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Abstract: Apelin, a peptide initially isolated from bovine stomach extract, is an endogenous ligand
for the Apelin Receptor (APLNR). Subsequently, a second peptide, ELABELA, that can bind to the
receptor has been identified. The Apelin receptor and its endogenous ligands are widely distributed
in mammalian organs. A growing body of evidence suggests that this system participates in various
signaling cascades that can regulate cell proliferation, blood pressure, fluid homeostasis, feeding
behavior, and pituitary hormone release. Additional research has been done to elucidate the system’s
potential role in neurogenesis, the pathophysiology of Glioblastoma multiforme, and the protective
effects of apelin peptides on some neurological and psychiatric disorders-ischemic stroke, epilepsy,
Parkinson’s, and Alzheimer’s disease. This review discusses the current knowledge on the apelinergic
system’s involvement in brain physiology in health and disease.

Keywords: APLNR; APJ; Apelin; ELABELA; CNS; CNS-associated diseases; neurogenesis;
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1. Introduction

Apelin is a small, secreted protein first isolated from bovine stomach extracts and later
identified as an endogenous ligand for the Apelin receptor [1]. It is secreted as a 77 aa
precursor protein which is then cleaved into several mature forms that bind to the apelin
receptor with different affinity and specificity.

Apelin receptors and their ligands are widely expressed in the mammalian brain [2–7].
Increasing interest in the apelinergic system has led to numerous discoveries and shed light
on this system’s complex functional diversity. It is not only involved in the physiological
processes in the brain, but it also plays a role in the pathophysiology of neuropsychiatric
disorders. The system is a suitable pharmacological target: recent discoveries of novel
synthetic Apelin-receptor ligands with increased half/life (LIT01-196, l-homoarginine aks
l-hArg, and non-canonical amino acids l-cyclohexylalanine aka l-Cha, etc.) and antagonists
have paved the way towards clinical trials [8–10]. For a comprehensive review of the newly
synthesized APLNR ligands, refer to Fischer et al. [11].

2. Structure and Function of Apelin Receptor (APLNR; APJ)

Research on the apelinergic system history dates back to 1993 when the Apelin receptor
(APLNR, also knowns as APJ) was first described and cloned from a human genomic library
due to its significant structural similarity (~40% identity between amino acid sequences)
to angiotensin II receptor (AT2R). However, because of its inability to bind Angiotensin II
and because no endogenous ligand was known to interact with it at the time, APLNR was
considered an orphan receptor [12]. This notion was updated in 1998 when a ligand named
apelin was first isolated from bovine and human stomach extracts [1].

The human APLNR is a G protein-coupled receptor of class A (Rhodopsin-like re-
ceptors subclass A3) containing 380 amino acid residues with characteristics of the GCPR
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proteins family containing 7 TM α-helical segments [13,14]. Significant insight into its
structure was recently described utilizing X-ray crystallography with a synthetic 17-residue
mimetic [13]. The gene coding for APLNR is located on the long arm of chromosome 11 at
locus 11q12.1.

APLNR expression has been described in other vertebrates, including rhesus macaque,
mouse, rat, and cattle. In addition, lower vertebrates such as chicken, red-eared slider,
zebrafish, and tilapia possess variants of APLNR receptors (APLNR1, 2, 2a, 2b, and 3a)
with variable homology to the human receptor [3,6,15–19].

3. Structure and Function of Apelin Receptor Ligands
3.1. Apelin (APLN)

The first described endogenous ligand of the APLNR is apelin, generated from a
77 amino acids long inactive pre-proprotein named pre-proapelin. [1] It is encoded by a
gene located in the X chromosome in rats (Xq35), mice (XA3.2), and humans (Xq25-26.1) [20].
The pre-proapelin gene contains three exons, with exons 1 and 2 being the coding regions [21].

The discovery of apelin was made by Tatemoto et al. in 1998 through extraction
from bovine stomach tissue and was shown to act as a ligand for an orphaned at that
time G-coupled protein receptor APLNR. The name Apelin comes from APJ Endogenous
Ligand. Interestingly the homology of the protein is conserved across humans, mice, rats,
and bovine [1,20].

Pre-proapelin has a secretory N-terminal signaling peptide (22 amino acid residues)
and a C-terminal binding site. The last 55 amino acid residues in the binding peptide are
highly conserved. Additionally, the many basic amino acid residues represent multiple
cleaving sites for peptidases [1,22]. Pro-preapelin is subsequently cleaved, generating a
range of peptides that bind to APLNR. However, each ligand can exert different tissue
distribution, binding affinity, half-life, and functions (Figure 1A).

