Rapidly Progressing to ESRD in an Individual with Coexisting ADPKD and Masked Klinefelter and Gitelman Syndromes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Follow-Up Study
2.2. Genetics Analysis
2.2.1. ADPKD by MLPA Analysis
2.2.2. Massive Parallel Sequencing Analysis
2.2.3. Sanger Sequencing
2.2.4. Azoospermia Studies
3. Results
3.1. Case Presentation
3.2. Follow-Up Study
3.3. Genetic Analysis. Coexistence of PKD1 and SLC12A3 Variants, and 47, XXY Karyotype in Our Proband
3.3.1. Fertility Studies
3.3.2. NGS Studies
4. Discussion
4.1. ADPKD
4.2. Klinefelter Syndrome
4.3. Hypergonadotropic Hypogonadism
4.4. Gitelman Syndrome
4.5. Co-Occurrence of ADPKD, KS, and GS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gall, E.C.-L.; Audrézet, M.-P.; Chen, J.-M.; Hourmant, M.; Morin, M.-P.; Perrichot, R.; Charasse, C.; Whebe, B.; Renaudineau, E.; Jousset, P.; et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 2013, 24, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Cornec-Le Gall, E.; Torres, V.E.; Harris, P.C. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J. Am. Soc. Nephrol. 2018, 29, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Primers 2018, 4, 50. [Google Scholar] [CrossRef]
- Torres, V.E.; Harris, P.C.; Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 2007, 369, 1287–1301. [Google Scholar] [CrossRef]
- Rossetti, S.; Burton, S.; Strmecki, L.; Pond, G.R.; Millán, J.L.S.; Zerres, K.; Barratt, T.M.; Ozen, S.; Torres, V.E.; Bergstralh, E.J.; et al. The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J. Am. Soc. Nephrol. 2002, 13, 1230–1237. [Google Scholar] [CrossRef] [Green Version]
- Audrézet, M.-P.; Corbiere, C.; Lebbah, S.; Morinière, V.; Broux, F.; Louillet, F.; Fischbach, M.; Zaloszyc, A.; Cloarec, S.; Merieau, E.; et al. Comprehensive PKD1 and PKD2 mutation analysis in prenatal autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 2016, 27, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, C.; von Bothmer, J.; Ortiz Brüchle, N.; Venghaus, A.; Frank, V.; Fehrenbach, H.; Hampel, P.; Pape, L.; Buske, A.; Jonsson, J.; et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J. Am. Soc. Nephrol. 2011, 22, 2047–2056. [Google Scholar] [CrossRef] [Green Version]
- Consugar, M.B.; Wong, W.C.; Lundquist, P.A.; Rossetti, S.; Kubly, V.J.; Walker, D.L.; Rangel, L.J.; Aspinwall, R.; Niaudet, W.P.; Özen, S.; et al. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney Int. 2008, 74, 1468–1479. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y. A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease. Trends Mol. Med. 2001, 7, 151–156. [Google Scholar] [CrossRef]
- Wu, G.; Tian, X.; Nishimura, S.; Markowitz, G.S.; D’Agati, V.; Park, J.H.; Yao, L.; Li, L.I.; Geng, L.; Zhao, H.; et al. Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum. Mol. Genet. 2002, 11, 1845–1854. [Google Scholar] [CrossRef] [Green Version]
- Reiterova, J.; Stekrova, J.; Merta, M.; Kotlas, J.; Elišáková, V.; Lněnička, P.; Korabečná, M.; Kohoutova, M.; Tesař, V. Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele. BMC Nephrol. 2013, 1459, 20. [Google Scholar] [CrossRef] [Green Version]
- Durkie, M.; Chong, J.; Valluru, M.K.; Harris, P.C.; Ong, A.C.M. Biallelic inheritance of hypomorphic PKD1 variants is highly prevalent in very early onset polycystic kidney disease. Genet. Med. 2021, 23, 689–697. [Google Scholar] [CrossRef]
- Harris, P.C.; Torres, V.E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J. Clin. Investig. 2014, 124, 2315–2324. [Google Scholar] [CrossRef] [Green Version]
- Norman, J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim. Biophys. Acta 2011, 1812, 1327–1336. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Mei, C.L. Polycystic kidney disease and renal fibrosis. Adv. Exp. Med. Biol. 2019, 1165, 81–100. [Google Scholar]
- Los, E.; Ford, G.A. Klinefelter Syndrome. [Updated 2019 Dec 2]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020; Available online: https://www.ncbi.nlm.nih.gov/books/NBK482314/?log$=activity (accessed on 7 December 2021).
