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Abstract: RNA is critical to a broad spectrum of biological and viral processes. This functional diver-
sity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold
into; and a host of post-transcriptional chemical modifications. While there are many experimental
techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS)
play a significant role in complementing experimental data and providing mechanistic insights. The
accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the
force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in
the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted
by the RNA modifications adds another layer of complexity to an already challenging problem.
Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the
insufficiency or absence of relevant experimental data. This review provides an overview of the state
of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as
well as insights into relevant reference experiments necessary for their calibration.

Keywords: RNA; RNA modifications; molecular dynamics; parameterization

1. Introduction

The canonical four-letter code that comprises RNA is no longer sufficient to capture the
abundance of information that RNA can convey. Over 140 naturally occurring modifications
of adenosine (A), guanosine (G), cytosine (C), and uracil (U) have been discovered to date [1]
and have been found in all types of RNA including transfer RNA (tRNA) [2], messenger
RNA(mRNA) [3,4], ribosomal RNA (rRNA) [5,6], as well as all life forms (archaea [7],
bacteria [7,8], and eukarya [9]) and even in viruses [10]. Furthermore, synthetic nucleic acid
analogs have been explored and utilized by scientists in developing antiviral drugs [11],
nucleic acid-driven therapeutics [12], and mRNA vaccines [13].

The first modified nucleotide, pseudouridine, was discovered in Saccharomyces cere-
visiae in the 1950s [14], but barring sporadic discoveries, five decades passed before interest
revived and developments in modified RNA research renewed. Studying RNA modifica-
tions has many obstacles, of which the most challenging is detection. RNA modifications
are present in cells at extremely low quantities and can have high turnover, where they
are frequently erased or further altered by proteins within the cell [15]. Therefore, col-
lecting relevant data that can characterize RNA modifications typically requires multiple
techniques, both experimental and computational, to work in concert. The emergence of
genomic techniques has made large amounts of transcriptome-wide data accessible, which
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has, in turn, accelerated the study of RNA modifications in the past two decades [16–18].
However, the analytical tools necessary for the detection, identification, and quantification
of RNA modifications are still in their infancy.

Not surprisingly, researchers are still scratching the surface when it comes to discerning
the biological relevance of RNA modifications. Several modifications have now been
linked to disease pathologies [9], stress pathways [19,20], neuro-regulation [21], gene
expression and regulation [22], and fetal development [23], amongst others. However,
a mechanistic understanding of how modified nucleotides affect cellular processes and
pathways has yet to be attained. Experimental techniques like X-ray crystallography,
nuclear magnetic resonance spectroscopy (NMR) or cryogenic electron microscopy (Cryo-
EM), and computational techniques like atomistic molecular dynamics simulations (MDS)
are invaluable in providing insights into such mechanisms. In this review, we discuss
the successes and shortcomings of these techniques vis-à-vis probing structure–function
relationships of modified RNA.

2. Classification of Modified RNA Nucleosides Based on Their
Structural/Functional Implications

Before delving into the methods used to study modified RNA structure and dynamics,
it is important to appreciate the chemical and structural diversity of the RNA modifications.
From a structural perspective, the two main factors that drive RNA folding pathways
are base stacking and base pairing, which are achieved by hydrogen bonding (h-bond)
interactions [24,25]. Base pairing can occur in different orientations based upon which
‘edge’ of the nucleobase is involved in the pairing [26]. Base stacking contributes to duplex
formation as well as the stability of a folded RNA [27,28]. RNA modifications contribute to
either enhanced, reduced, or altered base pairing and stacking preferences, conformational
flexibility, helical winding, groove hydrophobicity and polarity, and stability of tertiary
and long-range interactions [1,22,29]. A few examples of these phenomena are illustrated
in Figure 1. Acknowledging these factors, we have classified the naturally occurring
RNA modifications based on how their position within the nucleotide and their chemical
properties can alter the structural and consequently biological behavior of RNA.

2.1. Based on the Location of the Modified Group in the Modified Nucleotide

Out of the 143 naturally occurring RNA modifications that are currently listed in the
Modomics database [30], 57% contain modifications that affect the Watson–Crick–Franklin
(W-C-F) edge, 46% contain modifications that affect the Hoogstein/“C-H” edge, 0.7%
contain modifications that affect the backbone (phosphate), and 20% contain modifications
that affect the sugar edge. Many RNA modifications have multiple sites modified and are
represented as such in the percentages. In Figure 2a, the sites of possible modification are
shown on each of the four canonical RNA nucleotides using a gradient scale, red indicating
a site of frequent modification while gray indicates a site of less frequent modification. For
G, A, and C, the site of most frequent modification falls on the W-C-F edge, while on U, the
site that is most frequently modified falls on the “C-H” edge.

Among the purines (A and G), the hydrogens in the amine group are most frequently
substituted by one or two methyl groups. Since the amine group is on the W-C-F edge
(Figure 2b), methylations at this site (position 6 on A and position 2 on G) affect the purines’
base-pairing preferences [31–35]. Methylations at other sites on the purines’ W-C-F edge
will also affect potential base pairings as well as influence base stacking [22].
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Figure 1. (a) An example of how a modification can affect base-pairing interactions. Here, N4,
N4-dimethylcytidine (in pink) has only two possible base-pairing sites on its W-C-F edge due to
the double substitution of methyl groups on the amine, while a typical G: C base pair would have
three [36]. (b) An example of three base pairs, one only with canonical bases, and the other with one
RNA modification (5-methylcytidine, illustrated in pink). The dashed line indicates where the methyl
group would help stabilize stacking with the nucleobase above it [37]. (c) An example of a modified
anticodon loop structure vs an unmodified anticodon loop. Due to N6-isopentenyladenosine (in pink),
an additional base pairing occurs below the modification and the nucleotides in the loop become
more stable as it became smaller [38]. (d) An example of an effect on helical stability due to the
presence of 2-geranylthiouridine (shown in pink) [39].