Upon cleavage, pre-proapelin is transformed into several fragments with sizes ranging
from 55 to 13 residues (Figure 1A). The 55-residue is formed by removing the 22-amino acid
N-Signaling peptide of the pre-proapelin. Apelin-55 is then further processed to generate
shorter active isoforms like apelin-36, 17, and 13 through protease-mediated cleavage.
Indeed, this is shown to be the case with converting proapelin to apelin-13 with the help of
PCSK3 (FURIN) [23].

At first, the apelin ligand was isolated from bovine stomach extracts as a 36-amino-acid
peptide capable of binding to CHO-cells expressing APLNR [1]. Additional experiments
by the same group showed that shorter peptides (apelin-17, 13, and [Pyr1] apelin-13) exert
stronger binding affinity to APLNR than apelin-36. Post-translational modifications of
apelin-13 ([Pyr1] apelin-13) prevent ligand degradation by exopeptidases [22]. Forskolin-
induced cAMP inhibition assays using CHO transfected with APLNR cDNA also showed
that [Pyr1] apelin-13 prompted the most potent response. However, in another study,
competition binding analysis in the same cell line (HEK293) established that apelin-13 has
a higher affinity to the receptor than [Pyr1]apelin-13 [24]. Zhen et al. (2013) found that
[Pyr1]apelin-13 is the most common ligand isoform in the blood [25]. For a long time, it
was accepted that apelin-55 serves only as a precursor, but current evidence suggests that it
may bind to APLNR with similar potency as apelin-17 and apelin-13 [26].

Several proteases (CD10 aka Neprilysin, angiotensin-converting enzyme 2 aka ACE2,
and Kallikrein aka KLKB1) can regulate apelin by modification or inactivation [27–29]. The
physiologically relevant action of metalloprotease CD10 is the cleavage of [Pyr1]apelin-13
between Arg4 and Leu5 (RPRL motif) and between Leu5 and Ser6, creating fragments
5–13 and 6–13, respectively [30]. Cleavage of the RPRL motif inactivates the protein and
prevents it from binding to APLNR [27].
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Figure 1. Enzymatic processing of Apelin/ELABELA. (A). The inactive pre-proapelin (77aa) is
processed via endogenous endonucleases to Apelin-55, which can bind to APLNR. Apelin-55 can
be additionally processed, generating four isoforms: Apelin-13, Apelin-17, Apelin-36, and [Pyr1]
apelin-13. The generation of Apelin-13 is achieved by PCSK3 (FURIN). All four isoforms are capable
of binding to the APLNR. CD10 (Neprilysin) is capable of inactivating [Pyr1] apelin-13, creating two
inactive Apelin-13 isoforms (5–13aa and 6–13aa). On the other hand, Angiotensin-converting enzyme
2 (ACE2) converts Apelin-13 and Apelin-36 to active forms, Apelin-13(1–12) and Apelin-32(1–35).
(B). ELABELA gene codes for a non-functional 54aa-long pro-protein, which generates an active 32aa-
long protein upon processing. ELABELA-32 can generate three fragments, ELABELA-11, an inactive
form, generated with the help of PCSK3, and two functional ones, ELABELA(1–9) and (11–32), with the
activity of unknown proteases. Abbreviations: PCSK3, proprotein convertases subtilisin/kexin type;
CD10, Neprilysin; ACE2, Angiotensin Converting enzyme-2; KLKB1, Kallikrein.

Angiotensin-converting enzyme 2 (ACE2) is a zinc-metalloprotease with carboxypep-
tidase activity that removes the C-terminal phenylalanine and produces apelin isoforms
with modified action [28]. Cleaving of apelin-13 and apelin-36 by ACE2 produces two frag-
ments, apelin-13(1–12) or apelin-36(1–35). Apelin-13(1–12) binds to the APLNR and activates
downstream pathways [31]. It is worth mentioning that ACE2 was recently identified as
the main SARS-CoV-2 receptors. Saravi and Beer proposed that apelin peptides can be
used as a potential drug for improving the outcome of COVID-19 lung and cardio-vascular
injuries [32]. Apelin-17 was shown to be indirectly related to the COVID-19 severity [33].

Kallikrein is a serine protease that cleaves apelin-17 between Arg3 and Arg4 into
two isoforms, apelin-17(1–3) and apelin-17(4–17) fragments. Those fragments bind to the
receptor with high affinity but cannot activate the Ca2+ ions mobilization [29].