- Bojesen, A.; Juul, S.; Gravholt, C.H. Prenatal and postnatal prevalence of Klinefelter syndrome: A national registry study. J. Clin. Endocrinol. Metab. 2003, 88, 622–626. [Google Scholar] [CrossRef]
- Calogero, A.E.; On behalf of the Klinefelter ItaliaN Group (KING); Giagulli, V.A.; Mongioì, L.M.; Triggiani, V.; Radicioni, A.F.; Jannini, E.A.; Pasquali, D. Klinefelter Italian group (KING). Klinefelter syndrome: Cardiovascular abnormalities and metabolic disorders. J. Endocrinol. Investig. 2017, 40, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Pasquali, D.; Arcopinto, M.; Renzullo, A.; Rotondi, M.; Accardo, G.; Salzano, A.; Esposito, D.; Saldamarco, L.; Isidori, A.; Marra, A.M.; et al. Cardiovascular abnormalities in Klinefelter syndrome. Int. J. Cardiol. 2013, 168, 754–759. [Google Scholar] [CrossRef]
- Kominato, Y.; Fujikura, T.; Matsui, K.; Hata, N.; Takizawa, H. Acute cerebellar hemorrhage in a patient with Klinefelter syndrome: XXY karyotype obtained postmortem from cells from pericardial fuid. J. Forensic. Sci. 2000, 45, 1148–1150. [Google Scholar] [CrossRef]
- Salzano, A.; Arcopinto, M.; Marra, A.M.; Bobbio, E.; Esposito, D.; Accardo, G.; Giallauria, F.; Bossone, E.; Vigorito, C.; Lenzi, A.; et al. Management of endocrine disease: Klinefelter syndrome, cardiovascular system, and thromboembolic disease: Review of literature and clinical perspectives. Eur. J. Endocrinol. 2016, 175, R27–R40. [Google Scholar] [CrossRef]
- Swerdlow, A.J.; Schoemaker, M.J.; Higgins, C.D.; Wright, A.F.; Jacobs, P.A. Cancer incidence and mortality in men with Klinefelter syndrome: A cohort study. J. Natl. Cancer Inst. 2005, 97, 1204–1210. [Google Scholar] [CrossRef]
- Cimino, L.; Salemi, M.; Cannarella, R.; Condorelli, R.A.; Giurato, G.; Marchese, G.; La Vignera, S.; Calogero, A.E. Decreased miRNA expression in Klinefelter syndrome. Sci. Rep. 2017, 7, 16672. [Google Scholar] [CrossRef]
- Salemi, M.; Cannarella, R.; Condorelli, R.A.; Cimino, L.; Ridolfo, F.; Giurato, G.; Romano, C.; Vignera, S.L.; Calogero, A.E. Evidence for long noncoding RNA GAS5 up-regulation in patients with Klinefelter syndrome. BMC Med. Genet. 2019, 2, 4. [Google Scholar]
- Dulovic, M.; Schäffer, E.; Leypoldt, F.; Balck, A.; Schaake, S.; Hinrichs, F.; Kirchner, H.; Brüggemann, N.; Berg, D.; Lohmann, K. A Klinefelter patient with an additional mitochondrial mutation: Implications for genotype-driven treatment and mitochondrial mutational load in different tissues and family members. Parkinsonism Relat. Disord. 2018, 54, 116–118. [Google Scholar] [CrossRef]
- Condorelli, R.A.; Calogero, A.E.; La Vignera, S. Different profile of endothelial cell apoptosis in patients with Klinefelter’s syndrome. J. Endocrinol. Investig. 2013, 36, 84–91. [Google Scholar]
- Knoers, N.V.; Levtchenko, E.N. Gitelman syndrome. Orphanet J. Rare Dis. 2008, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Fujimura, J.; Nozu, K.; Yamamura, T.; Minamikawa, S.; Nakanishi, K.; Horinouchi, T.; Nagano, C.; Sakakibara, N.; Nakanishi, K.; Shima, Y.; et al. Clinical and genetic characteristics in patients with Gitelman syndrome. Kidney Int. Rep. 2019, 4, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Tada, Y.; Tanaka, H.; Morii, W.; Inaba, M.; Takada, H.; Mori, T.; Noguchi, E. A family with Gitelman syndrome with asymptomatic phenotypes while carrying reported SLC12A3 mutations. Case Rep. Nephrol. Dial. 2020, 10, 71–78. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, J.; Yu, M.; Lin, Z.; Nan, X.; Dong, B.; Fang, X.; Chen, J.; Ding, G.; Zhang, A.; et al. Multi-centre study of the clinical features and gene variant spectrum of Gitelman syndrome in Chinese children. Clin. Genet. 2021, 99, 558–564. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, X.; Min, J.; Wang, L.; Mou, L. Kidney stones and moderate proteinuria as the rare manifestations of Gitelman syndrome. BMC Nephrol. 2021, 22, 12. [Google Scholar] [CrossRef]
