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Abstract: Patients with inflammatory bowel disease (IBD) are known to have perturbations in
microRNA (miRNA) levels as well as altered miRNA regulation. Although experimental methods
have provided initial insights into the functional consequences that may arise due to these changes,
researchers are increasingly utilising novel bioinformatics approaches to further dissect the role of
miRNAs in IBD. The recent exponential increase in transcriptomics datasets provides an excellent
opportunity to further explore the role of miRNAs in IBD pathogenesis. To effectively understand
miRNA-target gene interactions from gene expression data, multiple database resources are required,
which have become available in recent years. In this technical note, we provide a step-by-step protocol
for utilising these state-of-the-art resources, as well as systems biology approaches to understand the
role of miRNAs in complex disease pathogenesis. We demonstrate through a case study example how
to combine the resulting miRNA-target gene networks with transcriptomics data to find potential
disease-specific miRNA regulators and miRNA-target genes in Crohn’s disease. This approach
could help to identify miRNAs that may have important disease-modifying effects in IBD and other
complex disorders, and facilitate the discovery of novel therapeutic targets.

Keywords: miRNA; network biology; ulcerative colitis; Crohn’s disease; transcriptomics; microarrays;
inflammatory bowel disease

1. Introduction

Inflammatory bowel disease (IBD) is a chronic immune-mediated disease, predomi-
nantly affecting the gastrointestinal tract. Although the aetiology of the disease is unclear,
it is thought to arise due to complex interactions between multiple genetic risk factors,
environmental factors, and the gut microbiota [1,2]. The two major clinical subtypes of
IBD include Crohn’s disease (CD) and ulcerative colitis (UC). As with other complex dis-
eases, the majority of genetic risk variants associated with IBD occur within non-coding
regions of the genome [3]. These non-coding single nucleotide polymorphisms (SNPs)
contribute to disease pathogenesis by affecting the regulation of gene expression. For
instance, non-coding SNPs may affect splicing, modify the function of long non-coding
RNAs (lncRNAs), alter transcription factor binding sites (TFBS) in promoter regions and
introns, and also impact microRNA (miRNA) target sites (miRNA-TS). In recent years, there
has been increasing evidence that miRNAs exert important gene regulatory effects and
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contribute to the pathogenesis of IBD and other complex disorders [4]. Whilst experimental
approaches have been helpful for elucidating the role of miRNAs in disease, such methods
are laborious, expensive, and time-consuming to perform. Bioinformatics analysis of gene
expression data using state-of-the-art database resources and systems biology approaches
has the potential to yield powerful predictions for the functional effects of miRNAs in gene
regulation. This can facilitate hypothesis-driven validation experiments which can accel-
erate our understanding of miRNAs in IBD as well as other complex diseases. However,
there is a lack of established pipelines or protocols for predicting the gene regulatory effects
of miRNAs in complex disease-associated gene networks. In this technical note, we provide
a protocol that can be applied to gene expression data for analysing the gene regulatory
consequences of miRNAs in complex diseases such as IBD.

1.1. A Short Primer on miRNAs

A variety of non-coding RNAs (ncRNAs) are present within a cell. Some exert impor-
tant housekeeping activities (e.g., ribosomal RNA and transfer RNA), whilst others impart
regulatory effects on gene expression. Such regulatory ncRNAs include short ncRNAs
(<200 nucleotides in length) and long ncRNAs (>200 nucleotides in length). miRNAs, small
interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs) comprise the three main
types of regulatory short ncRNAs [5]. Here, we focus our attention on miRNAs.

miRNAs are single-stranded RNA molecules that are, on average, 22 nucleotides in
length. miRNAs are generated from double-stranded RNA hairpin precursors (the primary
miRNA or pri-miRNA) through a multi-step maturation process (Figure 1) [6]. These
miRNA precursors are typically found in clusters, most frequently within intronic regions
of protein-coding genes and intergenic regions of the genome [7]. The pri-miRNA is often
more than 1000 nucleotides in length. It contains a 60–120 nucleotide RNA hairpin which is
cleaved by the enzyme Drosha in the nucleus of the cell, to generate the precursor-miRNA
(pre-miRNA). Pre-miRNAs are then exported to the cytoplasm via the exportin-5 protein,
where they are cleaved by the enzyme Dicer to form mature miRNA [8]. Mature miRNA
binds to Argonaute proteins to form the RNA-induced silencing complex (RISC) which
functions to prevent the translation of target messenger RNA (mRNA) [9]. The miRNA in
the RISC binds to a 13–16 nucleotide sequence in the 3’ untranslated region (UTR) region
of one or more target mRNAs. In animal cells, only the 2nd–8th nucleotides (i.e., the seed
sequence) of the mRNA have perfect complementarity to the miRNA [10]. The binding of
the miRNA-RISC to the mRNA causes the inhibition of translation and also accelerates the
deadenylation of the mRNA polyA tail, resulting in earlier degradation of the mRNA [11].

