Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Quality Control of Data
2.3. Genome Mapping and Calculation of Gene Expression Level
2.4. Principal Component Analysis (PCA) and Hierarchical Clustering Analysis
2.5. Identification of Differentially Expressed Genes (DEGs) and miRNAs
2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.7. Construction of Tissue-Specific Regulatory Network
2.8. Annotation of DEGs and DE-miRNAs, Prediction of DE-miRNAs Target Genes
2.9. Functional Annotation Analysis of Genes
3. Results
3.1. An Overview of Transcriptome Data with Reproductive Tissues in Donkey and Horse
3.2. Differential Expression Analysis of Transcriptomic Data
3.3. WGCNA Identified the Tissue-Specific Module Genes in Donkey
3.4. The Identification of miRNAs Related to Tissue Specificity in Donkey
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, X.Y.; Ning, T.; Adeola, A.C.; Li, J.; Esmailizadeh, A.; Lichoti, J.K.; Agwanda, B.R.; Isakova, J.; Aldashev, A.A.; Wu, S.F.; et al. Potential dual expansion of domesticated donkeys revealed by worldwide analysis on mitochondrial sequences. Zool. Res. 2020, 41, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Seyiti, S.; Kelimu, A. Donkey Industry in China: Current Aspects, Suggestions and Future Challenges. J. Equine Vet. Sci 2021, 102, 103642. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.; Pearson, R.A. A review of the factors affecting the survival of donkeys in semi-arid regions of sub-Saharan Africa. Trop. Anim. Health Prod. 2005, 37 (Suppl. 1), 1–19. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; He, X.; Zhao, Y.; Bai, D.; Du, M.; Song, L.; Liu, Z.; Yin, Z.; Manglai, D. Transcriptome profiling of developing testes and spermatogenesis in the Mongolian horse. BMC Genet. 2020, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Hecht, N.B. Molecular mechanisms of male germ cell differentiation. Bioessays 1998, 20, 555–561. [Google Scholar] [CrossRef]
- Visser, L.; Repping, S. Unravelling the genetics of spermatogenic failure. Reproduction 2010, 139, 303–307. [Google Scholar] [CrossRef]
- Tian, F.; Wang, J.P.; Li, Y.H.; Yang, C.H.; Zhang, R.T.; Wang, X.G.; Ju, Z.H.; Jiang, Q.; Huang, J.M.; Wang, C.F.; et al. Integrated analysis of mRNA and miRNA in testis and cauda epididymidis reveals candidate molecular markers associated with reproduction in Dezhou donkey. Livest. Sci. 2020, 234. [Google Scholar] [CrossRef]
- Geng, Q.; Ni, L.; Ouyang, B.; Hu, Y.; Zhao, Y.; Guo, J. A Novel Testis-Specific Gene, Ccdc136, Is Required for Acrosome Formation and Fertilization in Mice. Reprod. Sci. 2016, 23, 1387–1396. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, M.; Li, C.; Yang, P.; Sun, H.; Tao, D.; Zhang, S.; Ma, Y. Human t-complex protein 11 (TCP11), a testis-specific gene product, is a potential determinant of the sperm morphology. Tohoku J. Exp. Med. 2011, 224, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Chiriva-Internati, M.; Gagliano, N.; Donetti, E.; Costa, F.; Grizzi, F.; Franceschini, B.; Albani, E.; Levi-Setti, P.E.; Gioia, M.; Jenkins, M.; et al. Sperm protein 17 is expressed in the sperm fibrous sheath. J. Transl. Med. 2009, 7, 61. [Google Scholar] [CrossRef]
- Fischer, D.; Laiho, A.; Gyenesei, A.; Sironen, A. Identification of Reproduction-Related Gene Polymorphisms Using Whole Transcriptome Sequencing in the Large White Pig Population. G3 Genes Genomes Genet. (Bethesda) 2015, 5, 1351–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, J.; Fang, C.; Shi, L.; Tan, J.; Xiong, Y.; Bin, F.; Li, C. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci. Rep. 2016, 6, 26852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noveski, P.; Popovska-Jankovic, K.; Kubelka-Sabit, K.; Filipovski, V.; Lazarevski, S.; Plaseski, T.; Plaseska-Karanfilska, D. MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis. Andrology 2016, 4, 1020–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, G.; Zhang, Y.; Waxman, D.J. Impact of methoxyacetic acid on mouse Leydig cell gene expression. Reprod. Biol. Endocrinol. 