- Bae, K.T.; Commean, P.K.; Lee, J. Volumetric measurement of renal cysts and parenchyma using MRI: Phantoms and patients with polycystic kidney disease. J. Comput. Assist. Tomogr. 2000, 24, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Irazabal, M.V.; Rangel, L.J.; Bergstralh, E.J.; Osborn, S.L.; Harmon, A.J.; Sundsbak, J.L.; Bae, K.T.; Chapman, A.B.; Grantham, J.J.; Mrug, M.; et al. Imaging classification of autosomal dominant polycystic kidney disease: A simple model for selecting patients for clinical trials. J. Am. Soc. Nephrol. 2015, 26, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.C. The time for next-generation molecular genetic diagnostics in nephrology is now! Kidney Int. 2018, 94, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C.; Hoefsloot, L.; Simoni, M.; Tüttelmann, F. European Academy of Andrology; European Molecular Genetics Quality Network. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State-of-the-art 2013. Andrology 2014, 2, 5–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavu, S.; Vaughan, L.E.; Senum, S.R.; Kline, T.L.; Chapman, A.B.; Perrone, R.D.; Mrug, M.; Braun, W.E.; Steinman, T.I.; Rahbari-Oskoui, F.F.; et al. The value of genotypic and imaging information to predict functional and structural outcomes in ADPKD. JCI Insight 2020, 5, e138724. [Google Scholar] [CrossRef]
- Rossetti, S.; Chauveau, D.; Walker, D.; Saggar-Malik, A.; Winearls, C.G.; Torres, V.E.; Harris, P.C. A complete mutation screen of the ADPKD genes by DHPLC. Kidney Int. 2002, 61, 1588–1599. [Google Scholar] [CrossRef] [Green Version]
- Solazzo, A.; Testa, F.; Giovanella, S.; Busutti, M.; Furci, L.; Carrera, P.; Ferrari, M.; Ligabue, G.; Mori, G.; Leonelli, M.; et al. The prevalence of autosomal dominant polycystic kidney disease (ADPKD): A meta-analysis of European literature and prevalence evaluation in the Italian province of Modena suggest that ADPKD is a rare and underdiagnosed condition. PLoS ONE 2018, 13, e0190430. [Google Scholar] [CrossRef]
- Mantovani, V.; Bin, S.; Graziano, C.; Capelli, I.; Minardi, R.; Aiello, V.; Ambrosini, E.; Cristalli, C.P.; Mattiaccio, A.; Pariali, M.; et al. Gene panel analysis in a large cohort of patients with autosomal dominant polycystic kidney disease allows the identification of 80 potentially causative novel variants and the characterization of a complex genetic architecture in a subset of families. Front. Genet. 2020, 11, 464. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Grantham, J.J.; Mulamalla, S.; Swenson-Fields, K.I. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol 2011, 7, 556–566. [Google Scholar] [CrossRef]
- Bellos, I.; Kontzoglou, K.; Perrea, D.N. Markers of endothelial dysfunction and arterial stiffness in patients with early-stage autosomal dominant polycystic kidney disease: A meta-analysis. Int. J. Clin. Pract. 2020, 18, e13721. [Google Scholar] [CrossRef] [PubMed]
