA—Sequences from Primates—Compilation and Analysis. J. Mol. Evol. 1995, 40, 120–126. [Google Scholar] [CrossRef]
- Lu, L.; Li, X.; Hao, Z.; Yang, L.; Zhang, J.; Peng, Y.; Xu, H.; Lu, Y.; Zhang, J.; Shi, J.; et al. Phylogenetic studies and comparative chloroplast genome analyses elucidate the basal position of halophyte Nitraria sibirica (Nitrariaceae) in the Sapindales. Mitochondrial DNA Part A 2018, 29, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Tautz, D.; Renz, M. Simple Sequences are Ubiquitous Repetitive Components of Eukaryotic Genomes. Nucleic Acids Res. 1984, 12, 4127–4138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, C.D.; Koch, M.A.; Mayer, M.; Mummenhoff, K.; O’Kane, S.L., Jr.; Warwick, S.I.; Windham, M.D.; Al-Shehbaz, I.A. Toward a global phylogeny of the Brassicaceae. Mol. Biol. Evol. 2006, 23, 2142–2160. [Google Scholar] [CrossRef] [PubMed]
- Detling, L.E. The genus Dentaria in the Pacific states. Am. J. Bot. 1936, 23, 570–576. [Google Scholar] [CrossRef]
- Bush, N.A. Cardamine and Dentaria. In Flora of the U.S.S.R.; Plitma, U., Ed.; Keter Press: Jerusalem, Israel, 1939; Volume 8, pp. 110–129. [Google Scholar]
- Turrill, N.L.; Evans, D.K.; Gilliam, F.S. Identification of West Virginia members of the Dentaria complex [D. diphylla Michx., D. heterophylla Nutt., and D. laciniata Muhl. ex Willd.(Brassicaceae)] using above-ground vegetative characters. Castanea 1994, 59, 22–30. [Google Scholar]
- Crantz, H.J.N. Classis Cruicifornium Emendata; Ioannis Pauli Kraus: Leipzig, Germany, 1769. [Google Scholar]
- Schulz, O.E. Monographie der Gattung Cardamine. Bot. Jahrbücher Syst. Pflanzengesch. Pflanzengeogr. 1903, 32, 280–623. [Google Scholar]
- Schulz, O.E. Cruciferae. In Die Natürlichen Pflanzenfamilien; Engler, A., Harms, H., Eds.; Engelmann: Leipzig, Germany, 1936. [Google Scholar]
- Jones, B.M.G. Cardamine. Flora Eur. 1964, 1, 285–289. [Google Scholar]
- Oi, J. Flora of Japan; Smithsonian Institution: Washington, DC, USA, 1965. [Google Scholar]
- Cheo, T.Y. Cardamine. In Flora Reipublicae Popularis Sinica; Science Press: Beijing, China, 1987; Volume 33. [Google Scholar]
- Jones, B.M.G.; Akeroyd, J.R. Cardamine. In Flora Europaea, 2nd ed.; Tutin, T.G., Ed.; Cambridge University Press: New York, NY, USA, 1993; Volume 1. [Google Scholar]
- Rollins, R.C. The Cruciferae of Continiental North America; Standford University Press: Redwood City, CA, USA, 1993. [Google Scholar]
- Sweeney, P.W.; Price, R.A. Polyphyly of the genus Dentaria (Brassicaceae): Evidence from trnL intron and ndhF sequence data. Syst. Bot. 2000, 25, 468–478. [Google Scholar] [CrossRef]
- Rashid, A.; Ohba, H. A revision of Cardamine loxostemonoides OE Schulz (Cruciferae). J. Jap. Bot. 1993, 68, 199–208. [Google Scholar]
- Franzke, A.; Pollmann, K.; Bleeker, W.; Kohrt, R.; Hurka, H. Molecular systematics ofCardamine and allied genera (Brassicaceae): Its and non-coding chloroplast DNA. Folia Geobot. 1998, 33, 225–240. [Google Scholar] [CrossRef]
- Bleeker, W.; Franzke, A.; Pollmann, K.; Brown, A.; Hurka, H. Phylogeny and biogeography of Southern Hemisphere high-mountain Cardamine species (Brassicaceae). Aust. Syst. Bot. 2002, 15, 575–581. [Google Scholar] [CrossRef]