3.2. Apela/ELA (Apelin Receptor Early Endogenous Ligand/Elabela/Toddler)

The human ELABELA gene is located on chromosome 4 and contains three exons. The
transcript, previously believed to be a non-coding RNA, contains an open reading frame
(ORF) and encodes a pre-proprotein with a length of 54 amino acids, containing a 22 amino
acids secretory signaling terminus and a 31 amino acids mature portion. This protein is
highly conserved across the species with nearly perfect homology of the C-terminus’s last
13 amino acid residues [34–36].

ELABELA (Toddler) was discovered and described as an essential regulator of heart
development [34,35]. In embryos, ELABELA acts as an early developmental signal required
for the migration of mesendodermal cells. ELABELA-/- knock-out mice show cardiac
agenesia or form only a rudimentary heart. This phenotype resembles the effects observed
in APLNR knock-out mice [34,35]. Apelin and ELABELA have sequence similarity of 25%,
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isoelectric points above 12, and are rich in basic amino acid residues. These observations
led to the experimental evidence and conclusion that ELABELA can also activate the
APLNR [34,35,37].

Additional experiments utilizing HEK293 cells transfected with lentivirus containing
APLNR enchased by GFP and treated with ELABELA show that after binding to the
APLNR, ELABELA causes transient internalization of the receptor. Similarly, the binding
of ELABELA to APLNR-expressing cells acts on Gi-coupled proteins leading to stimulation
of ERK 1/2 phosphorylation, an increase in calcium mobilization, and a decrease in cAMP
production [38,39]. Interestingly, competition binding analysis showed that ELABELA
binds with a higher affinity to APLNR than apelin [39].

Chng et al. have speculated on the cleavage sites of the ELABELA peptide because of
the presence of dibasic amino acids: Arg9–Arg10 and Arg20–Arg21 [34]. Indeed, incubation
of ELA-32 in the presence of PCSK3 (FURIN) leads to the generation of fragment ELA-
11(22–32) [40] (Figure 1B). In addition, incubation of ELABELA in rat plasma induces the
formation of two other bioactive fragments- ELA(1–9) and ELA-22(11–32) with a cleavage site
Arg9-Arg10 and Arg10-Lys11 [41].

Some of those smaller fragments can bind effectively to the receptor and activate the
Gαi1 pathway, recruiting β-arrestins, leading to the internalization of the receptor with
efficacy similar to that of ELABELA (parent form) and Apelin-13 [40,41]. ELA-11 is a
notable exception, with reduced receptor binding affinity and β-arrestin recruitment but
with the capability to inhibit cAMP production [42]. The plasma half-life of ELA is very
short (t1/2 = 2 min), similar to Apelin [41]. The plasma concentration of apelin-13 is in the
range of 0.13 ± 0.05 ng/mL [43].

4. Transcriptional Regulation of APLNR and Apelin

Multiple transcriptional factors are involved in the regulation of the apelin receptor
gene expression, including Sp1 (stimulating protein-1), glucocorticoid, estrogen receptors,
and CCAAT enhancer-binding protein (C/EBP) [44]. Additionally, insulin can also affect
the expression of both apelin and APLNR [45]. Upon knock-out of Apelin, the expression of
APLNR was reduced, suggesting that Apelin regulates the expression of APLNR [46].

Based on the data so far, transcriptional factors regulating apelin gene expression
are upstream transcription factor 1/ upstream transcription factor 2 (USF1/USF2), signal
transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor 1-α (HIF1-α),
TNF-α (tumor necrosis factor-α) collaborative binding interaction between RARα (retinoic
acid receptor α), KLF5 (Krüppel-like factor 5) and Sp1 (stimulating protein-1) [47–51]. Insulin
is also shown to increase apelin expression. [45] Down-regulation of apelin is associated
with the transcriptional factors ATF4 and its binding partner C/EBP-b via the p38 MAPK
pro-apoptotic signal pathway [52].

Moreover, various substances such as resveratrol metabolites, andrographolide, and in-
sulin can increase the expression of mRNA of Apelin, while the application of corticosteroids
can downregulate it [53–55].

5. Signaling Pathways Associated with Activation of APLNR

APLNR is coupled with heterogenous guanine nucleotide-binding proteins
(Gαi/o, Gαq/11, Gαs, and Gα12/13), which upon activation of the receptor, can reg-
ulate diverse intracellular events. (Figure 2) It is possible that the APLNR is also coupled
with inhibitory G-coupled protein (Gi) [1].

