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Abstract: Mineral malnutrition is a major problem in many rice-consuming countries. It is essential
to know the genetic mechanisms of accumulation of mineral elements in the rice grain to provide
future solutions for this issue. This study was conducted to identify the genetic basis of six mineral
elements (Cu, Fe, K, Mg, Mn, and Zn) by using three models for single-locus and six models for
multi-locus analysis of a genome-wide association study (GWAS) using 174 diverse rice accessions
and 6565 SNP markers. To declare a SNP as significant, −log10(P) ≥ 3.0 and 15% FDR significance
cut-off values were used for single-locus models, while LOD ≥ 3.0 was used for multi-locus models.
Using these criteria, 147 SNPs were detected by one or two GWAS methods at −log10(P) ≥ 3.0, 48 of
which met the 15% FDR significance cut-off value. Single-locus models outperformed multi-locus
models before applying multi-test correction, but once applied, multi-locus models performed better.
While 14 (~29%) of the identified quantitative trait loci (QTLs) after multiple test correction co-located
with previously reported genes/QTLs and marker associations, another 34 trait-associated SNPs
were novel. After mining genes within 250 kb of the 48 significant SNP loci, in silico and gene
enrichment analyses were conducted to predict their potential functions. These shortlisted genes with
their functions could guide future experimental validation, helping us to understand the complex
molecular mechanisms controlling rice grain mineral elements.

Keywords: GWAS; SNP; rice grain; minerals

1. Introduction

Being a staple food for half of the world’s population, the nutritional quality of rice
can have a large impact on human nutrition. The lack of nutritional quality mainly af-
fects countries where rice is eaten primarily as a staple food. Mineral malnutrition is one
of the more serious problems for rice-eating societies, especially in Asian countries [1].
More than 60% and 30% of the world’s population have iron (Fe) and zinc [2] deficiency,
respectively, because of low mineral content availability in their staple foods, including
rice [3,4]. Additionally, other minerals are necessary for human health. For instance, Mg
is needed to generate energy from ATP, and it involves in neuromuscular function and
cardiac cycle [5,6]. Lack of K causes hypokalemia, paralysis, and cardiac disorders [6]. Cu
is involved in bone formation and red blood cell production. It has antioxidant features,
controlling free radicals in human body [6]. Mn deficiency leads to faulty bone forma-
tion, glucose intolerance, alopecia, and dermatitis [6]. To solve these mineral malnutrition
issues, dietary diversification, supplementation, fortification, and biofortification have
been practiced so far [7]. Biofortification is the strategy of improving the nutrient content
in staple crops through agronomic practices, conventional plant breeding or transgenic
approaches [7,8]. Generally, plant breeding or transgenic approaches are more convenient
in terms of long-run cost-effectiveness and easy access to the neediest people by develop-
ing new varieties with high concentrations of minerals [1,9]. Towards that end, genetic
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mechanisms controlling the accumulation of the mineral elements in rice grains need to be
studied thoroughly.

A number of linkage mapping studies have investigated QTLs controlling mineral
accumulation in rice grain. Over 200 QTLs have been identified for micro (Fe, Zn, Mn,
Cu) and macro (Ca, Mg, P and K) nutrients elements [10]. However, biparental QTL
studies have several limitations. Biparental mapping populations only have the ability
to evaluate two alleles per locus, while multiple alleles per locus may exist in diverse
natural populations. Moreover, due to the limited resolving power from a low number
of recombination events, the identified QTLs are often found in large genomic regions,
making it very difficult to pinpoint the causal genes without expensive and time-consuming
fine-mapping and map-based cloning efforts [11,12].

Association mapping based on linkage disequilibrium (LD), as an alternative approach
to linkage mapping, is a powerful method for dissecting the genetic basis of plant traits [13].
This approach has several advantages, including: (1) it permits the use of natural popula-
tions instead of cross-fertilized mapping populations that take time and money to develop;
(2) it can detect more than two alleles per locus and (3) it enables a high resolution of
mapping. Though it is a promising technique, there are still some drawbacks; for exam-
ple, large population sizes are needed to provide statistical power to detect rare alleles;
likewise, many markers are required to provide high resolution, and population structure
between accessions needs to be controlled [13]. Initially, genome-wide association studies
(GWAS) were applied in human genetics and then successfully introduced in various
plant species [13]. This technique has also been used widely in rice, starting in 2010 by
Huang et al. [14] using GWAS to detect QTLs for 14 agronomic traits.

To conduct GWAS, several statistical models have been widely used, including the
general linear model (GLM) and the mixed linear model (MLM) [15]. The MLM is the most
popular due to its ability to account for population structure and family relatedness. The Ef-
ficient Mixed-Model Association eXpedited (EMMAX), Population Parameters Previously
Determined (P3D), and Genome-wide Efficient Mixed Model Association (GEMMA) have
been developed based on MLM, helping to reduce the computational time for analysis [16].
However, these methods are unidirectional, testing one locus at a time, resulting in failure
to capture the multiple loci controlling complex traits simultaneously. Moreover, multiple
test corrections for threshold values are required to control the false positive rate. The Bon-
ferroni correction is often used; however, it is too conservative, resulting in many important
loci being ignored because they do not fulfill the significance threshold level [16,17].

Multi-locus models have been proposed as an alternative to overcome the issues with
the single-locus model GWAS. These multivariate models consider all loci simultaneously;
as a result, multiple test corrections are not needed. So far, several multi-locus GWAS
models have been developed and used to study GWAS, such as MLMM (multi-locus mixed-
model), FarmCPU (Fixed and random model Circulating Probability Unification), mrMLM
(multi-locus random-SNP-effect MLM), FASTmrMLM (fast mrMLM), FASTmrEMMA (fast
multi-locus random-SNP-effect efficient mixed model analysis), pLARmEB (polygenic
background-control-based least angle regression plus empirical Bayes), pKWmEB (integra-
tion of Kruskal–Wallis test with empirical Bayes), ISIS EM-BLASSO (iterative modified-sure
independence screening expectation-maximization-Bayesian least absolute shrinkage and
selection operator), and GPWAS (Genome-Phenome Wide Association Study) [18]. All
the multi-locus models follow the two-step principle during analysis. In the first stage,
all the potentially associated SNPs are identified across the whole genome. During the
second step, the identified SNPs are included in one model, then their effects are estimated
by empirical Bayes, and finally all the non-zero effects are further evaluated using the
likelihood ratio test. A less stringent critical p-value, such as 0.01, is used to select the SNPs
in the first step. Each of these multi-locus model differs in terms of algorithms utilized in
the two steps [16,17,19].

Several recent GWAS publications have investigated mineral element concentrations
in rice grains using various sets of diverse rice accessions. One study employed 575 rice
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accessions, including 294 indica and 239 japonica accessions, largely of Chinese origin, to
study 11 minerals in rice grains grown in field trials in China [20]. Another study employed
191 accessions from the USDA mini-core collection, including 100 global indica and aus
and 59 japonica accessions, to study 16 minerals in rice grains grown in Beaumont, Texas,
of which 9 had significant QTLs detected in the GWAS [18]. Another study focused on
233 accessions of global indica germplasm and identified QTLs across 12 mineral elements
in brown rice grain harvested in field trials in the Philippines [21]. Although these studies
show the success of GWAS to identify key loci controlling mineral concentrations in
rice grains, additional studies using diverse sets of germplasm grown across different
environments are needed to capture the full range of genetic diversity for these traits.

The objectives of the current study are: (1) to identify loci that are significantly asso-
ciated with six mineral elements (Cu, Fe, K, Mg, Mn and Zn) by using single-locus and
multi-locus GWAS methods using a novel rice diversity panel; and (2) to compare the
performance of these methods in terms of detection of trait-associated SNP markers. The
findings will accelerate the development of new mineral-rich rice varieties by facilitating
marker-assisted breeding (MAB), identifying candidate genes, and providing insight into
the molecular mechanisms underlying mineral accumulation in rice grain.