- Gao, Q.-B.; Li, Y.; Gengji, Z.-M.; Gornall, R.J.; Wang, J.-L.; Liu, H.-R.; Jia, L.-K.; Chen, S.-L. Population Genetic Differentiation and Taxonomy of Three Closely Related Species of Saxifraga (Saxifragaceae) from Southern Tibet and the Hengduan Mountins. Front. Plant Sci. 2017, 8, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.-R.; Oyebanji, O.; Zhang, R.; Yi, T.-S. Plastid phylogenomic insights into the evolution of subfamily Dialioideae (Leguminosae). Plant Divers. 2021, 43, 27–34. [Google Scholar] [CrossRef]
- Wang, Y.B.; Chen, F.J.; Liang, H.W. Cardamine hupingshanensis, a new recorded species of Cardamine from Hubei. Hubei Agric. Sci. 2010, 49, 2160–2161. [Google Scholar]
Species Name | Accession Number | Genome Size (bp) | LSC (bp) | SSC (bp) | IR (bp) | CDS Length | GC Content |
---|---|---|---|---|---|---|---|
Cardamine hupingshanensis | NC_065146 | 155,226 | 84,287 | 17,943 | 26,498 | 78,099 | 36.31% |
Cardamine macrophylla | MF405340 | 155,393 | 84,478 | 17,957 | 26,479 | 79,410 | 36.35% |
Cardamine bulbifera | NC_049603 | 155,295 | 84,473 | 17,858 | 26,482 | 79,146 | 36.39% |
Cardamine glanduligera | MK637680 | 153,828 | 83,124 | 17,716 | 26,494 | 79,179 | 36.43% |
Cardamine hirsuta | MK637681 | 153,934 | 83,228 | 17,782 | 26,462 | 79,002 | 36.41% |
Cardamine kitaibelii | MK637684 | 155,160 | 84,238 | 17,886 | 26,518 | 78,759 | 36.36% |
Cardamine pentaphyllos | MK637691 | 155,560 | 84,573 | 17,935 | 26,526 | 78,933 | 36.35% |
Cardamine quinquefolia | NC_049620 | 155,009 | 84,188 | 17,853 | 26,484 | 79,164 | 36.39% |
Cardamine amariformis | MZ043776 | 155,598 | 84,575 | 17,975 | 26,524 | 79,056 | 36.34% |
Cardamine occulta | MZ043777 | 154,796 | 83,836 | 17,936 | 26,512 | 79,497 | 36.33% |
Cardamine fallax | MZ043778 | 154,797 | 83,817 | 17,938 | 26,521 | 79,410 | 36.32% |
Cardamine impatiens | NC_026445 | 155,611 | 84,696 | 17,949 | 26,483 | 79,395 | 36.33% |
Cardamine resedifolia | NC_026446 | 155,036 | 84,151 | 17,867 | 26,509 | 79,518 | 36.30% |
Cardamine amara | NC_036962 | 154,561 | 84,281 | 17,706 | 26,287 | 78,488 | 36.40% |
Cardamine oligosperma | NC_036963 | 153,888 | 83,194 | 17,768 | 26,463 | 79,219 | 36.41% |
Cardamine parviflora | NC_036964 | 154,684 | 83,934 | 17,732 | 26,509 | 79,621 | 36.36% |
Cardamine enneaphyllos | NC_049605 | 155,221 | 84,195 | 18,002 | 26,512 | 73,794 | 36.28% |
Category | Gene Groups | Name of Genes |
---|---|---|
Self-replication (60 unique genes) | Large subunit of ribosomal proteins | rpl2×2, rpl14, rpl16, rpl20, rpl22, rpl23×2, rpl32, rpl33, rpl36 |
Small subunit of ribosomal porteins | rps2, rps3, rps4, rps7×2, rps8, rps11, rps12, rps14, rps15, rps16, rps18, rps19 | |
RNA polymerase | rpoA, rpoB, rpoC1, rpoC2 | |
Ribosomal RNA gene | rrn4.5×2, rrn5×2, rrn16×2, rrn23×2 | |
Transfer RNA genes | trnA-UGC×2, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC, trnH-GUG, trnI-CAU×2, trnI-GAU×2, trnK-UUU, trnL-CAA×2, trnL-UAA, trnL-UAG, trnM-CAU, trnN-GUU×2, trnP-UGG, trnQ-UUG, trnR-ACG×2, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC×2, trnV-UAC, trnW-CCA, trnY-GUA | |