APLNR is associated with different G-coupled proteins Gαi/o, Gαq/11, Gαs, and
Gα12/13. Activation of the receptor and recruitment of Gαs activates Adenylyl Cyclase
leading to the production of PKA. Adenylyl cyclase can be inhibited by Gαi/o. Gαi/o
and, on the other hand, is responsible for downstream reaction associated with cell cycle
progression, inhibition of autophagy, and cell survival and response to injury through acti-
vation of PI3K/Akt/mTOR pathways. mTOR can phosphorylate P70S6K kinase, leading
to cell migration and proliferation. Additionally, mTOR can be phosphorylated (Ser2448),
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leading to apoptosis and autophagy inhibition. Gαi/o can also activate MEK1/2/ERK1/2
and phospholipase Cβ leading to an increase in cell survival due to inhibition of apoptosis.
In addition, Gαq/11 and Gq also can activate phospholipase Cβ. Gα12/13 mediates cy-
toskeleton remodeling by activating RhoGEF/Rhoa pathway. Apelin is also involved in
inducing self-renewal in cancer stem cells. A possible mechanism involving the apelinergic
system is associated with increased gene suppression and enhanced stem cell self-renewal.
GSK3b increases the stability of KDM1A via phosphorylation at s683, which can interact
with USP22. KDM1A is responsible for the demethylation of histone H3K4 downregu-
lating genes (BMP2, CDKN1A, and GATA6) associated with stem cell self-renewal and
tumorigenesis. When bound to APLNR, Apelin-13 recruits GRK2 and β-arrestins leading to
internalization of the receptor via transferrin and rapid recycling back to the cell membrane.
Apelin-36, on the other hand, also recruits GRK2 and β-arrestins, but in this case, the
APLNR is targeted for lysosomal degradation. Apelin is also callable of attenuating the
mitochondrion permeabilization caused by NMDAR activation, decreasing the generation
of ROS, Cytochrome C, and Caspase-3, thus, inhibiting apoptosis. Another attenuation
mechanism is the Ca2+-dependent Casein kinase-2 (CK2) phosphorylation of NR2B subunit
at S1480, leading to decreased activity of NMDAR. Additionally, the administration of
apelin-13 can inhibit the effect of the GRP78/CHOP pathway and caspase-12 cascade asso-
ciated with ER stress. Abbreviations: NMDAr, N-methyl-D-aspartate receptor; NR2B, The
N-methyl-D-aspartate receptor subunit 2B; CK2, Casein kinase 2; cAMP- cyclic Adenosine
monophosphate; ATP, Adenosine triphosphate; PKA, protein kinase A; PI3K, Phospho-
inositide 3-kinase; Akt, Protein kinase B; mTOR, mammalian target of rapamycin; MEK1/2,
Mitogen-activated protein kinase kinase 1/2; ERK 1/2, extracellular signal-regulated kinase;
RhoGEF, Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; Rhoa,
Ras homolog family member A; PLC β2, Phospholipase C β2; IP3, Inositol trisphosphate,
PIP2, Phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; PKC, Protein kinase
C; GRK2, G Protein-Coupled Receptor Kinase 2; BAX, Bcl-2-associated X protein; BID,
BH3 interacting-domain death agonist; BIK, Bcl-2-interacting killer; ROS, Reactive oxygen
species; CHOP, C/EBP Homologous Protein; GRP78, Glucose regulated protein-78; GSK3β,
Glycogen synthase kinase-3 β, KDM1A, Lysine-specific histone demethylase 1A; USP22,
Ubiquitin Specific Peptidase 22.

Those G-proteins are associated with distinct cellular events like activation or inhibi-
tion of adenylate cyclase by Gαs or Gαi/o, respectively, increase in intracellular Ca2+ with
activation of phospholipase Cβ by Gαq, actin cytoskeleton remodeling by Rho activated by
Gα12/13 and others. Additional pathways involving EGFR and -β-arrestin signaling are
also relevant to downstream reactions associated with APLNR activation.

Coupling to Gαi/o inactivates the Adenylyl Cyclase-reducing protein kinase A
(PKA) [2,5,22,24,56]. APLNR/Apelin interactions are shown to enhance downstream
effects related to the kinases Akt and ERK1/2, which are functionally related to cell sur-
vival and injury protection [57]. Apelin-13 enhances the phosphorylation of Akt while
reducing phosphorylated ERK1/2, demonstrating a potent neuroprotective effect and pro-
moting cell survival in a serum deprivation (SD) neuronal model of apoptosis in cultured
cortical neurons. [58] Interestingly, upon exposure to apelin ligands, neurons demonstrate
an increase in intracellular calcium [59]. On the other hand, Gαs can activate Adenylyl
Cyclase, which increases cAMP, inducing PKA activation [60,61].