Thus, miRNAs are able to fine-tune gene expression at the post-transcriptional level.
One miRNA can potentially interact with several mRNAs and the same mRNA may be
targeted by many different miRNAs. In this way, miRNAs and mRNAs form complex
networks of gene regulation [12]. Perturbation of these miRNA-mRNA networks can
lead to cellular dysfunction and ultimately pathological states. Indeed, the disruption of
miRNA-gene regulatory networks has been shown to contribute towards the pathogenesis
of cancers, neurological disorders, cardiovascular diseases, and chronic immune-mediated
disorders such as IBD [13].

1.2. miRNAs in IBD

Over the past decade, several studies have revealed that levels of certain miRNAs are
altered in IBD patients in comparison to healthy individuals, such as miR-124, miR-320,
miR-21, miR-31, and miR-141 (reviewed in detail in [14]). Recently, it was demonstrated
that disease stage may also influence miRNA levels in the same disease phenotype.
Verstockt et al. showed that CD patients at different stages of their disease (i.e., newly
diagnosed CD, late-stage CD, and post-operative recurrent CD) have differences in gene
and miRNA expression profiles [15]. The investigators found enhanced dysregulation of
miRNA and gene expression networks in ileal biopsies from newly diagnosed CD and post-
operative CD, in comparison to late-stage CD, suggesting that miRNA dysregulation may
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play a key role at the mucosal level in early-stage CD, and also after “resetting” the disease
through surgery. In addition, others have demonstrated that miRNAs could be potential
biomarkers in IBD for therapeutic response as well as diagnosis. Viennois et al. found a
peripheral blood miRNA signature from mice which was able to predict the response to
anti-TNF therapy in colitic mice [16]. Importantly, they demonstrated that this signature
could identify UC patients with 83.3% accuracy. Similarly, Wu et al. identified a miRNA
signature from blood which could be utilised to distinguish active UC and active CD from
healthy controls [17]. These studies suggest that miRNAs may play an important role in
IBD pathogenesis.
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Figure 1. Simplified overview of miRNA synthesis: miRNAs are transcribed from untranslated
regions (UTRs) or intronic regions of the genome. The transcribed pri-miRNA is cleaved by the
enzyme Drosha into the pre-miRNA form, which is then transported through the nuclear pore
complex to the cytoplasm via the enzyme exportin-5. The enzyme Dicer cleaves the pre-miRNA into
its mature form, where it can start regulating mRNA following binding to the RISC complex.
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The functional effects of miRNAs in IBD have been investigated through murine
models. Knockout of miR-21 in the dextran sodium sulphate (DSS)-induced fatal colitis
model resulted in reduced levels of inflammation and improved survival in mice [18].
miR-31 has been shown to directly target IL-25 by binding to its mRNA at the 3’ UTR [19].
In addition, altered levels of miR-31 can shape IL-12/23-mediated Th1/Th17 pathways
in the murine colon and ameliorate 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced
colitis [19]. miR-141 has been found to target CXCL12β, with the downregulation of
miR-141 resulting in enhanced CXCL12β release and CXCL12β-mediated leukocyte migra-
tion in colitic mice. Thus, miRNAs may contribute to IBD pathogenesis through a variety
of pathogenic mechanisms.

2. Bioinformatics Approaches for Predicting miRNA Function in Complex Disease

As experimental approaches can be technically challenging and resource-intensive,
researchers have been increasingly employing computational approaches for predicting
the effect of miRNAs in the pathogenesis of complex disorders. The following section
highlights a few examples on how bioinformatics approaches have been utilised to predict
miRNA-disease associations. These can be broadly divided into similarity-based and
transcription-based approaches.