2. Materials and Methods
2.1. Plant Materials

A total of 174 accessions, including 151 diverse global accessions from the USDA-GRIN
germplasm collection and 23 US-released varieties were used in the study. The included
accessions flowered in 80–130 days after emergence (DAE) in previous field evaluation to
minimize the effect of extremely early and late heading times on rice grain mineral content.
These accessions originated from 31 countries, where the highest number of accessions were
from Bangladesh (19) followed by Russia (18), Uzbekistan (16), India (14) (Supplementary
Table S1).

2.2. Sample Preparation for Phenotyping

The field experiment was conducted at the Texas A&M AgriLife Research Center,
Beaumont, Texas (30.0802◦ N, 94.1266◦ W) in heavy clay soils during from late April to
September 2018, which can be considered an average growing season, without any major
extremes in weather or conditions. The lines were directly seeded and followed standard
practices of keeping a constant flood in the field until all the accessions reached their full
maturity along with applying standard fertilizer. A randomized complete block design
with two replications with a two-row plot for each replication for each accession was used
in the field experiment. Plots were harvested based on individual accession maturity. After
reaching the maturity stage, plants in the middle of each plot were bulk harvested and
air-dried for 3 months in the drying room. Then, around 120 g of rough seeds were dehulled
with electrical dehuller to make brown rice.

2.3. Phenotypic Measurements

We used brown rice for mineral content determination for this study. At first, brown
rice of all the samples were dried for 72 h at 65 ◦C, followed by sterilization with 70%
ethanol to remove contaminants and/or debris from the surface [22]. Then, seeds were
ground into a fine powder by mortar and pestle and kept in airtight plastic zip lock bags or
small containers or tubes until the sample digestion was started. A range of 0.5000–0.5002 g
of rice sample was weighed accurately and poured directly into MARSXpress digestion
vessel (PFA vessel) followed by adding reagents consisting of 6 mL HNO3 (12.1 N), and
3 mL of 30% (v/v) H2O2 [23]. The digestion vessels were capped and placed in the turntable,
followed by heating in the CEM MARS 5 Microwave Accelerated Reaction System (CEM
Corporation, NC, USA) using the modified parameters shown in Table 1 [24].
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Table 1. Parameters used during microwave digestion.

Power (W) % Max Time (min) to Raise
Temperature (°C) Temperature Running Time (min)

1600 50 20.5 160 4.5

After digestion, the solutions were allowed to cool to room temperature and then were
filtered through Whatman No. 1 (11 µm pore size) filter paper into a 25 mL volumetric
flask. The volume was brought to the 25 mL mark with ultrapure water. Next, 100×
and 1000× diluted samples were prepared from the solution to determine Cu, Fe, Mg
and Mn content and K and Zn content, respectively. Inductively Coupled Plasma Mass
Spectrometry (ICP-MS) (Agilent Technologies, Santa Clara, CA, USA) was used to quantify
the Cu, Fe, K, Mg, Mn and Zn content. Samples were run in total seven batches; each
batch composed of three blanks (digestion reagent with no samples), standard reference
material (Rice Flour SRM 1568B), and experimental samples were included. Rhodium (Rh
103) was used as internal standard to monitor ICP-MS machine drift while running. During
calculation, blanks were averaged and subtracted from experimental samples per batch.
Five technical replications were generated for each sample and were averaged. The average
elemental concentration of two biological/ field replications of each accession was used
during GWAS analysis.

2.4. Analysis of Phenotypic Data

Basic statistics, including mean, standard deviation, coefficient of variation (CV),
and analysis of variance (ANOVA) were conducted on the whole panel as well as on the
two subspecies, Indica and Japonica, to determine the phenotypic variation. To know the
effect of population structure on phenotypic variation, we used ANOVA using the general
linear model (GLM), where population structure was set as the fixed variable. In addition,
correlation analysis among the minerals was completed. All the analyses were conducted
using JMP pro15.

2.5. Genotyping

We used 6565 high quality SNPs (SNP calling rate > 0.939; missing data per sample < 6.1%)
from the 7K SNP array data [25] for GWAS analysis. To impute the missing genotypes, MACH
1.0 was used, which is a Markov Chain-based haplotyper that infers the missing genotypes by
comparing the available genotypes to those in other accessions that have been typed at a higher
density [26].

2.6. Analysis of Population Structure and Kinship Coefficient

Population structure and kinship analysis were conducted to control the false positive
results in the GWAS analysis. STRUCTURE 2.3.4 [27] using Bayesian clustering analysis
method was used for determining population structure with the following profile: K,
the number of genetic clusters in the panel ranging from 2 to 10 with 10 runs for each K
value; burn-in time for each run was 10,000 followed by 50,000 MCMC (Markov Chain
Monte Carlo) iterations. The Structure Harvester program (http://taylor0.biology.ucla.edu,
accessed on 10 January 2021) was used to determine the best k value using the method
of Evanno, Regnaut [28] by submitting the results for each K and determining log(k)2
and ∆K values. Within-population membership probability (Q) threshold was fixed at
0.80, so an individual with higher Q was assigned to a population, whereas an individual
having lower Q was considered admixed. For calculating the kinship coefficient matrix
(K), four methods implemented in four different software packages were utilized. The
TASSEL 5 uses the scaled_IBS method, as a default method, to calculate kinship, whereas
the VanRaden method is used in GAPIT. For GEMMA software, a centered relatedness
matrix system was used to calculate the kinship in this study. The default method was
used during running mrMLM for GWAS analysis.

http://taylor0.biology.ucla.edu
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2.7. Linkage Disequilibrium (LD) Analysis

The LD decay distance across the whole genome was measured by squared allele
frequency correlations (r2) values between the pairs of markers of 6565 SNPs calculated by
PopLDdecay 3.41 [29]. Marker pairs were discretized into bins of 1.5 kb, and the average
r2 value was used as the estimate of r2 of a bin. The LD decay was calculated as the
chromosomal distance at which the average r2 dropped to half of its maximum value [14].

2.8. Genome-Wide Association Analysis (GWAS)

The GWAS was conducted using nine models that can be divided broadly into two
groups; single-locus models: CMLM (compressed mixed linear model), ECMLM (Enriched
CMLM) and GEMMA (Genome-wide Efficient Mixed Model Association algorithm), and
multi-locus models: mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and
ISIS EM-BLASSO. All six multi-locus models are implemented in mrMLM R package [30].
At first, SNPs with p < 10−3 were considered significant for the single-locus models, and
15% FDR was then applied for the multi-test corrections to declare the final significant SNPs,
and these SNPs were used for further analyses. For the multi-locus models, LOD ≥ 3.0
was used as a cut-off value to declare a significant quantitative trait nucleotide (QTN). R2

values for significant SNPs were obtained from the respective software used for the GWAS
analyses, except for the GEMMA software which does not provide R2 values. To calculate
R2 values for the GEMMA model, we used the following equation:

2 β2MAF (1 −MAF)/2β2MAF (1 −MAF) + (se(β))2 2N MAF (1 −MAF)

where, β is effect size of genetic variant, MAF is minor allele frequency, se(β) standard
error of effect size, and N is sample size [31].

2.9. In Silico Gene Expression Analysis

We mined the genes within the LD decay distance on either side of the significant SNPs
by using RAP-DB database (https://rapdb.dna.affrc.go.jp/, accessed on 20 January 2021).
To check the in silico expression levels of the mined genes, Nipponbare (japonica) and IR64
(indica) gene expression data were downloaded from the MSU Rice Genome Annotation
Project (http://rice.plantbiology.msu.edu/expression.shtml, accessed on 20 January 2021)
and the OryzaExpress database (http://riceball.lab.nig.ac.jp/oryzaexpress/, accessed on
20 January 2021), respectively. A heatmap of the gene expression for each trait was created
with ComplexHeatmap R package.