Activation of Gα12/13 leads to activation of Phospholipase C, which hydrolyses phos-
phatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol
1,4,5-trisphosphate (IP3). Increased Ca2+ concentration, a result of IP3 binding to the
endoplasmic reticulum, is required in addition to DAG to activate PKA [60,61]. Apelin can
also regulate cell cycle progression by activating p70S6K through PI3K/Akt/mTOR path-
way [62]. mTOR can be phosphorylated through PI3K/Akt at the Ser2448 position leading
to the inhibition of autophagy and caspase-3 activation associated with apoptosis [63].
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Different ligands exhibit different overall effects on downstream processes like receptor
phosphorylation, recruitment of GRK2, and β-arrestins [60,64].

Of note, when internalized, both apelin-13 and 36 colocalize with transferrin. Inter-
estingly, the binding of apelin-36 to the receptor recruits β-arrestin-1, which leads to the
internalization of the receptor via early Rab4 endosomes. On the contrary, the apelin-13
binding leads to transient internalization of the receptor followed by rapid recycling to the
cell surface. The internalization process is not associated with β-arrestin complex forma-
tion, as observed during apelin-36 internalization [65,66]. This suggests ligand-depending
trafficking mechanisms and downstream effects of the system.

Studies have shown that activating pro-survival pathways (ERK1/2 and AKT) by
pre-treating hippocampal cultures with apelin ligands rescues the neurons from N-methyl-
D-aspartic acid (NMDAr) receptor-mediated excitotoxicity injury [57]. Mitochondrial
depolarization and increased permeabilization can increase ROS and cytochrome C, which
are the main starting points for both apoptosis and necrosis. Interestingly, infusion of
apelin-13 in serum-deprived cortical neuron cultures can attenuate ROS generation by
stabilizing the mitochondrial membrane [58]. The underlying mechanism of this process
involves IP3, PKC, MEK1/2, and ERK1/2 Signaling pathways.

Since NMDA receptors include glycine binding subunits-NR1 and glutamate bind-
ing subunits-NR2 (NR2A–NR2D), a potential Casein kinase-2 (CK2) or Ca2+-dependent
phosphorylation of NR2B S1480 by the APLNR pathway provides additional mechanisms
of protection against excitotoxicity [67]. Moreover, apelin ligands inhibit HIV-associated
neurotoxicity and apoptosis in neurons [57].
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6. APLNR, Apelin, and ELABELA Expression in the Normal Brain

Brain distribution of APLNR and its endogenous ligands has been extensively studied
utilizing different molecular and histo-anatomical techniques. APLNR and Apelin are
present in the mammalian central and peripheral nervous systems. The topographical
localization of APLNR and Apelin in the brain suggests multiple roles of this system
in neurogenesis, pituitary hormone release, body fluid homeostasis, regulation of blood
pressure, feeding behaviors, etc. [5,16,56,68]. Regionally, APLNR is expressed in restricted
areas of the cerebral cortex like frontal, temporal, occipital, piriform, and entorhinal cor-
tices (Figure 3, Table 1) [2,5,12,20,57,68–70]. Compared to APLNR, the overall levels of
Apelin mRNA measured with RT-PCR in the cerebrum is higher [70].
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Using a variety of molecular biology techniques (qPCR, RT-PCR, WB, NB) for de-
tecting APLNR and Apelin, multiple studies have shown that both are present in the
dentate gyrus and the hippocampus proper (Cornu Ammonis, CA), Apelin having a
higher expression level as compared to the APLNR [2,5,12,19,20,57,68–70]. The subgran-
ular zone of the dentate gyrus is one of the main niches for postnatal neurogenesis, and
it will be interesting to investigate if the APLNR/Apelinsystem can modulate its cellular
output. Our recent data in primates show that APLNR is expressed in the other major
neurogenic niche: the anterior subventricular zone along the cerebral lateral ventricle
(SVZa) [16]. Probably, the cells expressing APLNR in SVZa represent the neural progen-
itor subpopulation [16]. Interestingly, APLNR shows a strong expression in the caudate
nucleus [16], another region of adult neurogenesis in primates and humans [71]. APLNR is
expressed in the thalamus [2,69]. In the hypothalamus, both apelin and APLNR have been
localized [2,3,5,20,70]. Their expression was restricted to the supraoptic (SON) and the
paraventricular nucleus, both magnocellular and parvocellular parts, contributing to the
maintenance of fluid homeostasis [3,5,6,20,68,72]. The apelinergic system has also been
detected in other brain areas, including the substantia nigra, cerebellum, preoptic area,
pituitary gland, medulla oblongata, pons, and the spinal cord [2,5,19,24,69,70,72,73]. At
the cellular level, APLNR has been detected in neurons, oligodendrocytes, and astrocytes
but not in microglia, while Apelin has been detected in neurons but not astrocytes and
microglia [2,57–59,74].

