The Association of Variants within Types V and XI Collagen Genes with Knee Joint Laxity Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Knee Joint Laxity Assessments
2.3. Measuring Ligament Length Change
2.4. DNA Extraction and Genotyping
2.5. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Association of Collagen Genotypes with Knee Laxity Measurements
3.3. Contribution of Collagen Genotype Score to the Multiple Linear Regression Models
3.4. Ligament Length Change
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cross, M. Clinical terminology for describing knee instability. Sport. Med. Arthrosc. Rev. 1996, 4, 313–318. [Google Scholar]
- Beighton, P.; Solomon, L.; Soskolne, C.L. Articular mobility in an African population. Ann. Rheum. Dis. 1973, 32, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfait, F.; Wenstrup, R.J.; De Paepe, A. Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet. Med. 2010, 12, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grahame, R. Joint hypermobility and genetic collagen disorders: Are they related? Arch. Dis. Child. 1999, 80, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Richer, J.; Hill, H.L.; Wang, Y.; Yang, M.-L.; Hunker, K.L.; Lane, J.; Blackburn, S.; Coleman, D.M.; Eliason, J.; Sillon, G.; et al. A Novel Recurrent COL5A1 Genetic Variant Is Associated With a Dysplasia-Associated Arterial Disease Exhibiting Dissections and Fibromuscular Dysplasia. Arter. Thromb. Vasc. Biol. 2020, 40, 2686–2699. [Google Scholar] [CrossRef]
- Ribbans, W.J.; September, A.V.; Collins, M. Tendon and Ligament Genetics: How Do They Contribute to Disease and Injury? A Narrative Review. Life 2022, 12, 663. [Google Scholar] [CrossRef]
- Alvarez-Romero, J. Genetic variants within the COL5A1 gene are associated with ligament injuries in physically active populations from Australia, South Africa, and Japan. Eur. J. Sport Sci. 2022, 1–10. [Google Scholar] [CrossRef]
- Shultz, S.J.; Schmitz, R.J.; Benjaminse, A.; Collins, M.; Ford, K.; Kulas, A.S. ACL Research Retreat VII: An Update on Anterior Cruciate Ligament Injury Risk Factor Identification, Screening, and Prevention. J. Athl. Train 2015, 50, 1076–1093. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; O’Connell, K.; Posthumus, M. Genetics of Musculoskeletal Exercise-Related Phenotypes. Med. Sport Sci. 2016, 61, 92–104. [Google Scholar]
- Brown, J.C.; Miller, C.-J.; Schwellnus, M.P.; Collins, M. Range of motion measurements diverge with increasing age for COL5A1 genotypes. Scand. J. Med. Sci. Sports 2011, 21, e266–e272. [Google Scholar] [CrossRef]
- Bell, R.D.; Shultz, S.J.; Wideman, L.; Henrich, V.C. Collagen gene variants previously associated with anterior cruciate ligament injury risk are also associated with joint laxity. Sport. Health 2012, 4, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.D.; Shultz, S.J.; Wideman, L.; Henrich, V.C. Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J. Biol. Chem. 2011, 286, 20455–20465. [Google Scholar]
- Acke, F.R. Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Mol. Genet. Metab. 2014, 113, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Jobling, R.; D’Souza, R.; Baker, N.; Lara-Corrales, I.; Mendoza-Londono, R.; Dupuis, L.; Savarirayan, R.; Ala-Kokko, L.; Kannu, P. The collagenopathies: Review of clinical phenotypes and molecular correlations. Curr. Rheumatol. Rep. 2014, 16, 394. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.E.G.; Carter, S.D.; Innes, J.F.; Ollier, W.E.; Short, A.D. Genetic basis of cranial cruciate ligament rupture (CCLR) in dogs. Connect. Tissue Res. 2014, 55, 275–281. [Google Scholar] [CrossRef]