3. Results
3.1. Population Structure and Linkage Disequilibrium (LD)

According to the value of ∆k from the Structure analysis result, there were six sub-
populations in our study sample panel, corresponding to indica, aus, aromatic, temperate japon-
ica, and two subgroups of tropical japonica genotypes (Figure 1). These six sub-populations
were used for the Q-matrix as a covariate during the GWAS analysis to account for the
population structure.

https://rapdb.dna.affrc.go.jp/
http://rice.plantbiology.msu.edu/expression.shtml
http://riceball.lab.nig.ac.jp/oryzaexpress/
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subgroups and the Japonica subspecies consists of the temperate japonica, tropical japonica, 
and aromatic subgroups [32]. To determine the population structure effect on the pheno-
typic variation, we considered the two primary subpopulations to analyze the phenotypic 
variation, which was also observed during cluster analysis as two distinct clusters with 
other sub-groups found within the two main clusters (Figure 2). Three accessions were 
removed due to admixture. Ultimately, 78 Indica accessions and 93 Japonica accessions 
were analyzed in the panel. After genotyping the 171 accessions with 6565 SNP markers 
using a 7K SNP array, the average linkage disequilibrium (LD) decay across all chromo-
somes was estimated to be 250 kb, defined as half the maximum of mean r2 values (Figure 
1). 

Figure 1. (A) Population structure analysis. ∆K is highest at 6, indicating that six groups are present
in the rice germplasm used in the study. (B) The bar graph displays the result of the STRUCTURE
analysis. The bars with different colors show six different sub-populations observed in the diversity
panel. (C) LD decay distances across the whole genome of rice in this study.

It is well known that rice has two major sub-species, Indica and Japonica. Studies
of global rice germplasm have shown that the Indica subspecies consists of the aus and
indica subgroups and the Japonica subspecies consists of the temperate japonica, tropical
japonica, and aromatic subgroups [32]. To determine the population structure effect on
the phenotypic variation, we considered the two primary subpopulations to analyze the
phenotypic variation, which was also observed during cluster analysis as two distinct
clusters with other sub-groups found within the two main clusters (Figure 2). Three
accessions were removed due to admixture. Ultimately, 78 Indica accessions and 93 Japonica
accessions were analyzed in the panel. After genotyping the 171 accessions with 6565 SNP
markers using a 7K SNP array, the average linkage disequilibrium (LD) decay across all
chromosomes was estimated to be 250 kb, defined as half the maximum of mean r2 values
(Figure 1).
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were found to be significant for Cu, Fe, Mn and Zn, but not for K and Mg (Figure 3; Sup-
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Pearson’s correlation coefficients were calculated. All the pairwise correlations between 
any two minerals were significantly positive and had correlation coefficient (r) values ≥ 
0.40, except Mn-Zn, which was significantly positive but r = 0.16 (Supplementary Figure 
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Figure 2. Cluster analysis of the rice germplasm used in this study, using the neighbor-joining method.
Colors of the node indicate different subpopulations of the germplasm found by the STRUCTURE
analysis. Black color nodes indicate admixed samples. N.B.: a = Subpopulations with close genetic
distance are grouped either into “Indica” or “Japonica” subpopulation, two major subpopulations
in rice.

3.2. Phenotypic Variation Analysis

The phenotypic evaluation shows a broad variation among accessions. Overall, most
traits appeared to be normally distributed, but Zn showed a slightly skewed distribution
(Figure 3). Given that the population structure is the main factor affecting GWAS, the
population structure explained from 1% (K, Mg) to 10% (Fe) of the phenotypic variation
in the whole panel. Mean differences between the indica and japonica sub-group panels
were found to be significant for Cu, Fe, Mn and Zn, but not for K and Mg (Figure 3;
Supplementary Table S2). To determine the correlation among the six mineral elements, the
Pearson’s correlation coefficients were calculated. All the pairwise correlations between any
two minerals were significantly positive and had correlation coefficient (r) values ≥ 0.40,
except Mn-Zn, which was significantly positive but r = 0.16 (Supplementary Figure S1).
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Indica and Japonica rice accessions are significantly different at α = 0.05 for mean value of the six
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3.3. GWAS Analysis

A SNP was declared as significant using −log10 p ≥ 3.0 as the first cut-off value for all
single-locus models, and LOD ≥ 3.0 for all multi-locus models, respectively. SNPs with
MAF < 0.05 were not considered as significant. Multiple SNPs with physical distance of less
than 250 kb (the calculated LD) were regarded as the same significant locus (i.e., significant
SNP-trait association).

Based on these criteria, a total of 147 significant SNPs for six mineral elements were
identified using nine models (Table 2, Supplementary Figures S2 and S3).

Table 2. List of significant loci detected in the study at −log10P ≥ 3.0 and 15% FDR cut-off value for
Single-locus GWAS, and LOD ≥ 3.0 cut-off value for Multi-locus GWAS.

Trait SNP Alleles Chr. Pos.(bp)
Single-
Locus
GWAS

Multi-
Locus
GWAS

Cu −log10P R2 Model LOD R2 Model

304,900 a G/A 1 10,100,605 4.07–4.55 8.37–17.62 C, EC, G 3.84–6.82 9.38–20.57 M, FM, PK,
PL, I b

SNP-1.13478728. G/A 1 13,479,755 3.55 10.04 G
760,644 A/C 1 22,723,681 3.57 7.81 G
907,175 G/A 1 27,047,209 3.67 7.28 G

id2015767 A/G 2 34,868,096 3.50 7.20 G
id4000574 C/A 4 972,749 3.22 9.12 C
4,572,241 G/A 4 26,688,183 3.02, 3.23 7.20, 13.60 C, EC

SNP-6.2196821. A/T 6 2,197,821 3.01 8.16 G
6,147,112 G/A 6 10,199,497 3.01 5.91 G

SNP-6_10761128. A/G 6 10,762,128 3.47 6.93 G
6,285,634 G/A 6 13,487,635 3.21 9.08 C
6,427,131 A/G 6 16,508,748 3.40 9.73 G
id7001155 G/A 7 6,987,625 3.37–3.91 6.97–15.91 C, EC, G 3.30 41.99 M
7,993,541 C/A 8 416,250 3.51 7.46 G
id8006885 G/A 8 24,753,844 3.21 9.10 C

SNP-10.9068762. G/A 10 9,139,902 3.17 8.96 C
11,233,430 G/A 11 11,715,177 3.06 13.70 EC

SNP-11.13313880. G/A 11 13,777,560 3.35 14.46 EC
SNP-11.25392640. A/C 11 25,858,722 3.25, 4.16 5.33, 8.69 I, PK

Fe 153,297 G/A 1 4,823,701 3.77 10.55 C
SNP-1.32376151. G/A 1 32,377,196 3.48 9.71 C

1,202,195 A/C 1 37,230,818 3.16, 3.21 6.60, 8.77 C, G
1,257,104 A/G 1 39,282,883 3.24 12.81 G

SNP-2.2575985. G/A 2 2,575,988 3.17 8.79 C
SNP-2.8455563. G/C 2 8,455,565 3.38 6.64 G

2,087,054 A/G 2 22,324,900 3.15 8.75 C
2,267,750 A/C 2 27,548,893 3.25 9.05 C
id3004190 A/G 3 7,849,199 3.02 8.38 C
3,501,392 G/A 3 33,987,612 3.45 6.77 G

SNP-4.6317262. G/A 4 6,321,823 3.28 6.49 G
SNP-4.10930754. A/G 4 10,940,054 3.08 8.54 C

4,128,471 C/A 4 12,879,859 3.10 8.59 C
SNP-4.13348501. C/A 4 13,357,791 3.28 9.12 C

4,241,771 G/A 4 16,199,670 3.54 9.87 C
SNP-4.22128339. G/A 4 22,313,458 3.66 10.22 C

4,678,550 G/A 4 30,601,123 4.28 12.08 C
4,882,140 A/C 5 2,378,143 3.23 8.97 C
5,196,119 A/G 5 10,528,231 3.36–3.52 6.97–18.43 C, EC, G 3.47–3.99 6.06 ×