2.1. Similarity-Based Methodologies

There has been a substantial rise in the application of machine learning approaches
in biology. Similarity-based miRNA-disease association is one such example. The fun-
damental premise of this approach is that miRNAs involved in certain diseases are also
likely to be involved in similar diseases based on the miRNA target profile or the disease
pathomechanism. Most of these methods employ various machine learning and random
walk approaches.

An example of this method is the study by Sumathipala and Weiss [20]. In their
work, the authors used network diffusion approaches on multi-omics biological data
in their miRNA-disease association prediction (MAP) pipeline to predict and prioritise
miRNA-disease associations without the use of a priori miRNA-disease data [20]. To
do this, they combined genomic and transcriptomic datasets into a miRNA-gene-disease
tripartite network and applied a network diffusion algorithm to rank miRNA candidates for
a disease. MAP was able to accurately predict miRNA-disease associations for four cancer
types including lung cancer, renal cancer, lymphoma, and breast cancer. This pipeline could
potentially be applied to IBD and other complex disorders too.

Mørk et al. developed the miRPD tool, which infers miRNA-protein-disease associ-
ations using a similarity-based approach [21]. The workflow uses network analysis on
currently known or predicted miRNA-protein associations and text-mined protein-disease
associations, ranked by confidence. In their case study, they identified a statistically sig-
nificant relationship between miR-181 and diabetes mellitus. Using the available protein
interaction information, they were able to highlight the potential importance of miR-181 on
glutamate decarboxylase 2—a key protein implicated in type I diabetes. The analysis also
revealed a strong association between miR-181 and sirtuin-1. This corresponds to previous
experimental work which has revealed that the downregulation of miR-181a levels can
lead to sirtuin-1 upregulation and increased insulin sensitivity in hepatic cells [22].

Another interesting similarity-based method is the ranking-based k-nearest neighbour
for miRNA-disease association prediction (RKNNMDA) tool developed by Chen et al. [23].
The approach uses miRNA functional similarity, disease semantic similarity, and already
known interaction profile similarity derived from known miRNA-disease associations
to identify the k-nearest neighbours for both the disease and miRNAs. The resulting
neighbours are re-ranked using a support vector machine ranking model following which
weighted voting identifies the final miRNA-disease associations. In three case studies
(colon, oesophageal, and prostate cancer) the method captured more than 80% of the
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top 50 miRNAs. As the method does not use any such a priori data, it is a suitable tool to
discover miRNAs for diseases that do not yet have any established miRNA associations.

2.2. Transcription-Based Methodologies

Transcription-based methodologies utilise transcriptomics data to derive miRNA-disease
predictions. This requires at least an mRNA transcriptome, but ideally the miRNA tran-
scriptome should be available. Transcriptome-based approaches are the most common way
for analysing the role of miRNAs in diseases. Xu et al. demonstrated the utility of such
an approach [24]. They developed a novel method that could prioritise disease-specific
miRNAs, using matched miRNA and mRNA expression data from 11 cancer types. Their
prediction model uses miRNA–mRNA interactions collected from multiple databases and
is based on the assumption that diverse diseases with phenotype associations show similar
molecular mechanisms. The systematic prioritisation of disease-specific miRNAs is com-
pleted by using known disease genes and context-dependent miRNA-target interactions
derived from matched miRNA and mRNA expression data, independent of known-disease
miRNAs. For IBD, a similar methodology was used by Verstockt and colleagues as previ-
ously mentioned [15].

With the exponential increase in the availability of disease-specific gene expression
data, especially in complex diseases such as IBD [25], there are new opportunities to further
investigate the role of miRNAs in disease pathogenesis. In the following section, we
provide a technical summary describing the steps required to perform transcriptome-based
miRNA-target gene analysis in complex disorders.

3. Materials and Methods: Protocol for Transcriptome-Based miRNA-Target Gene
Analysis for Complex Disorders

The protocol is summarised in Figure 2 (the various steps in Figure 2 correspond to
the parentheses in the section below).

1. Selecting an experimentally validated miRNA–mRNA target database: For precise
interactions, the first step is to choose databases containing validated interaction data
such as Tarbase [26] or miRTarBase [27]. These interactions have high confidence.