Table 1. Table with different brain regions in the human brain with known expression of APLNR and
Apelin ligand.

Human

Tissue Apelin (Preproapelin) APLNR References

Whole Brain Unknown + [7]
Frontal Cortex Unknown + [2,69]

Temporal Cortex + + [2,75]
Striatum (Overall) Unknown + [69]

Putamen + + [2]
Caudate nucleus + + [2]

Accumbent nucleus + + [2]
Corpus callosum + + [2,69]

Hippocampus
(GD + CA)

+ + [2,69,75]

Amygdala + + [2,69]
Thalamus + + [2,69]

Hypothalamus (Overall) + + [2]
Substantia nigra + + [2,69]

Cerebellum + + [2]
Medulla oblongata Unknown + [69]

Spinal cord + + [2,69]

7. A Role of the Apelinergic System in Brain Diseases

Mounting evidence suggests that the apelinergic system is a prominent player in
the pathogenesis of different neuronal and mental diseases, such as stroke, epilepsy,
Alzheimer’s disease, and Parkinson’s, among others.

7.1. Apelinergic System Involvement in Ischemic Stroke

Ischemic stroke is the most common cause of disability and death worldwide [76].
Damage caused by cerebral blood vessel occlusion leads to the regional increase in Ca2+ (via
NMDAR activation), depolarization of the mitochondrial membrane, caspase activation,
neuronal cell death, and cerebral edema. Infusion of apelin-13 in mice reduces the infarct
zone volume [77], cerebral edema, and caspase-3 activation but does not alter the neurolog-
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ical deficits [78]. Apelin-36 in lower concentrations can also reduce the infarct volume, but
unlike apelin-13, it also improves neurological function after ischemia/reperfusion injury.
LY294002, a potent inhibitor of PI3K, reduced the phosphorylation of Akt, thus, lowering
the activity of the PI3K/Akt pathway activated by the APLNR ligands. Applying this sub-
stance to the ischemic stroke model treated with apelin-13 or 36 elevates the pro-apoptotic
proteins caspase-3 and BAX, confirming that the antiapoptotic effect of apelin-36 is induced
by PI3K/Akt pathway [79].

Apelin-13 treatment significantly reduced the levels of neutrophil infiltration in the
ischemic penumbra and the levels of the pro-inflammatory mediators IL-1β, TNF-α, and
ICAM-1. Moreover, it can also lower the number of cells activated in the penumbral region,
thus, inducing a neuroprotective effect by blocking or suppressing neuroinflammation [77,80].
Intranasal administration of Apelin-13 effectively reduced the number of apoptotic cells and
of activated microglial cells, increasing the expression of antiapoptotic factors (Bcl-2). It could
also reduce the pro-inflammatory cytokines and chemokines TNF-a, IL-1b, MIP-1a, and MCP-
1 and increase the anti-inflammatory cytokine IL-10. Angiogenesis in the peri-infarct region
can be explained by the enhanced activity of pro-angiogenic factors VEGF and MMP9, which
were also elevated after treatment with apelin-13. Because of the enhanced angiogenesis after
treatment, better recovery was reported compared to non-treated animals [81]. Upon treatment
with apelin, an upregulation of the expression of VEGF and VEGF-2 can be observed. This
elevation is associated with the protective effects of apelin, mediated by ERK and PI3K/Akt
pathways, which can be blocked by intraventricular injection with an anti-VEGF antibody [80].

Following cerebral ischemia in primates, APLNR and Apelin mRNA was strongly
induced in monkey SVZa and caudate nucleus [16].

7.2. Apelinergic System Involvement in Epilepsy

Neurons in the mammalian neocortex are either excitatory, glutamatergic project-
ing neurons or inhibitory, GABAergic interneurons that branch in the local circuits. A
disbalance in the excitation levels leads to pathological hyperexcitability manifested by
spontaneous and recurrent seizures [82,83].