10−10–26.83 FM, PK, PL
5,735,083 A/G 5 27,094,485 3.17–3.47 6.89–17.89 C, EC, G

SNP-6.1343132. A/G 6 1,344,132 3.38 9.41 C
SNP-6.2196821. A/T 6 2,197,821 3.14 8.70 C

id6007260 A/G 6 11,618,178 3.13 8.68 C
6,285,634 G/A 6 13,487,635 3.86 10.82 C
7,179,219 A/G 7 7,619,494 3.37 9.37 C
7,643,802 G/A 7 18,573,822 3.67, 4.34 4.94, 5.33 FM, I

SNP-7.29385457. A/G 7 29,386,450 3.02 8.38 C
8,067,129 G/A 8 2,887,584 3.25, 3.60 6.71, 10.07 C, G
9,921,984 A/G 10 650,031 3.53 3.56 FM

SNP-10.13843768. T/A 10 13,915,001 3.31 9.21 C
10,555,828 G/A 10 14,438,582 3.09 8.56 C

SNP-10.20587837. G/A 10 20,659,359 3.13 8.70 C
10,778,744 A/G 10 21,397,933 3.16 17.88 EC

SNP-11.28200021. C/G 11 28,723,243 3.29 9.14 C
SNP-12.6356528. C/A 12 6,357,639 3.73 10.44 C
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Table 2. Cont.

Trait SNP Alleles Chr. Pos.(bp)
Single-
Locus
GWAS

Multi-
Locus
GWAS

K SNP-1.6382810. G/A 1 6,383,811 3.06 8.62 C 3.22 14.41 M
SNP-1.23170758. G/A 1 23,171,803 3.70 34.37 PK

1,202,195 A/C 1 37,230,818 3.37, 3.75 6.59, 23.80 EC, G
SNP-1.41998191. T/A 1 41,999,235 3.90–5.05 5.27–8.37 FM, I, M

2,375,486 G/A 2 31,547,627 3.01 10.55 M
SNP-3.5666296. G/A 3 5,667,297 3.10 8.74 C

2,964,807 G/A 3 17,453,008 3.03 6.02 G
3,173,191 A/G 3 22,657,915 3.31 6.56 G
id5004837 G/A 5 10,539,124 3.00, 4.06 6.57, 8.44 C, G
5,452,087 A/G 5 17,598,723 3.33, 3.67 7.05, 11.58 FM, M

SNP-5.28500625. C/G 5 28,563,271 4.32 18.56 G 3.11, 4.40 5.69, 12.04 FM, M
5,787,299 A/G 5 29,150,826 3.12, 3.30 6.03, 22.76 EC, G

SNP-6_1500959. A/G 6 1,501,961 3.44 7.69 PK
6,674,186 C/A 6 22,249,886 3.06 7.61 G
7,892,688 G/A 7 26,282,546 3.78, 4.51 4.92, 8.06 FM, M
8,966,923 C/A 8 25,213,697 3.24, 3.30 3.28, 3.85 I, M
id8007977 A/G 8 28,377,609 3.31 6.59 G 3.19 5.86 FM

c9p4565514 C/A 9 4,565,515 3.15 6.09 G
10,063,204 A/G 10 3,400,212 3.10 6.13 G
10,480,545 G/A 10 12,310,115 3.15, 4.27 6.97, 8.81 C, G
id10003608 G/A 10 13,711,367 3.09 8.70 C

SNP-11.235195. G/A 11 236,194 3.04 8.57 C
13,022,382 A/C 12 25,490,919 3.00, 4.06 6.57, 8.45 C, G

Mg 153,297 G/A 1 4,823,701 3.19 8.82 C
170,435 G/A 1 5,408,523 3.34 9.28 C
572,891 G/A 1 17,008,280 3.11 8.62 C

id1012746 A/G 1 22,494,508 3.16 6.14 G
SNP-1.23342685. G/A 1 23,343,730 2.98 8.22 C

899,561 A/G 1 26,762,494 3.10 6.71 C
907,175 G/A 1 27,047,209 3.16 6.13 G

1,202,195 A/C 1 37,230,818 3.02–3.29 5.83–25.51 C, EC, G
1,257,104 A/G 1 39,282,883 3.98 9.82 G 3.16, 3.42 3.62, 4.18 I, PL

SNP-2.2575985. G/A 2 2,575,988 3.05 8.42 C
2,031,305 G/A 2 20,616,529 4.13 10.43 G
2,087,054 A/G 2 22,324,900 3.03 8.38 C

SNP-3.5666296. G/A 3 5,667,297 3.63 10.12 C
2,853,978 G/A 3 14,652,096 3.17 16.40 M
2,972,375 G/A 3 17,674,269 3.08 8.50 C
3,501,392 G/A 3 33,987,612 3.71 7.40 G
4,288,833 A/G 4 17,316,219 3.39 6.96 G 3.79, 3.80 5.49, 7.13 I, PL
4,448,877 G/A 4 21,864,875 4.60 13.00 C
4,678,550 G/A 4 30,601,123 3.36 9.34 C
4,833,352 A/G 5 922,530 3.52–3.85 7.51–26.75 C, EC, G 4.84–7.43 7.65–13.28 FM, I, M,

PL
4,882,140 A/C 5 2,378,143 3.05 8.44 C
id5002528 C/A 5 4,819,475 3.35 9.30 C
5,011,602 G/A 5 6,374,926 3.21 8.88 C
5,121,882 A/G 5 8,842,405 3.00–4.02 4.90–12.68 FM, M, PL
id5004837 G/A 5 10,539,124 3.32, 3.77 7.30, 7.48 C, G

SNP-5.28500625. C/G 5 28,563,271 3.93 8.55 G
SNP-6.1343132. A/G 6 1,344,132 3.09 8.55 C
SNP-6.2196821. A/T 6 2,197,821 3.31 9.18 C

6,285,634 G/A 6 13,487,635 3.69 10.30 C
6,351,040 G/A 6 14,937,819 3.45 9.58 C
6,496,457 C/A 6 17,969,922 3.50 7.80 G 3.50, 4.80 4.84, 8.31 FM, M
7,179,219 A/G 7 7,619,494 3.53 9.82 C
8,067,129 G/A 8 2,887,584 3.62 10.07 C
8,322,255 G/A 8 9,019,202 3.28 9.09 C

c9p4565514 C/A 9 4,565,515 3.27 6.40 G
SNP-10.13843768. T/A 10 13,915,001 4.10 11.51 C
SNP-10.20587837. G/A 10 20,659,359 3.21 8.89 C

SNP-11.235195. G/A 11 236,194 3.04 8.41 C
10,943,015 A/G 11 4,419,880 3.06, 3.99 8.11, 24.99 EC, G 3.62, 4.04 7.65, 8.59 I, PL
11,112,426 G/A 11 8,788,201 3.12 10.39 G
11,130,199 G/A 11 9,217,367 3.12 10.39 G
13,022,382 A/C 12 25,490,919 3.32–3.77 7.3–7.48 C, G

Mn SNP-1.5867020. A/G 1 5,868,021 3.42–3.68 10.92–20.24 FE, I, PK
SNP-1.14460354. G/A 1 14,461,381 3.25 14.16 EC

5,868,825 A/C 6 1,521,855 4.01 6.54 PK
SNP-6.22337184. G/A 6 22,338,182 3.31 4.87–7.88 FM, M

7,066,952 G/A 7 4,232,489 3.10 5.94 G
id10002943 C/A 10 11,195,773 3.05 13.66 EC
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Table 2. Cont.