2010, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Uzumcu, M.; Westfall, S.D.; Dirks, K.A.; Skinner, M.K. Embryonic testis cord formation and mesonephric cell migration requires the phosphotidylinositol 3-kinase signaling pathway. Biol. Reprod. 2002, 67, 1927–1935. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.H.; Mitchell, D.; Evanoff, R.; Griswold, M.D. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol. Reprod. 2011, 85, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Twenter, H.; Klohonatz, K.; Davis, K.; Bass, L.; Coleman, S.J.; Bouma, G.J.; Bruemmer, J.E. Transfer of MicroRNAs From Epididymal Epithelium to Equine Spermatozoa. J. Equine Vet. Sci. 2020, 87, 102841. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, X.; Zhao, Z.; Wang, Y.; Li, S.; Wang, C. Transcriptome Atlas of 16 Donkey Tissues. Front. Genet. 2021, 12, 682734. [Google Scholar] [CrossRef]
- Han, H.; Dong, H.; Chen, Q.; Gao, Y.; Li, J.; Li, W.; Dang, R.; Lei, C. Transcriptomic Analysis of Testicular Gene Expression in Normal and Cryptorchid Horses. Animals 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- de Sena Brandine, G.; Smith, A.D. Falco: High-speed FastQC emulation for quality control of sequencing data. F1000Research 2019, 8, 1874. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Bai, J.; Zhong, S.; Zhang, R.; Kang, K.; Zhang, X.; Xu, Y.; Zhao, C.; Zhao, M. Downregulation of ATP6V1A Involved in Alzheimer’s Disease via Synaptic Vesicle Cycle, Phagosome, and Oxidative Phosphorylation. Oxid. Med. Cell. Longev. 2021, 2021, 5555634. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [Green Version]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef]
- Sakuno, T.; Tashiro, S.; Tanizawa, H.; Iwasaki, O.; Ding, D.Q.; Haraguchi, T.; Noma, K.I.; Hiraoka, Y. Rec8 Cohesin-mediated Axis-loop chromatin architecture is required for meiotic recombination. Nucleic Acids Res. 2022, 50, 3799–3816. [Google Scholar] [CrossRef]
- Huang, J.X.; Scott, M.B.; Pu, X.Y.; Zhou-Cun, A. Association between single-nucleotide polymorphisms of DNMT3L and infertility with azoospermia in Chinese men. Reprod. Biomed. Online 2012, 24, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachogiannis, G.; Niederhuth, C.E.; Tuna, S.; Stathopoulou, A.; Viiri, K.; de Rooij, D.G.; Jenner, R.G.; Schmitz, R.J.; Ooi, S.K.T. The Dnmt3L ADD Domain Controls Cytosine Methylation Establishment during Spermatogenesis. Cell Rep. 2015, 10, 944–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Khelifa, M.; Coutton, C.; Zouari, R.; Karaouzene, T.; Rendu, J.; Bidart, M.; Yassine, S.; Pierre, V.; Delaroche, J.; Hennebicq, S.; et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 2014, 94, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, F.; Miyata, H.; Shimada, K.; Morohoshi, A.; Nozawa, K.; Matsumura, T.; Xu, Z.; Pratiwi, P.; Ikawa, M. RSPH6A is required for sperm flagellum formation and male fertility in mice. J. Cell Sci. 2018, 131, jcs221648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terre, B.; Lewis, M.; Gil-Gomez, G.; Han, Z.; Lu, H.; Aguilera, M.; Prats, N.; Roy, S.; Zhao, H.; Stracker, T.H. Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1-, MCIDAS- or CCNO-deficient mice. Development 2019, 146, dev162628. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.; Chen, D.; Hess, R.A.; Li, F.Q.; Takemaru, K.I. CEP164 is essential for efferent duct multiciliogenesis and male fertility. Reproduction 2021, 162, 129–139. [Google Scholar] [CrossRef]
- Piprek, R.P.; Kolasa, M.; Podkowa, D.; Kloc, M.; Kubiak, J.Z. Tissue-specific knockout of E-cadherin (Cdh1) in developing mouse gonads causes germ cells loss. Reproduction 2019, 158, 147–157. [Google Scholar] [CrossRef]
- Lefievre, L.; de Lamirande, E.; Gagnon, C. Presence of cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Biol. Reprod. 2002, 67, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Yin, H.; Zhang, X.; Sun, D.; Zhang, Q.; Liu, J.; Ding, X.; Zhang, Y.; Zhang, S. Genome-wide association study for semen traits of the bulls in Chinese Holstein. Anim. Genet. 2017, 48, 80–84. [Google Scholar] [CrossRef]