2. Strengthening predictions using additional miRNA–mRNA target databases: Man-
ually curated databases do not have all miRNA-target gene interactions. Hence, it
is useful to add an additional miRNA-target gene interaction database which con-
tains predicted miRNA-target gene interactions. The best approach is to use multiple
data sources from at least two complementary methods, e.g., TargetScan and mi-
randa/mirSVR.

3. Combining the miRNA-target gene networks using the same miRNA IDs: Unfor-
tunately, miRNAs are not always consistently named between databases. miRBase is
the de facto database for miRNA families and sequences and contains a basic ID map-
ping tool [28,29]. MiRBase has an R package for application programming interface
(API) access called miRBaseConverter [30]. Please note, in the case of TargetScan, the
miRNA family-based conversions can cause many-to-many mapping issues.

4. Combining the miRNA-target gene networks using the same target gene IDs: The same
problem can arise when mapping target genes. A good solution is to use the biomaRt
R package, or download the various annotation tables from UniProt [31] or Ensembl
biomart [32]. It is important to choose one type of gene ID when constructing the
gene network.

5. Preparing gene expression data: The transcriptomics data can be downloaded with
normalised log2 counts or expression values from Gene Expression Omnibus (GEO) [33],
ArrayExpress [34], or analysed in-house. Ideally, both mRNA and miRNA transcrip-
tome data are available, but often this is not the case. In the case of RNA-seq data
analysis, we suggest using the normalised count table with genes considered as ex-
pressed if they have more than 1 count per million. However, the exact normalisation
between the samples and the filtering of weakly expressed genes are choices the
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researcher should make depending on the sequencing depth, read quality, and read
length [35,36].

6. Finding differentially expressed genes: From the normalised counts, the next step is
to calculate differentially expressed genes (DEGs), e.g., using the limma package from
R. Limma uses the moderated t-statistic to calculate differential gene expression [37].
We recommend |log2FC| > 1 and Benjamini–Hochberg (BH) corrected p value < 0.05,
but again it can change depending on the researcher’s questions and quality of
samples. It is important that these results are corrected for false discovery rate and
filtered by fold change as well.

7. Enrichment of potential miRNA targets in the differentially expressed genes (if
miRNA expression values are not available): If the miRNA expression values are
not available, it is possible to enrich potential regulatory miRNAs using the con-
structed miRNA gene network. To do this, the used gene network needs to be
transformed as a gene matrix (GMT) file. The constructed GMT file can be used as
an input of a gene set enrichment analysis (GSEA) [38]. In this case, the expression
values are used for calculations. Moreover, the DEGs with the GMT file can be used
for enrichment analysis, for instance using gprofiler2 [39]. It is important that the en-
richment background, the intersection of miRNA-regulated genes, and the measured
transcripts are utilised.

8. Building an anticorrelation network (if the miRNA expression data are available):
If miRNA expression data are available, then the prediction of miRNA and target
genes can be calculated, e.g., from the TaLasso algorithm [40] which has an R package
available or the miRLAB package [41]. The correlation-based network needs to be
filtered with the previously generated miRNA-target gene network to identify the
dataset-specific miRNA-target gene interactions. The MAGIA2 method can be used
for steps 2–8 to produce the output networks [42]. We suggest using high correlation
values such as the 25th percentile of the most negatively correlating miRNAs.

9. Visualising the networks: After creating the networks where the potential miRNA
targets are given, the next step is to visualise the network using network visualisation
tools. The most commonly used visualisation tool in network biology is Cytoscape [43].
If programmatic access is required, the R and python software package igraph can be
used [44].

10. Analysing the resulting visualised network: The most common way to analyse the
visualised network is by looking at the hubs in the network, i.e., nodes that have a
high number of edges or degree. Those target genes or miRNAs with a high degree
(“hub” genes/miRNAs) have a greater chance to be involved in the disease of interest
(in this case IBD). For identifying these nodes, the Cytoscape network analyser can be
used. We suggest that the top ten percent of highest degree nodes can be considered
as hub genes, but this also depends on the degree distribution of the network.