Trait SNP Alleles Chr. Pos.(bp)
Single-
Locus
GWAS

Multi-
Locus
GWAS

Zn 1,280,193 A/G 1 40,154,802 3.76, 4.34 8.87, 49.90 EC, G
SNP-1.40596823. T/A 1 40,597,867 3.48, 3.86 7.92, 49.46 EC, G 6.08 23.93 FE

1,305,247 G/A 1 41,042,727 3.66–4.74 9.73–50.06 C, EC, G 3.03–6.73 8.61–11.01 I, PK, PL
SNP-1.41998191. T/A 1 41,999,235 4.22 6.01 PL
SNP-3.4621271. G/A 3 4,622,270 3.26 6.89 G

SNP-3.28426789. G/A 3 28,433,737 3.04 6.45 G
3,405,830 G/A 3 29,987,079 4.78 16.90, 24.44 FM, M
rd3001044 A/G 3 31,627,459 3.00 6.11 G
id4004654 G/A 4 16,559,384 3.17 8.77 C
4,572,241 G/A 4 26,688,183 3.92 7.80 G
id4010220 A/G 4 30,330,971 3.44 7.40 I
id5002528 C/A 5 4,819,475 4.05 50.34 EC 3.18 6.65, 13.02 FM, M
rd6001756 G/A 6 5,007,776 4.17 9.26 G

SNP-6.6241072. A/G 6 6,242,072 3.31 6.00, 11.38 FM, M
6,496,457 C/A 6 17,969,922 3.08–3.47 5.32, 7.43 PK, PL

SNP-6.25063527. G/A 6 25,064,525 3.01 6.15 G 7.36 10.14, 14.37 FM, M
6,783,797 G/A 6 25,387,111 3.00, 3.88 6.44, 50.08 C, EC

10,430,775 A/G 10 11,051,662 5.96 12.63 PK
id10007301 A/G 10 23,033,344 3.66 10.18 C
11,769,276 G/A 11 23,660,957 3.85, 8.13 5.35, 14.00 FE, PK
11,915,122 G/A 11 27,015,384 3.65 49.72 EC
12,134,336 G/A 12 4,433,511 3.04 8.39 C

a = The underlined SNP names were declared significant at 15% FDR and LOD ≥ 3.0 significant threshold
level for Single-locus GWAS method and Multi-locus GWAS method, respectively. b = Models name with bold
identified those underlined SNPs at 15% FDR and LOD ≥ 3.0 significance threshold level for Single-locus GWAS
method and Multi-locus GWAS method, respectively. Abbreviations: Single-locus GWAS models-C = CMLM
(Compressed Mixed Linear Model); EC = Enhanced Compressed Mixed Linear Model; G = GEMMA (Genome-
wide Efficient Mixed Model Association). Multi-locus GWAS models- M = mrMLM (Multi-locus random-SNP-
effect MLM); FM = FASTmrMLM (fast mrMLM); FE = FASTmrEMMA (fast multi-locus random-SNP-effect
efficient mixed model analysis); PK = pKWmEB (integration of Kruskal–Wallis test with empirical Bayes);
PL = pLARmEB (polygenic background-control-based least angle regression plus empirical Bayes); I = ISIS EM-
BLASSO (iterative modified-sure independence screening expectation-maximization-Bayesian least absolute
shrinkage and selection operator).

For Cu concentration, 16 significant SNPs were detected by only single-locus GWAS
models and explained 5.91–14.46% of the phenotypic variation. One SNP was found by
only multi-locus models, and it explained 5.33–8.69% of the phenotypic variation. Both
single and multi-locus models found two additional SNPs that explained 6.97–41.99% of the
phenotypic variation. Only single-locus models found 32 SNPs for Fe concentration explain-
ing 6.49–17.89% of the phenotypic variation, whereas only multi-locus models detected two
SNPs explaining 3.56–5.33% of the phenotypic variation. Both models identified one SNP
for Fe, explaining 6.06 × 10−10–26.83% of the phenotypic variation. For K, 13, 7 and 3 SNPs
were identified by only single-locus, only multi-locus and both models together, explaining
6.03–23.80%, 3.28–34.37% and 5.86–18.56% of the phenotypic variation, respectively. For
Mg, 35 SNPs were found by only single-locus models, explaining 5.83–25.51% of the phe-
notypic variation. Only two SNPs were detected by only multi-locus, and this explained
8.79–16.40% of the phenotypic variation. Five SNPs were identified by both models that
explained 3.62–26.75% of the phenotypic variation. For Mn, single and multi-locus models
each detected three SNPs separately, in total six SNPs, that explained 5.94–14.16% and
6.54–10.92% of the phenotypic variation, respectively. For Zn, single-locus, multi-locus and
both models identified 11, 7 and 4, in total 22 SNPs, explaining 6.11–49.90%, 5.32–24.44%
and 6.15–50.06% of the phenotypic variation. It can be noted that different algorithms per
model resulted in different R2 per SNP across the different models. However, 147 signifi-
cant SNPs for all six minerals were reduced to 48 after applying the 15% FDR multi-test
correction (Table 2, Figure 4). Of the 48 SNPs, the highest 14 significant SNPs were found
for Zn, followed by K (13), Mg (12). Three SNPs each for Cu, Fe, and Mn were found to be
significant (Table 2).
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shrinkage and selection operator). a = list of shared SNPs among three models; C ∩ EC = 2 SNPs,
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Among the 147 significant SNPs, 32 SNPs appear to control more than one trait,
suggesting a pleiotropic effect. Among the six SNPs that affect Cu, two SNPs (SNP-
6.2196821, 6285634) are associated with Fe, three SNPs (907,175, SNP-6.2196821, 6,285,634)
with Mg and one SNP (4,572,241) is also found for Zn. Similarly, 15 SNPs have an effect
on both Fe and Mg and one SNP on both Fe and K. In addition, seven and one SNPs
are associated with controlling both K and Mg and K and Zn, respectively. Two SNPs
influence both Mg and Zn elements. Moreover, SNP-6.2196821 and 6,285,634 SNPs are
involved in affecting Cu, Fe and Mg, whereas the 1,202,195 SNP has an effect on the
Fe, K and Mg elements. Once multi-test correction was applied, 32 SNPs decreased to
18 SNPs. Among the 18 significant SNPs, five SNPs appear to control more than one
trait, suggesting a pleiotropic effect. Among the thirteen SNPs that affect K, three SNPs
(id5004837, SNP-5.28500625. and 13,022,382) are associated with Mg, and one SNP (SNP-
1.41998191.) is found for Zn. Similarly, 6,496,457 SNPs have influence on both Mg and Zn
(Table 2, Figures 5 and 6).

In terms of SNP detection ability of the different models used in this study across the
six mineral elements, the single-locus GWAS method outperformed the multi-locus GWAS
method based on the first level of cut-off value. The single-locus and multi-locus GWAS
method identified overall 125 and 37 SNPs, respectively, where 110 and 22 SNPs were
identified by single-locus and multi-locus method only, respectively, and both methods
shared 15 SNPs (Figure 4A). In addition, in terms of model performance, within single-
locus GWAS method, CMLM model detected highest number of SNPs (75 SNPs; CMLM
only = 59 SNPs and shared SNPs with other models = 16) and the lowest number of SNPs
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were identified by ECMLM (21 SNPs; ECMLM only = 7 SNPs and shared SNPs with
other models = 14 ) (Figure 4A). Among the six models of multi-locus GWAS method,
both mrMLM and FASTmrMLM detected the highest number of SNPs (17 SNPs; mrMLM
only = 4 SNPs and shared SNPs with other models = 13; FASTmrMLM only = 2 SNPs
and shared SNPs with other models = 15). FASTmrEMMA identified the lowest 3 SNPs
(FASTmrEMMA only = 1 SNP and shared with other models = 2). However, the multi-locus
GWAS method outperformed the single-locus GWAS method once 15% FDR multi-test
correction was applied to the single-locus models. Multi-test correction made the total SNP
number of single-locus GWAS method reduced from 125 to 21, in which 10 SNPs were
shared, whereas the total SNP number (37 SNPs) was unchanged for Multi-locus GWAS
method, where 27 SNPs were belonged to only multi-locus GWAS method (Figure 4B).
Multi-test correction also affects the single-locus GWAS model’s performance, where
GEMMA all alone identified 21 SNPs (Figure 4B).
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3.4. In silico Gene Expression Analysis

After mining the genes within 250-kb region of 48 significant SNPs (Figure 4B) using
the RAP-DB database (https://rapdb.dna.affrc.go.jp/, accessed on 20 January 2021), we
found 43, 36, 273, 197, 85 and 353 genes for Cu, Fe, K, Mg, Mn, and Zn, respectively. To
investigate which genes are more likely to be responsible for rice grain mineral traits, we
selected only those genes expressed in both reproductive and vegetative stages or only in
the reproductive stage by using Nipponbare (Japonica) and IR64 (Indica) gene expression
data in normalized FPKM values. 9, 6, 111, 51, 23, and 98 genes were found to be expressed
in Nipponbare, whereas, in IR64, 13, 9, 98, 59, 16, and 116 were expressed for Cu, Fe, K,
Mg, Mn, and Zn, respectively, and were used for gene enrichment analysis (Supplementary
Figures S4 and S5).