- Wang, H.; Hong, X.; Kinsey, W.H. Sperm-oocyte signaling: The role of IZUMO1R and CD9 in PTK2B activation and actin remodeling at the sperm binding sitedagger. Biol. Reprod. 2021, 104, 1292–1301. [Google Scholar] [CrossRef]
- Krutskikh, A.; Poliandri, A.; Cabrera-Sharp, V.; Dacheux, J.L.; Poutanen, M.; Huhtaniemi, I. Epididymal protein Rnase10 is required for post-testicular sperm maturation and male fertility. FASEB J. 2012, 26, 4198–4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaragoza, K.; Begay, V.; Schuetz, A.; Heinemann, U.; Leutz, A. Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes. Mol. Cell. Biol. 2010, 30, 2293–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara-Chica, M.; Correa-Saez, A.; Jimenez-Izquierdo, R.; Garrido-Rodriguez, M.; Ponce, F.J.; Moreno, R.; Morrison, K.; Di Vona, C.; Arato, K.; Jimenez-Jimenez, C.; et al. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death Differ. 2022, 29, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Ciller, I.M.; Palanisamy, S.K.; Ciller, U.A.; McFarlane, J.R. Postnatal expression of bone morphogenetic proteins and their receptors in the mouse testis. Physiol. Res. 2016, 65, 673–682. [Google Scholar] [CrossRef]
- Munkley, J.; Vodak, D.; Livermore, K.E.; James, K.; Wilson, B.T.; Knight, B.; McCullagh, P.; McGrath, J.; Crundwell, M.; Harries, L.W.; et al. Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. EBioMedicine 2016, 8, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ibrahimi, O.A.; Olsen, S.K.; Umemori, H.; Mohammadi, M.; Ornitz, D.M. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 2006, 281, 15694–15700. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, X.; Luo, F.; Yan, J.; Yang, K. Screening key miRNAs and genes in prostate cancer by microarray analysis. Transl. Cancer Res. 2020, 9, 856–868. [Google Scholar] [CrossRef]
Types | Enriched_miRNAs | |
---|---|---|
Testis | eca-mir-711 | eca-mir-143 |
eca-mir-9182 | eca-mir-9092 | |
eca-mir-8999 | eca-mir-8917 | |
eca-mir-8914 | eca-mir-664 | |
eca-mir-1902 | ||
Epididymis | eca-mir-761 | eca-mir-429 |
eca-mir-375 | eca-mir-200b | |
eca-mir-3548 | eca-mir-191b | |
eca-mir-9141 | eca-mir-9120 | |
eca-mir-9087 | eca-mir-9054 | |
eca-mir-9032 | eca-mir-8990 | |
eca-mir-8966 | eca-mir-632 | |
eca-mir-1905c | eca-mir-1842 | |
eca-mir-1307 |
Types | Enriched_miRNAs | ||
---|---|---|---|
Horse | eca-mir-375 | eca-mir-761 | eca-mir-214 |
eca-mir-1307 | eca-mir-8965 | eca-mir-1842 | |
eca-mir-7035 | eca-mir-9063 | eca-mir-9146 | |
eca-mir-1282 | eca-mir-9032 | eca-mir-9054 | |
eca-mir-9010 | eca-mir-9056 | eca-mir-1892 | |
eca-mir-9035 | eca-mir-9120 | ||
Donkey | eca-mir-149 | eca-mir-27b | eca-mir-24 |
eca-mir-155 | eca-mir-200b | eca-mir-145a | |
eca-mir-429 | eca-mir-143 | eca-mir-20a | |
eca-mir-200a | eca-mir-324 | eca-mir-1905c | |
eca-mir-1291a | eca-mir-1248 | eca-mir-9140 | |
eca-mir-9141 | eca-mir-9102 | eca-mir-9055 | |
eca-mir-9086 | eca-mir-9089-1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Zhang, X.; Yan, J.; Guo, J.; Zhang, F.; Zhu, K.; Liu, S.; Sun, Y.; Shen, W.; Wang, J. Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey. Genes 2022, 13, 2339. https://doi.org/10.3390/genes13122339
Yu M, Zhang X, Yan J, Guo J, Zhang F, Zhu K, Liu S, Sun Y, Shen W, Wang J. Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey. Genes. 2022; 13(12):2339. https://doi.org/10.3390/genes13122339
Chicago/Turabian StyleYu, Mubin, Xiaoyuan Zhang, Jiamao Yan, Jianhua Guo, Fali Zhang, Kexin Zhu, Shuqin Liu, Yujiang Sun, Wei Shen, and Junjie Wang. 2022. "Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey" Genes 13, no. 12: 2339. https://doi.org/10.3390/genes13122339
APA StyleYu, M., Zhang, X., Yan, J., Guo, J., Zhang, F., Zhu, K., Liu, S., Sun, Y., Shen, W., & Wang, J. (2022). Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey. Genes, 13(12), 2339. https://doi.org/10.3390/genes13122339