11. Functional analysis: The next step is to evaluate what functions of the network are
potentially regulated by miRNAs compared to the whole network. This can be per-
formed by gene ontology enrichment analysis, e.g., the aforementioned gprofiler2 [37]
package or the GOrilla analysis tool [45]. An important caveat to bear in mind is that
miRNA target genes are limited by the used miRNA-target gene network. Therefore,
the background of any enrichment analysis needs to be modified specifically. In the
background, only the genes in the miRNA-target gene network should be utilised. If
the differentially expressed genes are directly used for building the miRNA-target
gene network, then it is advisable not to perform enrichment analysis because this
would, in effect, simply test differentially expressed genes again.

12. Experimental validation: The next step would be the experimental validation of the
detected miRNA and target gene anti-correlation, which is beyond the scope of this
technical note.

The R codes for this workflow are available on the project GitHub page: https://
github.com/korcsmarosgroup/miRNA_target_gene_workflow.

https://github.com/korcsmarosgroup/miRNA_target_gene_workflow
https://github.com/korcsmarosgroup/miRNA_target_gene_workflow
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4. Results—Case Study in Crohn’s Disease

We ran the above workflow on transcriptomics data from the aforementioned study
by Verstockt et al. [15]. In their study, the authors extracted and examined gene and
miRNA expression data from ileal CD patient biopsies at various stages of their dis-
ease, as well as healthy controls. We used the TargetScan database as a prediction-based
miRNA-target gene interaction database, and the mirTarBase database as the source of
validated miRNA-target gene interactions. TargetScan has two complementary prediction
methods, but each of them rely on the researcher selecting the most suitable cut-off for
the analysis. The TargetScan Probability of Conserved Targeting (PCT) score measures the
degree of conservation for each miRNA target site, while the Context+ score is related to the
strength of the miRNA-target interaction. We used PCT > 0.5 and Context+ score% > 95%
as cut-offs, and after mapping we used the intersecting set of these two miRNA-target gene
connections. This is a really stringent, low coverage result. We followed the left side of the
workflow in Figure 2 in this case study, calculating the DEGs, and finding the most regulat-
ing miRNAs and regulated genes (Figure 3a–c). Following this, we used the correlation
methodology relying on relevant functions from the miRLAB R package [41]. The corre-
lated networks were filtered with the above-mentioned TargetScan network-miTarBase
union network. On this side of the workflow, selecting the most appropriate correlation
cut-off is a challenging question. In this case, we used a stringent correlation cut-off of
−0.75 between miRNA and target gene expression after plotting the distribution of correla-
tion scores. The networks of both CD and control cases were calculated and the differences
computed in terms of interactions and enrichment in relevant functions. The enriched
functions specific to CD-regulated genes can be found in Figure 3d–f. Please note that the
networks themselves in this case were not informative en bloc, as they were large hairballs
which made it difficult to identify the most important interactions. To combat this, we
visualised only the interactions where both the miRNA and the target gene were specific to
the controls and CD patients.

The protocol which we have presented here answers different questions compared to
the study by Verstockt et al. The presented network (Figure 3a) reveals the miRNAs which
regulate most of the DEGs in early-onset CD. These miRNAs are not necessarily differen-
tially expressed in the network. One of the most regulating miRNAs was mir-141, which is
a known miRNA implicated in IBD [14]. In addition, this methodological approach could
suggest novel miRNA-target gene interactions which are involved in CD pathogenesis. Fur-
thermore, the resulting correlation network highlighted differences in biological processes
influenced by miRNA-target gene networks between healthy and CD states. For instance,
cellular response to stress mesenchyme development and various cancer pathways were
specifically enriched in CD patients (Figure 3d–f). Our analysis in Figure 3g,h emphasised
connections where both the miRNA and the target gene are specific for a certain disease
state (Figure 3g,h). Such interactions and the weight of anti-correlation suggests there may
be a CD-specific interaction between the miR-450b and CD4 T cell co-receptor.
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5. Discussion

There are several important considerations to be made when implementing the above
protocol. The most important is choosing the appropriate miRNA-target gene databases
(Table 1). The best approach is to use multiple miRNA-target gene databases to increase
the coverage—ideally those that use different types of data. If the aim is to consider only
the most plausible interactions, then using interactions which are present in more than one
database is desirable.

Table 1. Various miRNA—target gene databases and tools.