3.5. Gene Enrichment Analysis

To understand the function of the expressed genes found in two genetic backgrounds,
gene enrichment analysis was carried out in g:Profiler by using Gene Ontology Resources
where 5% FDR was used as the significance threshold. As for the background gene list in
gene enrichment analysis, all known genes in the Japonica genetic background were used
for both the Indica and Japonica gene groups.

For Cu, no similar molecular functions were observed between 9 and 13 expressed
genes found in Nipponbare and IR64, but both groups were categorized into three molecular
functions. In the case of Fe, 6 expressed genes in Japonica were grouped into 15 molecular
functions, whereas 9 genes of Indica in 30 molecular functions, with six common functional
activities. For 111 and 98 expressed genes found in Japonica and Indica for K, nine molecular

https://rapdb.dna.affrc.go.jp/
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functional activities were annotated for each group, with six common functional activities.
59 Indica expressed genes for Mg were assigned to 48 molecular functional activities,
whereas only one functional activity was found for 51 Japonica expressed genes. There were
15 and 16 molecular functional activities observed for 23 Japonica and 16 Indica expressed
genes, respectively, with three common functions, for Mn minerals. For Zn, three and
seven GO molecular functional terms were assigned for 98 Japonica and 116 Indica genetic
background expressed genes with one common terms (Supplementary Figure S6).

4. Discussion
4.1. Population Structure, LD, and Phenotypic Variation

The rice germplasm used in this study has two major sub-populations, Indica and
Japonica, which further split into six sub-populations based on the Structure analysis, which
is consistent with the previous studies using worldwide rice germplasm [25,33]. The LD
decay distance of this study was 250 kb for the whole panel, which is similar to the previous
findings using different sub-populations with LD ranging from 100 kb to over 240 kb for
cultivated rice [11]. Mather, Caicedo [34] found LD decay from >500 kb in Oryza sativa
ssp. japonica, to ~75 kb in O. sativa subsp. indica, and down to merely ~40 kb or lower in O.
rufipogon for different rice sub-populations. Thus, the LD blocks of this study extend long
enough to conduct the association studies using the 7K SNP array, while also providing
higher resolution than seen with biparental mapping populations.

Sufficient phenotypic variation for all the mineral traits used in this study was ob-
served, suggesting that GWAS can be applied to this rice diversity panel. Positive correla-
tions with moderate levels were observed among the six mineral elements except between
Mn and Zn, indicating that these minerals might share common gene regulation pathways.
This could also be due to the pleiotropic effects of causal genes controlling these minerals
in rice, which is supported by our GWAS findings: 32 pleiotropic SNPs were found at our
first significance threshold level and five were detected at the second significance level,
potentially explaining the correlation observed among the minerals. While no pleiotropic
SNPs were found between Mn and Zn, a positive correlation with a low level was found
in correlation studies, indicating SNPs with minor effects still might exist that our GWAS
could not capture.

4.2. Performance of Single and Multi-Locus GWAS Models

In terms of SNP detection ability, based on our GWAS studies, single-locus models
altogether found more significant loci (125 SNPs) than multi-locus models (37 SNPs) at the
first significant cut-off value, but its number reduced to 21 once a 15% FDR multiple test
correction was applied to the single-locus models. Multiple test correction is not required
for multi-locus methods, which is an obvious advantage, so the number of SNPs detected
by these methods will be same. Therefore, the performance of the multi-locus models was
better compared to the single-locus models in our study. Similar results were also reported
in the previous studies using both real and simulation datasets where the multi-locus
approach was more powerful than the single-locus approach [16,17,35]. However, Liu et al.
(2020) detected more SNPs with univariate models (GLM and MLM) than with multivariate
models (mrMLM and FarmCPU), which is similar to our result of the first significant cut-off
value. Having a smaller number of potential causal SNPs with the multi-test correction in
our study may be due to not having enough sample size and failing to capture the small
effects associated with complex traits [19]. Regarding model performances, GEMMA is
believed to be the best single-locus model in this study, where it identified second highest
SNPs (57 SNPs) after CMLM and was the only representative single-locus model once
multi-test correction applied. As for six multi-locus GWAS models, except FASTmrEMMA,
both mrMLM and FASTmrMLM were the highest SNP-identifying models (17 SNPs) and
the remaining three models performed similarly, detecting around 10 SNPs.

As the main goal of this study is to find as many significant SNPs as possible with-
out losing any potential causal SNPs, we applied two of three approaches necessary to
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determine stable QTLs: one was applying multiple approaches by using single and multi-
locus GWAS models and another was verification by previously reported QTLs, which
will be described in the next section [35]. By applying the first approach, 48 significant
SNPs are being reported as reliable in this study because they were detected across several
multi-locus models or by single-locus plus multi-locus models. Thus, this study supports
the previous recommendation by applying both single-locus and multi-locus models to
get stable, reliable QTLs [18]. In addition, we recommend to include the GEMMA model,
combined with multi-locus models, in any future GWAS studies of complex traits.

4.3. Comparison and Reliability of Our GWAS Studies

To evaluate the reliability of our QTLs, we compared our detected SNPs for the six
minerals with the genes/QTLs and markers related to mineral content identified from pre-
vious linkage mapping and association mapping studies. To compare with the QTL/marker
locations of the previous studies, the surrounding 250 kb of our associated SNPs were
regarded as potentially the same locus for any particular trait when this region was found
between the borders of previously identified QTL/marker locations. In the case of SNP
marker comparisons, the markers of past studies that were located within the 250 kb region
of our significant associated SNPs were considered as the same locus for the particular trait.
Thus, with these parameters, 43 (~29%) of the 147 of the significant SNPs identified by the
first significance threshold of this study coincided with previously reported genes/QTLs
and/or markers for the six minerals and the remaining 104 (70%) SNPs could be considered
as novel. Out of the verified 43 SNPs, 17 were found for Fe, followed by eight for Mg,
seven for K, five for both Cu and Zn and the remaining one was found for Mn. However,
after applying a multiple test correction to the single-locus models, 43 significant SNPs
that verified by co-location with previously reported QTLs now reduced to 14 verified
SNPs (~29%), supporting the fact that the multiple test correction can eliminate true QTLs
identified in the single-locus GWAS study. Out of the established 14 SNPs, 5 SNPs were
detected for K, followed by 3 for Zn and 2 SNPs each for Cu ang Mg. Both Fe and Mn had
one SNP (Supplementary Table S3).