Translational initiation factor | infA | |
Photosynthesis (57 unique genes) | Subunits of ATP synthase | atpA, atpB, atpE, atpF, atpH, atpI |
Subunits of Photosystem Ⅰ | psaA, psaB, psaC, psaI, psaJ, ycf3, ycf4 | |
Subunits of Photosystem Ⅱ | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | |
Subunits of cytochrome b/f complex | petA, petB, petD, petG, petL, petN | |
Subunits of rubisco | rbcL | |
Subunits of NADH-dehydrogenase | ndhA, ndhB×2, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Other genes (8 unique genes) | Subunit of acetyl-CoAcarboxylase | accD |
C-type cytochorome synthesis gene | ccsA | |
Envelope membrane protein | cemA | |
ATP-dependent Protease | clpP | |
Maturase K | matK | |
Component of TIC complex | ycf1 | |
Genes of unknown function | ycf2×2, ycf15×2 |
Amino Acid | Codon | No. | RSCU | Proportion | tRNA | |
---|---|---|---|---|---|---|
Phe | 1561 | UUU | 1054 | 1.35 | 6.00% | |
UUC | 507 | 0.65 | trnF-GAA | |||
Leu | 2768 | UUA | 935 | 2.03 | 10.63% | trnL-UAA |
UUG | 521 | 1.13 | trnL-CAA | |||
CUU | 582 | 1.26 | ||||
CUC | 178 | 0.39 | ||||
CUA | 386 | 0.84 | trnL-UAG | |||
CUG | 166 | 0.36 | ||||
Ile | 2260 | AUU | 1129 | 1.5 | 8.68% | |
AUC | 411 | 0.55 | trnI-GAU | |||
AUA | 720 | 0.96 | ||||
Met | 594 | AUG | 594 | 1 | 2.28% | trnfM-CAU, trnI-CAU, trnM-CAU |
Val | 1387 | GUU | 517 | 1.49 | 5.33% | |
GUC | 178 | 0.51 | trnV-GAC | |||
GUA | 489 | 1.41 | trnV-UAC | |||
GUG | 203 | 0.59 | ||||
Ser | 2016 | UCU | 566 | 1.68 | 7.74% | |
UCC | 303 | 0.9 | trnS-GGA | |||
UCA | 420 | 1.25 | trnS-UGA | |||
UCG | 202 | 0.6 | ||||
AGU | 402 | 1.2 | ||||
AGC | 123 | 0.37 | trnS-GCU | |||
Pro | 1034 | CCU | 419 | 1.62 | 3.97% | |
CCC | 190 | 0.74 | ||||
CCA | 292 | 1.13 | trnP-UGG | |||
CCG | 133 | 0.51 | ||||
Thr | 1328 | ACU | 544 | 1.64 | 5.10% | |
ACC | 230 | 0.69 | trnT-GGU | |||
ACA | 419 | 1.26 | trnT-UGU | |||
ACG | 135 | 0.41 | ||||
Ala | 1374 | GCU | 637 | 1.85 | 5.28% | |
GCC | 216 | 0.63 | ||||
GCA | 372 | 1.08 | trnA-UGC | |||
GCG | 149 | 0.43 | ||||
Tyr | 957 | UAU | 785 | 1.64 | 3.68% | |
UAC | 172 | 0.36 | trnY-GUA | |||
His | 605 | CAU | 458 | 1.51 | 2.32% | |
CAC | 147 | 0.49 | trnH-GUG | |||
Gln | 921 | CAA | 720 | 1.56 | 3.54% | trnQ-UUG |
CAG | 201 | 0.44 | ||||
Asn | 1257 | AAU | 962 | 1.53 | 4.83% | |
AAC | 295 | 0.47 | trnN-GUU | |||
Lys | 1479 | AAA | 1139 | 1.54 | 5.68% | trnK-UUU |
AAG | 340 | 0.46 | ||||
Asp | 1034 | GAU | 840 | 1.62 | 3.97% | |
GAC | 194 | 0.38 | trnD-GUC | |||
Glu | 1351 | GAA | 1028 | 1.52 | 5.19% | trnE-UUC |
GAG | 323 | 0.48 | ||||
Cys | 310 | UGU | 234 | 1.51 | 1.19% | |
UGC | 76 | 0.49 | trnC-GCA | |||
Trp | 448 | UGG | 448 | 1 | 1.72% | trnW-CCA |
Arg | 1536 | CGU | 339 | 1.32 | 5.90% | trnR-ACG |
CGC | 106 | 0.41 | ||||
CGA | 350 | 1.37 | ||||
CGG | 118 | 0.46 | ||||
AGA | 466 | 1.82 | trnR-UCU | |||
AGG | 157 | 0.61 | ||||
Gly | 1730 | GGU | 571 | 1.32 | 6.65% | |
GGC | 163 | 0.38 | trnG-GCC | |||
GGA | 721 | 1.67 | trnG-UCC | |||
GGG | 275 | 0.64 |