- Hay, M.; Patricios, J.; Collins, R.; Branfield, A.; Cook, J.; Handley, C.J.; September, A.V.; Posthumus, M.; Collins, M. Association of type XI collagen genes with chronic Achilles tendinopathy in independent populations from South Africa and Australia. Br. J. Sports Med. 2013, 47, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Dada, S.; Burger, M.C.; Massij, F.; de Wet, H.; Collins, M. Carpal tunnel syndrome: The role of collagen gene variants. Gene 2016, 587, 53–58. [Google Scholar] [CrossRef]
- Collins, M.; Posthumus, M. Type V collagen genotype and exercise-related phenotype relationships: A novel hypothesis. Exerc. Sport Sci. Rev. 2011, 39, 191–198. [Google Scholar] [CrossRef]
- Johnson, S.M.; Robinsonand, C.M. Shoulder instability in patients with joint hyperlaxity. J. Bone Jt. Surg. Am. 2010, 92, 1545–1557. [Google Scholar] [CrossRef]
- Clarke, H.D. Anatomy. In Insall & Scott Surgery of the Knee; Scott, W.N., Ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 2–49.e3. [Google Scholar]
- Shultz, S.J.; Nguyen, A.-D.; Levine, B.J. The Relationship Between Lower Extremity Alignment Characteristics and Anterior Knee Joint Laxity. Sport. Health 2009, 1, 54–60. [Google Scholar] [CrossRef]
- Beckley, S.; Stinton, S.; Lesosky, M.; September, A.; Collins, M.; Branch, T.; Posthumus, M. Reliability of a Robotic Knee Testing Tool to Assess Rotational Stability of the Knee Joint in Healthy Female and Male Volunteers. SportS Med. Open 2020, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bloswick, D.; Merryweather, A. An improved OpenSim gait model with multiple degrees of freedom knee joint and knee ligaments. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Mokone, G.G.; Schwellnus, M.P.; Noakes, T.D.; Collins, M. The COL5A1 gene and Achilles tendon pathology. Scand. J. Med. Sci. Sport. 2006, 16, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-T.; Kim, C.-S.; Kim, W.-N.; Min, S.-K. The COL5A1 genotype is associated with range of motion. J. Exerc. Nutr. Biochem. 2015, 19, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.-T.; Gao, S.-T.; Cheng, P.; Liang, S.; Yu, S.-Y.; Yang, Q.; Chen, A.-M. Association between polymorphism rs12722 in COL5A1 and musculoskeletal soft tissue injuries: A systematic review and meta-analysis. Oncotarget 2018, 9, 15365–15374. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Laguette, M.-J.; Abrahams, Y.; Prince, S.; Collins, M. Sequence variants within the 3′-UTR of the COL5A1 gene alters mRNA stability: Implications for musculoskeletal soft tissue injuries. Matrix Biol. 2011, 30, 338–345. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, E.S.; Kim, C.-H.; Youn, H.; Kim, H.R. Genetic associations of body composition, flexibility and injury risk with ACE, ACTN3 and COL5A1 polymorphisms in Korean ballerinas. J. Exerc. Nutr. Biochem. 2014, 18, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto-Mikami, E.; Miyamoto, N.; Kumagai, H.; Hirata, K.; Kikuchi, N.; Zempo, H.; Kimura, N.; Kamiya, N.; Kanehisa, H.; Naito, H.; et al. COL5A1 rs12722 polymorphism is not associated with passive muscle stiffness and sports-related muscle injury in Japanese athletes. BMC Med. Genet. 2019, 20, 192. [Google Scholar] [CrossRef] [Green Version]
- Kubo, K.; Yata, H.; Tsunoda, N. Effect of gene polymorphisms on the mechanical properties of human tendon structures. SpringerPlus 2013, 2, 343. [Google Scholar] [CrossRef] [Green Version]