The molecular mechanisms of uptake, transport and accumulation of the mineral
elements used in this study are well established [36]. So far, several genes and gene families
have been found to be involved in the acquisition and transport of copper and zinc in rice
seeds. These include, but are not limited to, the ZIP (Zinc-regulated transporter (ZRT))
gene families, Iron-regulated transporter (IRT-like protein) gene family, YSL (yellow stripe-
like) protein, MTPs (metal tolerance proteins), COPT (COPper Transporter) family, and
NRAMPs gene family. Some of them are also involved in the pathway of uptake, transport,
and accumulation of iron, magnesium and cadmium [37]. ZIP3 of the six ZIP genes (ZIP1,
3, 4, 5, 7a and 8) was identified within a 250 kb region at id4010220 SNP in chromosome
4 associated with Zn in our GWAS study. Two SSRs and five SNPs were also reported in the
same chromosomal position by [36,38,39]. Similarly, the NAS gene family is involved in the
accumulation of Fe, Zn and Cu in rice endosperm [40]. The current study found OsNAS3
at SNP-7.29385457. in chromosome 7 associated with Fe at our first threshold value for
the significance test, where two SSR markers were also reported before [3,38], but it was
removed once multiple test correction was applied. The COPT transporter gene family
for Cu was not identified by our GWAS analysis. Interestingly, a known gene, OsIRO2,
an iron-related bHLH transcription factor 2 that regulates Fe uptake from soil, transport
during germination, and translocation to the grain, was co-located at 1,305,247 SNP in
chromosome 1 associated with Zn in our study, where Bollinedi et al. (2020) also found
a SNP at almost the same position, supporting the fact that a single gene may control the
molecular mechanism of multiple elements simultaneously (Supplementary Table S3).

The fact that 14 QTLs, two of which co-localized with known genes, were rediscovered
by this study, supports the accuracy of our GWAS study. More importantly, these 14 QTLs
regulating six mineral elements, simultaneously detected in various populations with
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different genetic backgrounds, eventually can be further validated and used to conduct
marker-assisted selection in future biofortification programs.

4.4. Functional Annotation of Candidate Genes

The experimental validation of candidate loci/QTLs disclosed by mapping studies is
essential for marker-assisted selection (MAS) and other plant development programs [17].
Although further experiments will be required to prove the causal genes controlling mineral
concentrations in the rice grain, we nevertheless tried to better understand the molecular
mechanisms of those six mineral traits by examining candidate genes in those regions. In
this study, 298 and 311 genes were identified in the japonica and indica genetic background,
respectively, located within a 250-kb region of the significant SNPs associated with six
mineral elements and expressed beyond the vegetative stage, suggesting that the two major
rice sub-species might have different genetic pathways controlling those mineral traits.

To better understand the biological function of those expressed genes, we further
conducted gene enrichment analysis in g:Profiler using gene ontology (GO). For Cu, the
analysis revealed that the genes were significantly enriched at 5% FDR in three and four
molecular function GO terms for Japonica and Indica, respectively, without sharing any
common function. The genes in indica genetic background were categorized as mainly
antiporter and transporter activity of K and Na, whereas japonica genes were involved in
structural molecule activity and binding (drug and cyclosporin). The genes for Fe in japonica
and indica were classified into 15, and 30 molecular function GO terms with 14 common
functions between them. The common functions mostly consist of activity (cation, proton,
and kinase) and binding (such as anion, carbohydrate derivative, nucleoside phosphate,
ribonucleotide, etc.). For K, nine molecular function terms were assigned for each group
of genes with eight common functions, revealing that both genomes could follow similar
molecular pathways for K. However, for Mg, the two genomes might have different
molecular mechanisms because 48 molecular functional terms were identified for indica
genes, whereas only one term was assigned for japonica genes. Among the 48 functions,
some functions are well known for Mg roles, for example, DNA-binding transcription
activator activity, RNA polymerase II-specific, NADPH binding, and catalytic activity,
indicating the possibility that some candidate genes in the indica genetic background might
not be present in japonica. For Mn, 15 and 16 molecular function terms were enriched
for the japonica and indica genes, with three common functions between them that were
mostly involved in mannosyltransferase activity. For Zn, the japonica and indica genes were
enriched into three and seven molecular functional terms, with one common between them
(Figure S6). Overall, the functional annotation elucidated the similarity and differences in
molecular mechanisms responsible for mineral content used by two major rice populations.
These results can be used to design future studies for functional gene characterization and
to select appropriate genetic backgrounds for gene cloning.

A potential limitation of this study is using one year/location data that cannot provide
assurance of the stability of the significant SNPs identified in our study. However, we
tried to validate our findings by comparing with previous studies, showing 29% of our
significant SNPs co-located with the previously known gene/markers. Future research
can be used to further validate our findings by (1) conducting additional GWAS studies in
multiple locations and years and (2) using gene-editing tools to characterize the candidate
genes identified in this study.

5. Conclusions

This study reported the GWAS of six mineral elements using 174 global rice acces-
sions and 7k SNP array genotype data. A total of 48 SNPs affecting mineral elements
were identified by single-locus and multi-locus methods. GEMMA along with five multi-
locus models (mrMLM, FASTmrMLM, pKWmEB, pLARmEB, and ISIS EM-BLASSO) were
the best models to identify significant SNP in the single-locus and multi-locus GWAS
method, respectively, used in this study. While 14 SNPs matched with previously reported
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genes/QTLs and markers, 34 SNPs were novel. After mining genes within a 250 kb region
of these SNPs, a total of 987 genes were found. Among these genes, 298 and 311 genes in
japonica and indica, respectively, were used for enrichment analysis to know their potential
functions. Thus, they could be identified as candidate genes for controlling accumulation
in rice grain. These shortlisted genes could be used for future studies to further investigate
the gene expression levels, followed by functional gene characterization, to better under-
stand the complex molecular mechanisms controlling rice grain concentration of these six
mineral elements.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/genes13122330/s1, Table S1: Description of the 174 rice genotypes analyzed in the study,
Table S2: Phenotypic variation in the whole panel and Indica and Japonica sub-groups, Table S3:
Comparison of the GWAS result with the previous studies, Figure S1: Correlation matrix for the six
mineral elements, Figure S2: Manhattan plots of GWAS for six minerals, Figure S3: Physical map
for significant SNP at −log10P ≥ 3.0 significant threshold value for six mineral elements, Figure
S4: Heatmap of In silico gene expression analysis results for the six mineral elements of the study
in Nipponbare, Figure S5: Heatmap of In silico gene expression analysis results for the six mineral
elements of the study in IR64, Figure S6. Gene enrichment analysis result, depicting potential
molecular functional GO terms for (1). Cu, (2). Fe, (3). K, (4). Mg, (5). Mn and (6). Zn.
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2. Kaluzna-Czaplinska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human

health? Crit. Rev. Food Sci. Nutr. 2019, 59, 72–88. [CrossRef]
3. Nawaz, Z.; Kakar, K.U.; Li, X.-B.; Li, S.; Zhang, B.; Shou, H.-X.; Shu, Q.-Y. Genome-wide Association Mapping of Quantitative

Trait Loci (QTLs) for Contents of Eight Elements in Brown Rice (Oryza sativa L.). J. Agric. Food Chem. 2015, 63, 8008–8016.
[CrossRef]

4. Graham, R.D.; Welch, R.M.; Saunders, D.A.; Ortiz-Monasterio, I.; Bouis, H.E.; Bonierbale, M.; de Haan, S.; Burgos, G.; Thiele, G.;
Liria, R.; et al. Nutritious subsistence food. Systems 2007, 92, 1–74.

5. Qin, J.; Shi, A.; Mou, B.; Grusak, M.A.; Weng, Y.; Ravelombola, W.; Bhattarai, G.; Dong, L.; Yang, W. Genetic diversity and
association mapping of mineral element concentrations in spinach leaves. BMC Genom. 2017, 18, 941. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/genes13122330/s1
https://www.mdpi.com/article/10.3390/genes13122330/s1
http://doi.org/10.1021/acs.jafc.5b04932
http://doi.org/10.1080/10408398.2017.1357534
http://doi.org/10.1021/acs.jafc.5b01191
http://doi.org/10.1186/s12864-017-4297-y
http://www.ncbi.nlm.nih.gov/pubmed/29202697


Genes 2022, 13, 2330 19 of 20

6. Egbuna, C.; Dable-Tupas, G. Functional Foods and Nutraceuticals; Springer Nature Switzerland AG: Basel, Switzerland, 2020;
Volume 1, pp. 1–632.