- Formica, C.; Peters, D.J.M. Molecular pathways involved in injury-repair and ADPKD progression. Cell Signal. 2020, 72, 109648. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Zhou, C.; Mei, C. Total kidney volume: The most valuable predictor of autosomal dominant polycystic kidney disease progression. Kidney Int. 2018, 93, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Peces, R.; Mena, R.; Peces, C.; Cuesta, E.; Selgas, R.; Barruz, P.; Lapunzina, P.; Nevado, J. Coexistence of autosomal dominant polycystic kidney disease type 1 and hereditary renal hypouricemia type 2: A model of early-onset and fast cyst progression. Clin. Genet. 2020, 97, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Andries, A.; Daenen, K.; Jouret, F.; Bammens, B.; Mekahli, D.; Schepdael, A.V. Oxidative stress in autosomal dominant polycystic kidney disease: Player and/or early predictor for disease progression? Pediatric Nephrol. 2019, 34, 993–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahveci, A.S.; Barnatan, T.T.; Kahveci, A.; Adrian, A.E.; Arroyo, J.; Eirin, A.; Harris, P.C.; Lerman, A.; Lerman, L.O.; Torres, V.E.; et al. Oxidative stress and mitochondrial abnormalities contribute to decreased endothelial nitric oxide synthase expression and renal disease progression in early experimental polycystic kidney disease. Int. J. Mol. Sci. 2020, 21, 1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klawitter, J.; Reed-Gitomer, B.Y.; McFann, K.; Pennington, A.; Klawitter, J.; Abebe, K.Z.; Klepacki, J.; Cadnapaphornchai, M.A.; Brosnahan, G.; Chonchol, M.; et al. Endothelial dysfunction and oxidative stress in polycystic kidney disease. Am. J. Physiol. Ren. Physiol. 2014, 307, F1198–F1206. [Google Scholar] [CrossRef] [Green Version]
- Sanchis, I.M.; Shukoor, S.; Irazabal, M.V.; Madsen, C.D.; Chebib, F.T.; Hogan, M.C.; El-Zoghby, Z.; Harris, P.C.; HustoN, J.; Brown, R.D.; et al. Presymptomatic screening for intracranial aneurysms in patients with autosomal polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2019, 14, 1151–1160. [Google Scholar] [CrossRef] [Green Version]
- Hitchcock, E.; Gibson, W.T. A review of the genetics of intracranial berry aneurysms and implications for genetic counseling. J. Genet. Couns. 2017, 26, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Rocca, M.S.; Pecile, V.; Cleva, L.; Speltra, E.; Selice, R.; Di Mambro, A.; Foresta, C.; Ferlin, A. The Klinefelter syndrome is associated with high recurrence of copy number variations on the X chromosome with a potential role in the clinical phenotype. Andrology 2016, 4, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Raznahan, A.; Parikshak, N.; Chandran, V.; Blumenthal, J.D.; Clasen, L.S.; Alexander-Bloch, A.F.; Zinn, A.; Wangsa, D.; Wise, J.; Murphy, D.; et al. Sex-chromosome dosage effects on gene expression in humans. Proc. Natl. Acad. Sci. USA 2018, 115, 7398–7403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.T.; Bartolomei, M.S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013, 152, 1308–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belling, K.; Russo, F.; Jensen, A.B.; Dalgaard, M.D.; Westergaard, D.; Rajpert-De Meyts, E.; Skakkebæk, N.E.; Juul, A.; Brunak, S. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity. Hum. Mol. Genet. 2017, 26, 1219–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, T.; Iwabuchi, S.; Ueda, M.; Samejima, H.; Saito, E. A Case of subarachnoid hemorrhage due to a ruptured aneurysm with systemic lupus erythematosus and Klinefelter syndrome. Jpn. J. Neurosurg. 2000, 9, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Delicado, A.; Lapunzina, P.; Palomares, M.; Molina, M.A.; Galán, E.; Pajares, I.L. Beckwith-Wiedemann syndrome due to 11p15.5 paternal duplication associated with Klinefelter syndrome and a “de novo” pericentric inversion of chromosome Y. Eur. J. Med. Genet. 2005, 48, 159–166. [Google Scholar] [CrossRef]