SSR | C. hupingshanensis/C. gladuligera/C. bulbifera /C. macrophylla/C. parviflora/C. oligosperma/C. amara/C. resedifolia/C. quinquefolia/C. impatiens/C. kitaibelii/C. pentaphyllos/C. hirsuta/C. amariformis/C. occulta/C. fallax | Location | Regions | Pi |
---|---|---|---|---|
T | 10/11/10/12/12/10/12/12/12/-/12/12/12/12/12 | matK | LSC | 0.01642 |
A | 20/-/12/-/16/12/10/10/11/10/10/15/13/17/13 | trnK-UUU--rps16 | LSC | 0.00639 |
TA | 10/12/10/12/10/-/10/12/12/-/-/10/6/7/7 | rps16--trnQ-UUG | LSC | 0.03666 |
T | 14/-/13/11/-/13/11/-/-/18/21/-/12/11/11 | trnR-UCU--atpA | LSC | 0.00000 |
T | 11/11/11/11/11/11/12/11/11/11/11/11/11/11/11 | rpoC2 | LSC | 0.00000 |
T | 10/13/12/16/-/11/13/14/14/-/-/-/14/16/16 | rpoC1 intron | LSC | 0.01720 |
T | 12/11/15/15/12/10/10/-/15/15/15/12/15/18/19 | trnE-UUC--trnT-GGU | LSC | 0.03642 |
AT | 20/20/24/18/12/14/10/18/16/10/14/12/8/10/10 | trnE-UUC--trnT-GGU | LSC | 0.03642 |
A | 17/10/-/-/-/14/14/10/13/10/10/12/-/-/10 | trnT-GGU-psbD | LSC | 0.00000 |
A | 12/11/11/-/16/11/14/11/11/14/14/18/-/-/- | psbZ-trnG-UCC | LSC | 0.03965 |
T | 11/16/13/17/16/15/11/15/16/16/16/15/15/15/15 | psaA-ycf3 | LSC | 0.02436 |
A | 11/11/12/11/-/14/14/11/12/16/21/-/-/16/15 | psaA-ycf3 | LSC | 0.02436 |
T | 10/-/-/14/-/-/-/10/12/11/11/-/14/14/14 | trnM-CAU-atpE | LSC | 0.00000 |
T | 10/10/10/-/10/13/10/12/12/11/11/11/-/10/10 | atpB-rbcL | LSC | 0.01690 |
T | 10/10/10/-/-/-/11/10/-/12/12/-/10/10/10 | rbcL-accD | LSC | 0.02311 |
T | 10/10/10/10/-/10/10/10/10/12/12/-/10/10/10 | accD | LSC | 0.01055 |
T | 10/11/10/10/10/17/10/13/-/10/10/-/11/10/10 | clpP intron | LSC | 0.01235 |
T | 13/13/13/13/13/13/13/13/13/12/17/13/13/13/13 | rpoA | LSC | 0.02929 |
T | 13/10/-/-/-/10/13/10/10/11/11/-/10/14/15 | rpl16 intron | LSC | 0.02311 |
T | 10/19/14/14/10/-/12/15/14/15/14/10/-/-/- | rps12-trnV-GAC | IR | 0.00572 |
AT | 16/-/-/-/12/12/10/-/-/-/-/12/8/8/8 | trnR-ACG-trnN-GUU | IR | 0.00000 |
T | 12/-/15/-/11/13/-/11/-/11/11/-/11/-/- | ndhF-rpl32 | SSC | 0.03768 |
A | 13/10/14/14/-/13/10/11/12/12/18/-/13/-/14 | ccsA-ndhD | SSC | 0.03162 |
T | 12/12/12/13/11/12/12/12/12/12/12/11/12/10/10 | ycf1 | IR | 0.00635 |
AT | 16/12/14/-/12/12/10/12/16/-/-/12/10/8/8 | trnN-GUU-trnR-ACG | IR | 0.00000 |
A | 10/19/14/15/10/-/12/15/14/15/14/10/-/-/- | trnV-GAC-rps7 | IR | 0.00000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Kang, Z.; Chen, Z.; Deng, Y. Comparative Analysis of the Chloroplast Genome of Cardamine hupingshanensis and Phylogenetic Study of Cardamine. Genes 2022, 13, 2116. https://doi.org/10.3390/genes13112116
Huang S, Kang Z, Chen Z, Deng Y. Comparative Analysis of the Chloroplast Genome of Cardamine hupingshanensis and Phylogenetic Study of Cardamine. Genes. 2022; 13(11):2116. https://doi.org/10.3390/genes13112116
Chicago/Turabian StyleHuang, Sunan, Zujie Kang, Zhenfa Chen, and Yunfei Deng. 2022. "Comparative Analysis of the Chloroplast Genome of Cardamine hupingshanensis and Phylogenetic Study of Cardamine" Genes 13, no. 11: 2116. https://doi.org/10.3390/genes13112116
APA StyleHuang, S., Kang, Z., Chen, Z., & Deng, Y. (2022). Comparative Analysis of the Chloroplast Genome of Cardamine hupingshanensis and Phylogenetic Study of Cardamine. Genes, 13(11), 2116. https://doi.org/10.3390/genes13112116