7. Mishra, G.P.; Dikshit, H.K.; Priti; Kukreja, B.; Aski, M.; Yadava, D.K.; Sarker, A.; Kumar, S. Historical Overview of Biofortification
in Crop Plants and Its Implications. In Biofortification of Staple Crops; Kumar, S., Dikshit, H.K., Mishra, G.P., Singh, A., Eds.;
Springer: Singapore, 2022; pp. 31–61.

8. Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding crops for better nutrition. Crop. Sci. 2007, 47, S-88–S-105. [CrossRef]
9. Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from Harvest Plus, 2003 through

2016. Glob. Food Secur. 2017, 12, 49–58. [CrossRef]
10. Mahender, A.; Anandan, A.; Pradhan, S.K.; Pandit, E. Rice grain nutritional traits and their enhancement using relevant genes

and QTLs through advanced approaches. SpringerPlus 2016, 5, 2086. [CrossRef] [PubMed]
11. Qiu, X.; Pang, Y.; Yuan, Z.; Xing, D.; Xu, J.; Dingkuhn, M.; Li, Z.; Ye, G. Genome-Wide Association study of grain appearance and

milling quality in a worldwide collection of indica rice germplasm. PLoS ONE 2015, 10, e0145577. [CrossRef] [PubMed]
12. Gong, J.; Miao, J.; Zhao, Y.; Zhao, Q.; Feng, Q.; Zhan, Q.; Cheng, B.; Xia, J.; Huang, X.; Yang, S.; et al. Dissecting the genetic

basis of grain shape and chalkiness traits in hybrid rice using multiple collaborative populations. Mol. Plant 2017, 10, 1353–1356.
[CrossRef]

13. Mezmouk, S.; Dubreuil, P.; Bosio, M.; Décousset, L.; Charcosset, A.; Praud, S.; Mangin, B. Effect of population structure corrections
on the results of association mapping tests in complex maize diversity panels. Theor. Appl. Genet. 2011, 122, 1149–1160. [CrossRef]
[PubMed]

14. Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies
of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [CrossRef] [PubMed]

15. Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of
complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [CrossRef]

16. Xu, Y.; Yang, T.; Zhou, Y.; Yin, S.; Li, P.; Liu, J.; Xu, S.; Yang, Z.; Xu, C. Genome-wide association mapping of starch pasting
properties in maize using single-locus and multi-locus models. Front. Plant Sci. 2018, 9, 1311. [CrossRef]

17. Li, C.; Fu, Y.; Sun, R.; Wang, Y.; Wang, Q. Single-locus and multi-locus genome-wide association studies in the genetic dissection
of fiber quality traits in upland cotton (Gossypium hirsutum L.). Front. Plant Sci. 2018, 9, 1083. [CrossRef] [PubMed]

18. Liu, S.; Zhong, H.; Meng, X.; Sun, T.; Li, Y.; Pinson, S.R.M.; Chang, S.K.C.; Peng, Z. Genome-wide association studies of ionomic
and agronomic traits in USDA mini core collection of rice and comparative analyses of different mapping methods. BMC Plant
Biol. 2020, 20, 441. [CrossRef]

19. Cui, Y.; Zhang, F.; Zhou, Y. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Front. Plant Sci.
2018, 9, 1464. [CrossRef]

20. Tan, Y.; Sun, L.; Song, Q.; Mao, D.; Zhou, J.; Jiang, Y.; Wang, J.; Fan, T.; Zhu, Q.; Huang, D.; et al. Genetic architecture of subspecies
divergence in trace mineral accumulation and elemental correlations in the rice grain. Theor. Appl. Genet. 2020, 133, 529–545.
[CrossRef]

21. Cu, S.T.; Warnock, N.I.; Pasuquin, J.; Dingkuhn, M.; Stangoulis, J. A high-resolution genome-wide association study of the grain
ionome and agronomic traits in rice Oryza sativa subsp. indica. Sci. Rep. 2021, 11, 17. [CrossRef]

22. Wu, X.; Islam, A.S.M.F.; Limpot, N.; Mackasmiel, L.; Mierzwa, J.; Cortés, A.J.; Blair, M.W. Genome-wide SNP identification and
association mapping for seed mineral concentration in mung bean (Vigna radiata L.). Front. Genet. 2020, 11, 656. [CrossRef]

23. Nardi, E.P.; Evangelista, F.S.; Tormen, L.; Saint´pierre, T.D.; Curtius, A.J.; de Souza, S.S.; Barbosa, F. The use of inductively
coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food
samples. Food Chem. 2009, 112, 727–732. [CrossRef]

24. Low, K.H.; Zain, S.M.; Abas, M.R. Evaluation of metal concentrations in red tilapia (Oreochromis spp.) from three sampling sites in
Jelebu, Malaysia using principal component analysis. Food Anal. Methods 2011, 4, 276–285. [CrossRef]

25. Morales, K.Y.; Singh, N.; Perez, F.A.; Ignacio, J.C.; Thapa, R.; Arbelaez, J.D.; Tabien, R.E.; Famoso, A.; Wang, D.R.; Septiningsih,
E.M.; et al. An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics
studies. PLoS ONE 2020, 15, e0232479. [CrossRef] [PubMed]

26. Li, Y.; Willer, C.J.; Ding, J.; Scheet, P.; Abecasis, G.R. MaCH: Using sequence and genotype data to estimate haplotypes and
unobserved genotypes. Genet. Epidemiol. 2010, 34, 816–834. [CrossRef] [PubMed]

27. Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155,
945–959. [CrossRef]

28. Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation
study. Mol. Ecol. 2005, 14, 2611–2620. [CrossRef]

29. Zhang, C.; Dong, S.-S.; Xu, J.-Y.; He, W.-M.; Yang, T.-L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay
analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [CrossRef]

30. Zhang, Y.-W.; Tamba, C.L.; Wen, Y.-J.; Li, P.; Ren, W.-L.; Ni, Y.-L.; Gao, J.; Zhang, Y.-M. mrMLM v4.0: An r platform for multi-locus
genome-wide association studies. Genom. Proteom. Bioinform. 2020, 18, 481–487. [CrossRef]

31. Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman,
D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [CrossRef]

http://doi.org/10.2135/cropsci2007.09.0020IPBS
http://doi.org/10.1016/j.gfs.2017.01.009
http://doi.org/10.1186/s40064-016-3744-6
http://www.ncbi.nlm.nih.gov/pubmed/28018794
http://doi.org/10.1371/journal.pone.0145577
http://www.ncbi.nlm.nih.gov/pubmed/26714258
http://doi.org/10.1016/j.molp.2017.07.014
http://doi.org/10.1007/s00122-010-1519-y
http://www.ncbi.nlm.nih.gov/pubmed/21221527
http://doi.org/10.1038/ng.695
http://www.ncbi.nlm.nih.gov/pubmed/20972439
http://doi.org/10.1093/bioinformatics/btm308
http://doi.org/10.3389/fpls.2018.01311
http://doi.org/10.3389/fpls.2018.01083
http://www.ncbi.nlm.nih.gov/pubmed/30177935
http://doi.org/10.1186/s12870-020-02603-0
http://doi.org/10.3389/fpls.2018.01464
http://doi.org/10.1007/s00122-019-03485-z
http://doi.org/10.1038/s41598-021-98573-w
http://doi.org/10.3389/fgene.2020.00656
http://doi.org/10.1016/j.foodchem.2008.06.010
http://doi.org/10.1007/s12161-010-9166-0
http://doi.org/10.1371/journal.pone.0232479
http://www.ncbi.nlm.nih.gov/pubmed/32407369
http://doi.org/10.1002/gepi.20533
http://www.ncbi.nlm.nih.gov/pubmed/21058334
http://doi.org/10.1093/genetics/155.2.945
http://doi.org/10.1111/j.1365-294X.2005.02553.x
http://doi.org/10.1093/bioinformatics/bty875
http://doi.org/10.1016/j.gpb.2020.06.006
http://doi.org/10.1038/nature09270


Genes 2022, 13, 2330 20 of 20
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