- Peces, R.; Venegas, J.L. Seminal vesicle cysts and infertility in autosomal dominant polycystic kidney disease. Nefrologia 2005, 25, 78–80. [Google Scholar]
- Vora, N.; Perrone, R.; Bianchi, D.W. Reproductive issues for adults with autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 2008, 51, 307–318. [Google Scholar] [CrossRef]
- Torra, R.; Sarquella, J.; Calabia, J.; Martí, J.; Ars, E.; Fernández-Llama, P.; Ballarin, J. Prevalence of cysts in seminal tract and abnormal semen parameters in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 790–793. [Google Scholar] [CrossRef]
- Peces, R.; de la Torre, M.; Urra, J.M. Pituitary-testicular function in cyclosporin-treated renal transplant patients. Nephrol. Dial. Transplant. 1994, 9, 1453–1455. [Google Scholar] [CrossRef]
- Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Akdemir, Z.H.C.; Walkiewicz, M.; Bi, W.; Xiao, R.; Ding, Y.; et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N. Engl. J. Med. 2017, 376, 21–31. [Google Scholar] [CrossRef]
- Dixon, J.R.; Gorkin, D.U.; Ren, B. Chromatin Domains: The Unit of Chromosome Organization. Mol. Cell 2016, 62, 668–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gall, E.C.-L.; Chebib, F.T.; Madsen, C.D.; Senum, S.; Heyer, C.M.; Lanpher, B.C.; Patterson, M.C.; Albright, R.C.; Yu, A.S.; Torres, V.E.; et al. The value of genetic testing in polycystic kidney diseases illustrated by a family with PKD2 and COL4A1 mutations. Am. J. Kidney Dis. 2018, 72, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dai, Y.; Raman, A.; Daniel, E.; Metcalf, J.; Reif, G.A.; Pierucci-Alves, F.; Wallace, D.P. Overexpression of TGF-β1 induces renal fibrosis and accelerates the decline in kidney function in polycystic kidney disease. Am. J. Physiol. Ren. Physiol. 2020, 319, F1135–F1148. [Google Scholar] [CrossRef] [PubMed]
- Fragiadaki, M.; Macleod, F.M.; Ong, A.C.M. The controversial role of fibrosis in autosomal dominant polycystic kidney disease. Int. J. Mol. Sci. 2020, 21, 8936. [Google Scholar] [CrossRef]
- Lefèvre, N.; Corazza, F.; Valsamis, J.; Delbaere, A.; De Maertelaer, V.; Duchateau, J.; Casimir, G. The number of X chromosomes influences inflammatory cytokine production following Toll-like receptor stimulation. Front. Immunol. 2019, 10, 1052. [Google Scholar] [CrossRef]
- Salemi, M.; Cimino, L.; Marino, M.; Cannarella, R.; Condorelli, R.A.; Romano, C.; La Vignera, S.; Calogero, A.E. Next Generation Sequencing expression profiling of mitochondrial subunits in men with Klinefelter syndrome. Int. J. Med. Sci. 2018, 15, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Shukoor, S.S.; Vaughan, L.E.; Edwards, M.E.; Lavu, S.; Kline, T.L.; Senum, S.R.; Mkhaimer, Y.; Zaatari, G.; Irazabal, M.V.; Neal, R.; et al. Characteristics of patients with end-stage kidney disease in ADPKD. Kidney Int. Rep. 2021, 6, 755–767. [Google Scholar] [CrossRef]
- Li, D.; Sun, L. MicroRNAs and polycystic kidney disease. Kidney Med. 2020, 2, 762–770. [Google Scholar] [CrossRef]
- Di Palo, A.; Siniscalchi, C.; Salerno, M.; Russo, A.; Gravholt, C.H.; Potenza, N. What microRNAs could tell us about the human X chromosome. Cell Mol. Life Sci. 2020, 77, 4069–4080. [Google Scholar] [CrossRef]