Extended epileptic periods and poorly managed or drug-resistant epilepsy can cause
neuronal loss either by apoptosis or necrosis. The observed overexpression of Apelin in pa-
tients with drug-resistant temporal lobe epilepsy and rats with lithium–pilocarpine-induced
epilepsy may be a compensatory mechanism [75]. Apelin can salvage the hippocampal
neurons from the effects of excitotoxicity by downregulating metabotropic Glutamate
Receptor-1 (mGluR1), increasing phosphorylation of Akt, and upregulating Bcl2, thus,
reducing caspase-3 activation [84]. Treatment with brain-specific micro-RNA-182 (miR-182)
that blocks Apelin leads to increased apoptosis in epilepsy models. Blocking miR-182 can
increase the effects on Apelin, lower pro-apoptotic proteins (Bax; caspase-3), and increase
the antiapoptotic ones (Bcl-2) [84].

Treatment with apelin-13 in an experimental rat epilepsy model prevented the in-
duction of seizures and neuronal loss. This effect is lost when F13A, an APLNR receptor
antagonist, is applied [85]. Apelin can exert a level of neuroprotection in the PTZ model
of epilepsy thanks to its ability to maintain mitochondrial potentials, reduce intracellular
Ca2+, and inhibit ROS generation and COX2 (Cyclooxygenase 2) [86].

7.3. Apelinergic System Involvement in Neurogenesis and Glioblastoma Multiforme

Glioblastomas are brain tumors showing high invasiveness, angiogenesis, and an
unusual tumor environment. There is substantial evidence showing that Glioblastoma
multiforme is derived from SVZa stem cells [87].

Apelin is secreted from the endothelial cell near Glioblastoma stem-like cells (GSCs). It
mediates self-renewal, but it is not associated with proliferation. Apelin protein expression
is also correlated with the levels of vascularization of GBM [88].

Silencing the apelin Signaling pathway either by knocking down or blocking the
APLNR reduces tumor volume, vascularization, and proliferation [89]. GSC are in a qui-
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escent state maintained by the vascular niche in the tumor, which is the main reason for
the inefficiency of chemotherapies [90]. Interestingly, applying an antagonist of APLNR in
combination with chemotherapies improves the response and decreases the GSC numbers.
This effect is possibly mediated by activation of GSK3β (Glycogen synthase kinase-3 path-
way) [88,89,91]. Nuclear GSK3β phosphorylates KDM1A at s683, which can interact with
USP22, thus, increasing the stability of KDM1A. KDM1A is responsible for the demethyla-
tion of histone H3K4 leading to the downregulation of genes (BMP2, CDKN1A, and GATA6)
associated with stem cell self-renewal [92].

ELABELA was also shown to be expressed in GSCs. Moreover, brain tumor datasets
have shown that expression levels of ELABELA are linked to tumor grading and patient
survival [93].

Current therapies relying on anti-VEGF mAb usually target tumor angiogenesis. Un-
fortunately, such therapies have not increased patient survival [94]. These treatments
have been shown to decrease the apelin expression inside the tumor, thus, increasing its
invasiveness [95]. Interestingly, using a partial agonist for APLNR (apelin-F13A) com-
bined with anti-VEGF therapy lessens the invasiveness and angiogenesis properties of
GBM [95,96].

7.4. Apelinergic System Involvement in Alzheimer’s Disease (AD)

Alzheimer’s disease is a progressive neurodegenerative disorder characterized by the
deposition of intracellular senile plaques composed of insoluble neurofibrillary tangles and
extracellular amyloid β (Aβ) peptides. Neuronal loss in the hippocampus and neocortex
leads to memory loss and cognitive impairments [97,98].

In newly discovered AD patients, the levels of Apelin-13 were lower compared to
healthy individuals [43].

Apelin-13 can reduce memory deficits in a mouse model of Alzheimer’s disease. [63,99]
Aβ deposition in neurons induces apoptosis and autophagy, which can be attenuated by
Apelin-13 treatment. The molecular basis of these neuroprotective effects in AD models
is: (i). Decreased autophagy pathway (e.g., LC3II/I), (ii). Increase of autophagic clearance
(HDAC6), (iii). Decreased apoptosis (caspase-3), and (iv). Increasing survival of neurons
through the mTOR pathway [63].

Neuroinflammation plays a critical role in the pathophysiology of Alzheimer’s dis-
ease. Important components of the neuroinflammation response, including microglial and
astroglial activation and pro-inflammatory cytokine (e.g., IL-1β and TNF-α) production are
attenuated from Apelin-13 [99].