Type Name Description Website (Access Date) Reference

General Mirbase The de facto miRNA central repository for
miRNA families and sequences

http://www.mirbase.org
(16 January 2022) [28]

Literature curation miRTarBase Experimentally proven miRNA-target
gene connections

http://mirtarbase.mbc.nctu.edu.cn
(16 January 2022) [46,47]

Literature curation TarBase Experimentally validated miRNA-target
gene connections

http://carolina.imis.athena-innovation.gr/diana_
tools/web/index.php?r=tarbasev8%2Findex

(16 January 2022)
[26]

Literature curation miRDeathDB Small database of experimentally validated
miRNA-target interactions related to cell death

http://www.rna-world.org/mirdeathdb
(25 April 2016) [48]

Literature curation miR2Disease Small literature curation database for miRNAs
associated with diseases

http://www.mir2disease.org
(16 January 2022) [49]

Conservation based Targetscan The largest miRNA-target gene prediction
database based on sequence homology

http://www.targetscan.org/
(16 January 2022) [50]

Conservation based PicTar Old sequence homology-based
miRNA-target database

http://pictar.mdc-berlin.de
(16 January 2022) [51]

Biochemistry based Miranda
A free energy-based algorithm for

miRNA-target prediction currently unavailable,
but still widely used

http://www.microrna.org/microrna/home.do
(16 June 2020) [52]

Biochemistry and
conservation based SVMicrO

Two-stage support vector machine-based
miRNA-target prediction algorithm and

database integrating biochemistry, alignment,
and conversation features of the target site and

the miRNA

http://compgenomics.utsa.edu/svmicro.html
(16 January 2022) [53]

Biochemistry based PITA Thermodynamics-based prediction tool which
incorporates the target’s accessibility

https://genie.weizmann.ac.il/pubs/mir07/
mir07_prediction.html

(16 January 2022)
[54]

Expression based hoctar

It uses various prediction tools and then
multiple miRNA and target gene expression

datasets to calculate the potential
miRNA-target gene connections

https://hoctar.tigem.it/
(16 January 2022) [55]

Expression based CAPE RNA
miRNA-target gene prediction tools using

discrete mRNA and miRNA levels (middle,
high, low)

https://sourceforge.net/projects/caperna
(16 January 2022) [56]

Literature curation and
predicted targets miRecords Joint effort of multiple prediction tools and

validated targets. Last updated in 2013.
http://c1.accurascience.com/miRecords

(16 January 2022) [57]

Large collection of multiple
different resources mirwalk

Contains 13 different target prediction methods
and it generates predictions for the whole

length of the genes

http://zmf.umm.uni-heidelberg.de/apps/zmf/
mirwalk2 (16 January 2022) [58]

Large integrated database miRabel

Contains integrated predictions from multiple
prediction databases and also the

experimentally validated informations of
miRecords and miRTarBase

http://bioinfo.univ-rouen.fr/mirabel
(16 January 2022) [59]

Integrated tool for
expression-based prediction MAGIA

Prediction tool using miRNA and mRNA gene
expression to integrate with various
miRNA-target prediction algorithms

http://gencomp.bio.unipd.it/magia2/start
(25 August 2018) [42]

These various databases are constructed from different source data. The databases
with the highest confidence are manually curated databases such as TarBase or miRTarBase.
These databases contain miRNA-target connections which have been detected experimen-
tally by miRNA overexpression and mRNA sequencing, RISC immunoprecipitation, and
then sequencing and pull-down of miRNA by a tagged miRNA nucleotide (Figure 4a).
These methods have been recently reviewed by Li and Zhang [60]. Conservation-based
methods (Figure 4b) are an alternative approach used by databases including TargetScan [61]
and the older PicTAR [51]. These methods are based on the underlying principle that