- Kirk, E.A. Human COL5A1 polymorphisms and quadriceps muscle-tendon mechanical stiffness in vivo. Exp. Physiol. 2016, 101, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Foster, B.P.; Morse, C.I.; Onambele, G.L.; Williams, A.G. Human COL5A1 rs12722 gene polymorphism and tendon properties in vivo in an asymptomatic population. Eur. J. Appl. Physiol. 2014, 114, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Mio, F.; Chiba, K.; Hirose, Y.; Kawaguchi, Y.; Mikami, Y.; Oya, T.; Mori, M.; Kamata, M.; Matsumoto, M.; Ozaki, K.; et al. A functional polymorphism in COL11A1, which encodes the alpha 1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am. J. Hum. Genet. 2007, 81, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Ishidou, Y.; Koga, H.; Taketomi, E.; Ikari, K.; Komiya, S.; Takeda, J.; Sakou, T.; Inoue, I. Functional impact of human collagen alpha2(XI) gene polymorphism in pathogenesis of ossification of the posterior longitudinal ligament of the spine. J. Bone Min. Res. 2001, 16, 948–957. [Google Scholar] [CrossRef]
- Yang, X.; Jia, H.; Xing, W.; Li, F.; Li, M.; Sun, K.; Zhu, Y. Genetic variants in COL11A2 of lumbar disk degeneration among Chinese Han population. Mol. Genet. Genom. Med. 2019, 7, e00524. [Google Scholar] [CrossRef]
- Koyama, K.; Nakazato, K.; Min, S.; Gushiken, K.; Hatakeda, Y.; Seo, K.; Hiranuma, K. COL11A1 gene is associated with limbus vertebra in gymnasts. Int. J. Sport. Med. 2012, 33, 586–590. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Q.; Jiang, J.; Zhan, X.; Xiao, Z. Association between COL11A1 (rs1337185) and ADAMTS5 (rs162509) gene polymorphisms and lumbar spine pathologies in Chinese Han population: An observational study. BMJ Open 2017, 7, e015644. [Google Scholar] [CrossRef] [Green Version]
- Orozco, G.; Barton, A.; Eyre, S.; Ding, B.; Worthington, J.; Ke, X.; Thomson, W. HLA-DPB1-COL11A2 and three additional xMHC loci are independently associated with RA in a UK cohort. Genes Immun. 2011, 12, 169–175. [Google Scholar] [CrossRef]
- Kramer, L.C.; Denegar, C.R.; E Buckley, W.; Hertel, J. Factors associated with anterior cruciate ligament injury: History in female athletes. J. Sport. Med. Phys. Fit. 2007, 47, 446–454. [Google Scholar]
Passive Genu Recurvatum | Unstandardised Coefficient (β) | 95% CI for β | SE β | p-Value |
---|---|---|---|---|
Constant | 175.9 | 167.5 to 184.3 | 4.23 | <0.001 |
Sex (male) | 5.00 | 2.31 to 7.68 | 1.35 | <0.001 |
Age (years) | 0.23 | 0.03 to 0.44 | 0.10 | 0.025 |
Body Mass (kg) | −0.13 | −0.24 to −0.02 | 0.05 | 0.018 |
Genotype Score (2) | 1.56 | −0.77 to 3.90 | 1.18 | 0.187 |
Genotype Score (4 or 6) | 3.55 | 0.47 to 6.62 | 1.55 | 0.024 |
R2 = 0.22 and Adjusted R2 = 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckley, S.; Dey, R.; Stinton, S.; van der Merwe, W.; Branch, T.; September, A.V.; Posthumus, M.; Collins, M. The Association of Variants within Types V and XI Collagen Genes with Knee Joint Laxity Measurements. Genes 2022, 13, 2359. https://doi.org/10.3390/genes13122359
Beckley S, Dey R, Stinton S, van der Merwe W, Branch T, September AV, Posthumus M, Collins M. The Association of Variants within Types V and XI Collagen Genes with Knee Joint Laxity Measurements. Genes. 2022; 13(12):2359. https://doi.org/10.3390/genes13122359
Chicago/Turabian StyleBeckley, Samantha, Roopam Dey, Shaun Stinton, Willem van der Merwe, Thomas Branch, Alison V. September, Mike Posthumus, and Malcolm Collins. 2022. "The Association of Variants within Types V and XI Collagen Genes with Knee Joint Laxity Measurements" Genes 13, no. 12: 2359. https://doi.org/10.3390/genes13122359
APA StyleBeckley, S., Dey, R., Stinton, S., van der Merwe, W., Branch, T., September, A. V., Posthumus, M., & Collins, M. (2022). The Association of Variants within Types V and XI Collagen Genes with Knee Joint Laxity Measurements. Genes, 13(12), 2359. https://doi.org/10.3390/genes13122359