Apelin can also increase the expression of hippocampal neurotrophins/neurotrophin
receptors, such as Brain-Derived Neurotrophic Factor (BDNF) and Tropomyosin receptor
kinase B (TrkB), which are typically at low levels in Alzheimer’s mouse models. Blocking
the TrkB receptor with an apelin antagonist, K252a, blocked the apelin-13 effects, showing
that the beneficial effects of apelin in the hippocampus are mediated by activation of
the BDNF/TrkB Signaling pathway. Synaptophysin (SYP) generaly used for evaluating
synaptic transmission plasticity is downregulated in AD and restores its normal levels
upon reapplication of apelin-13 [99]. Tissue necrosis is also initiated in AD by activation of
the proteins RIP1 and RIP3, controlled by TNF-α. Reduction of RIP1, RIP3, and TNF-α is
observed when apelin is applied [100]. Wan et al. have provided an in-depth review of the
role of apelin in AD and its mechanism of neuroprotection [101].

7.5. Apelinergic System Involvement in Parkinson’s Disease (PD)

Parkinson’s disease (PD) is a neurodegenerative disorder affecting the dopaminergic
neurons in the substantia nigra. It manifests with motor dysfunctions, including muscle
rigidity, tremor, slow movement, and cognitive impairments, including depression, anx-
iety, and in later stages, dementia. The main histological hallmark of the disease is the
aggregation of a misfolded protein called α-synuclein, which accumulates and becomes
cytotoxic [102,103]. Additionally, factors such as mitochondrial dysfunction, inflammation,
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oxidative stress, and synaptic dysfunction can play a crucial role in the pathophysiology of
the disease. To show the role of apelin-13, Pouresmaeili-Babaki et al. used SH-SY5Y cells
treated with 6-hydroxydopamine (6-OHDA), which is a widely used cell model for PD.
Upon treatment with 6-OHDA, dopaminergic cell death can be observed. Application of
Apelin-13 is capable of inhibiting cytochrome-3 release and activation of caspase-3, effects
through activation of APLNR/PI3K/Akt Signaling pathway [104]. The same group was
able to show also that Apelin can improve memory and cognitive deficits in a Parkinson’s
disease model treated with 6-hydroxydopamine (6-OHDA) [105].

Another study, utilizing the same SH-SY5Y cell line but induced cell damage by
applications of 1-methyl-4-phenyl-pyridine (MPP+) showed that apelin-13 could atten-
uate the neurotoxicity and the Endoplasmic Reticulum Stress (ER stress), the level of
GRP78, CHOP and cleaved caspase-12 and significantly increase the levels of phospho-
rylated ERK1/2, thus, preventing the apoptosis [106]. Similarly, another study using
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) to induce Parkinson-like damage has
shown that apelin-13 significantly increases autophagy by upregulation of LC3B and Be-
clin1 and down-regulation of p62. Apelin-13 was also capable of inhibiting the effect of the
GRP78/ IRE1α/XBP1s/CHOP pathway associated with ER stress [107].

The neuroprotective effect of apelin was also shown in the methamphetamine PC12
cell model. Applying methamphetamine increased the generation of ROS, autophagy, and
apoptosis, which were reduced by apelin [108]. Furthermore, some evidence suggests that
it can also alleviate motor deficits [107] and prevent pathological alterations to the synaptic
elements in the striatum and substantia nigra [109].

8. Conclusions and Future Directions

The components of the apelinergic system are widely expressed in the adult brain, and
interaction between APLNR and Apelin isoforms or ELABELA are responsible for numerous
physiological functions. Apelin and ELABELA are modified and processed into multiple
functional and non-functional isoforms. Although the homology between apelin isoforms
is similar, and they can all activate APLNR, the activated downstream signaling cascades
may vary. The studies we discussed in this review show the role of the apelinergic system
in the physiology of the brain and the pathophysiology of brain-related diseases. In animal
models, the apelinergic system can activate critical signaling pathways related to cell survival,
response to injury, reduction of apoptosis, cell cycle regulation, and stem cell biology.

Future work will need to address the system’s function in relation to gene regulation,
stem cell biology, neuronal development, and the related implications in those areas.

The expression of Apelin and APLNR in the hippocampus and the SVZ along the
lateral wall of the cerebral lateral ventricle suggests that the apelinergic system may affect
neural regeneration.

Finally, the identification and characterization of novel analogs and ligands with
an increased half-life, specificity, and binding strength will advance the quest for novel
therapeutic approaches in treating neuropsychiatric disorders and will increase our under-
standing of how the components of the system interact.
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