- Lakshmipathi, J.; Gao, Y.; Hu, C.; Stuart, D.; Genzen, J.; Ramkumar, N.; Kohan, D.E. Nephron-specific disruption of polycystin-1 induces cyclooxygenase-2-mediated blood pressure reduction independent of cystogenesis. J. Am. Soc. Nephrol. 2020, 31, 1243–1254. [Google Scholar] [CrossRef]
- Verschuren, E.H.J.; Mohammed, S.G.; Leonhard, W.N.; Overmars-Bos, C.; Veraar, K.; Hoenderop, J.G.J.; Bindels, R.J.M.; Peters, D.J.M.; Arjona, F.J. Polycystin-1 dysfunction impairs electrolyte and water handling in a renal precystic mouse model for ADPKD. Am. J. Physiol. Ren. Physiol. 2018, 31, F537–F546. [Google Scholar] [CrossRef]
- Skakkebæk, A.; Viuff, M.; Nielsen, M.M.; Gravholt, C.H. Epigenetics and genomics in Klinefelter syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 216–225. [Google Scholar] [CrossRef]
Age Years | Na mmol/L | K mmol/L | Cl mmol/L | Mg mg/dL | HCO3− mmol/L | pH | Serum Creatinine mg/dL | eGFR mL/min/1.73 m2 |
---|---|---|---|---|---|---|---|---|
36 | 142 | 4.7 | 109 | ND | 24 | 7.36 | 2.9 | 27 |
37 | 142 | 3.9 | 103 | ND | 30 | 7.31 | 3.4 | 21 |
38 | 143 | 3.9 | 105 | 2 | 29 | 7.41 | 3.9 | 18 |
39 | 138 | 4.3 | 104 | 2 | 31 | 7.35 | 4.2 | 16 |
40 | 144 | 4.2 | 110 | 1.8 | 24 | 7.31 | 4.3 | 16 |
42 | 143 | 4.1 | 106 | 1.6 | 27 | 7.33 | 5.4 | 12 |
Parameter | Proband | PKD1’s Patients without HT (n = 23, Mean ± SD) | PKD1’s Patients ≤ 40 Year-Old (n = 58, Mean ± SD) | PKD1’s Patients with BMI < 25 (n = 54, Mean ± SD) |
---|---|---|---|---|
Age, years | 36 | 35.0 ± 5.6 | 33.1 ± 6.3 | 38.1 ± 10.0 |
TKV, mL | 726 | 662.0 ± 223.0 | 1301.0 ± 966.0 | 1264.0 ± 750.0 |
HtTKV, mL/m | 370 | 382.0 ± 124.0 | 752.0 ± 563.0 | 746.0 ± 449.0 |
eGFR, mL/min/1.73 m2 | 27 | 137.0 ± 19.0 | 119.0 ± 30.0 | 117.0 ± 30.0 |
Gene | Genomic Findings | Variant Type | Chromosome | Disease | Inheritance | Clinical Significance |
---|---|---|---|---|---|---|
PKD1 | c.9499A>T (p.Ile3167Phe) | Missense | 16p13.3 | ADPKD | AD | Likely pathogenic |
PKD1 | c.9756G>C (p.Glu3252Asp) | Missense | 16p13.3 | ADPKD | AD | Uncertain significance |
SLC12A3 | c.1928C>T (p.Pro643Leu) c.2891G>A (p.Arg964Gln) | Missense Missense | 16q13 | Gitelman syndrome | AR | Pathogenic Pathogenic |
X-chromosome | 47, XY,+X karyotype | Aneuploidy | X | Klinefelter syndrome | − | Pathogenic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peces, R.; Peces, C.; Mena, R.; Cuesta, E.; García-Santiago, F.A.; Ossorio, M.; Afonso, S.; Lapunzina, P.; Nevado, J. Rapidly Progressing to ESRD in an Individual with Coexisting ADPKD and Masked Klinefelter and Gitelman Syndromes. Genes 2022, 13, 394. https://doi.org/10.3390/genes13030394
Peces R, Peces C, Mena R, Cuesta E, García-Santiago FA, Ossorio M, Afonso S, Lapunzina P, Nevado J. Rapidly Progressing to ESRD in an Individual with Coexisting ADPKD and Masked Klinefelter and Gitelman Syndromes. Genes. 2022; 13(3):394. https://doi.org/10.3390/genes13030394
Chicago/Turabian StylePeces, Ramón, Carlos Peces, Rocío Mena, Emilio Cuesta, Fe Amalia García-Santiago, Marta Ossorio, Sara Afonso, Pablo Lapunzina, and Julián Nevado. 2022. "Rapidly Progressing to ESRD in an Individual with Coexisting ADPKD and Masked Klinefelter and Gitelman Syndromes" Genes 13, no. 3: 394. https://doi.org/10.3390/genes13030394
APA StylePeces, R., Peces, C., Mena, R., Cuesta, E., García-Santiago, F. A., Ossorio, M., Afonso, S., Lapunzina, P., & Nevado, J. (2022). Rapidly Progressing to ESRD in an Individual with Coexisting ADPKD and Masked Klinefelter and Gitelman Syndromes. Genes, 13(3), 394. https://doi.org/10.3390/genes13030394