http://www.mirbase.org
http://mirtarbase.mbc.nctu.edu.cn
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
http://www.rna-world.org/mirdeathdb
http://www.mir2disease.org
http://www.targetscan.org/
http://pictar.mdc-berlin.de
http://www.microrna.org/microrna/home.do
http://compgenomics.utsa.edu/svmicro.html
https://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
https://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
https://hoctar.tigem.it/
https://sourceforge.net/projects/caperna
http://c1.accurascience.com/miRecords
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2
http://bioinfo.univ-rouen.fr/mirabel
http://gencomp.bio.unipd.it/magia2/start
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miRNA binding sites are expected to be conserved between species because they are under
evolutionary selection pressure. Due to this, many bioinformatics methods are using se-
quence homology comparison to predict miRNA-target interactions. These methods are
sensitive to the used species and the scoring function of the homology. Each target nu-
cleotide has a different scoring weight in these methods. Biochemistry or free energy-based
methods have also been utilised, such as in the Miranda database (Figure 4c). miRNAs often
bind to their target sequences without strictly following the Watson–Crick base pair rules.
The resultant wobble base pairing can be estimated with hidden Markov model-based free
energy quantification. The greatest advantage of such methods is that it is possible to use
different sequences to predict them with relative ease. The disadvantage with this method,
however, is that the miRNA-target site prediction is based on the chosen free energy cut-off,
which can be arbitrary. The fourth major approach are the anticorrelation-based methods
(Figure 4d). These methods require both miRNA and mRNA gene expression and they use
additional methods to decrease the number of potential miRNA-target interactions. Here,
the basic assumption is that if the amount of miRNA increases, the target mRNA level
will decrease. As a linear model, this phenomenon can be described using the following
equation (Equation (1)) [40]:

xj =
K

∑
k=1

β jk · zk · cjk + x0
j + εj (1)

where xj is the expression of gene j, βjk is the linear model’s parameter which tells the effect
of miRNA k on the target gene j, zk is the miRNA k concentration, cjk indicates whether there
is a connection between the miRNA and the target gene, x0

j is the original concentration of
the gene, and ej is an error term. This results in a linear model for predicting the parameter
βjk. To decrease the search space and make the model more plausible, cjk can be 0 or 1
depending on whether the miRNA-target gene interaction is found within other databases.
An example is the TaLasso algorithm [40], which finds the solution of the linear model
with LASSO regression. Other methods use different ways to predict the effect between a
miRNA and a target gene—the βjk in Equation (1). The Genmir++ algorithm uses a Bayesian
network for prediction [62]. The biggest problem of such methods is that it requires both
the miRNA and the mRNA transcript levels, which is not always available.

The protocol described in this technical note can be used as a standard approach for
understanding the relationship between gene expression and miRNA. However, the pro-
tocol requires experimental transcriptomic data and existing miRNA-target information,
and assumes the anti-correlation between miRNA and target gene transcript. For discovery
of novel miRNAs involved in the pathogenesis of a specific disease, machine learning
and similarity-based methods may be more suitable. The problem with this approach is
that the predictions are based on similarity and the exact mechanism of miRNA regula-
tion is not necessarily discerned. However, with transcriptome-based methods such as
the protocol we have described and the case study example, the resulting network can
reveal disease-specific interactions which can shed novel mechanistic insights into disease
pathogenesis. It is important to note that both methods are dependent on the quality of
the input dataset. In the case of machine learning similarity-based approaches, the input
miRNA-disease network contributes to the largest bias of the results. For transcriptome-
based analysis, the results depend on the miRNA-target gene networks. Another point to
consider is that miRNA target gene information is not always available for every 3p and 5p
miRNAs. Moreover, microarray technologies (such as those used in the case study) can
have cross-hybridisation effects. In the presented protocol we considered the available
predicted miRNA-target gene interactions for the left side of the workflow, whilst for
the right side of the workflow we kept the annotation of the microarray chip relevant.
Another important consideration for this protocol is that input transcriptomic data from
disease-relevant tissues is likely to yield more accurate predictions, as miRNA expression
varies widely between tissues [63] and also contributes to the tissue-specific expression of
mRNAs in humans [64,65].
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6. Conclusions

miRNAs play an important role in the regulation of gene expression and contribute
to the pathogenesis of complex diseases such as IBD. With the exponential increase in
publicly available transcriptomics datasets, there is great potential to leverage this data
for advancing our understanding of the role of miRNAs in IBD. In this technical note,
we have provided a step-by-step protocol that utilises multiple database resources and
systems biology methods to predict the effect(s) of miRNAs in IBD (and other complex
diseases) from gene expression data. Using this protocol, we highlight differences between
miRNA-target gene networks between CD patients and healthy individuals, which could
enable the identification of miRNAs that have important disease-modifying effects and act
as novel therapeutic targets [66].
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