Modifications on C comprise only 13% of the total RNA modifications discovered thus
far. In the current data set, there are more cases where positions 4 and 5 on the pyrimidine
ring in C are modified, followed by positions 2 and 3. While the modified groups at
positions 2, 3, and 4 change the base-pairing face of C, the 5th position modifications have
shown to improve duplex stability [40].

U is the most commonly modified nucleotide in RNA, and many of these modifications
are found at position 5 of the pyrimidine ring. Unmodified, U forms a canonical and a
wobble base pair with A and G respectively. Modifications that occur at position 5 can shift
the base-pairing preference [41,42]. Furthermore, A: U and G: U pairs are demonstrably
weaker than the canonical G: C pair, and modifications at position 5 in U can be used to add
stability to the base pairs without changing the base-pairing edge [43,44]. Position 2 on U
is the second most common site to be modified. Unlike the modifications at position 5, this
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modification can directly influence the base-pairing preference of U, specifically because it
is involved in base-pairing with A but not G [45,46].
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Figure 2. (a) A pie plot where each section represents a canonical nucleotide (A, C, G, U) and the size
of each section reflects the percentage of the naturally occurring RNA modifications that originate
from that canonical nucleotide. Within each pie section, the structure of the canonical nucleotide
is displayed, and the atom positions are colored by gradient, which is based upon how frequently
that position is modified. (b) Standard A: U and G: C base pairs with the Watson–Crick (blue) and
the Hoogstein (orange) base pairing edges highlighted. (c) Common functional groups (enclosed in
green boxes) that occur at different atomic sites in modified nucleotides. The structure of the parent
nucleotide is used as a reference.

The ribose is a moiety found in every nucleotide, modified or unmodified. An un-
modified ribose can have two configurations: C2′-endo sugar puckering or C3′-endo sugar
puckering [47]. Typically, RNA nucleotides have their ribose in the C3′ endo sugar pucker
as this allows for RNA to assemble A-form helices and single-stranded regions. DNA
nucleotides, however, have their ribose moieties in the C2′-endo sugar pucker form, as the
hydroxyl group in the 2′ position of the ribose in RNA is replaced by hydrogen in DNA.
This slight difference has an impact on the sugar structure and, not surprisingly, many
sugar modifications in RNA occur at the 2′ position on the ribose [48]. 2′O methylations are
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especially common and have been found in all major RNA groups [1,22,47]. Methylation at
the 2′ position can cause changes in hydrogen bonding characteristics and can weaken the
glycosidic bond between the ribose and the nucleobase [47]. It can also disrupt interactions
of RNA that depend on the hydroxyl group at the 2′ position [49]. Another type of ribose
modification is the addition of a second ribose group between the phosphate and the
backbone. These ribosyl RNA modifications (Ar(p) and Gr(p)) were first found in tRNA
but have now been linked to proteins and metabolites [50]. As there is a second ribose with
its sugar pucker form, this bulky modification can significantly affect stacking specifically
through distorting the phosphodiester backbone [50].

2.2. Based on the Nature of the Modified Group in the Modified Nucleotide

The ever-expanding universe of known RNA modifications also displays remarkable
chemical diversity (Figure 2c). The modifications range from simple methyl groups to elab-
orate groups containing glycosylations, carboxylations, long straight or branched carbon
chains (geranylation), and ring rearrangements (pseudouridine) [1,48]. This chemical diver-
sity is achieved through site-specific enzymatic addition and removal by writer, reader, and
eraser proteins using a myriad of reactions, such as methylations, thiolations, glycosylation,
isomerizations, and deaminations [1,48].

It is no surprise that methylation is the most common modification found in all four
nucleotides at various positions including the sugar, considering the framework to intro-
duce methylations is well established and methylations are common epigenetic markers
and post-translational modifications [1,22,48]. In fact, of the naturally occurring RNA
modifications, 68% of modified adenosines, 55% of modified guanosines, 50% of modified
uridines, and 38% of modified cytosines contain at least one methylation. Structurally,
a simple methylation affects a possible hydrogen bond donor or acceptor site. In the
case of methylations along a base-pairing edge, the methyl group essentially blocks the
pairing from occurring [22,51,52]. Depending on the sequence position of the methylated
nucleotide, this modification can enhance base stacking as well [22].

After methylations, groups such as hydroxyls (OH), thiols (S), and amines (NH2) are
the next most common type of RNA modification, depending on the original canonical
nucleotide. These modification groups can add hydrogen donors and acceptors to the base
pairing edges [1]. This can lead to wobble pairing, a non-typical base-pair conformation, or
a different preferred pairing partner (e.g., G: U) [1,22,51,53]. Specifically, thiolated uridines
(such as s2U and s4U) have been shown to base pair with a wide range of partners as well
as affect thermostability by enhanced stacking interactions [51].

In addition to modification of nucleobase ring substituents by small chemical groups,
there exist RNA modifications where the purine and pyrimidine ring structure is altered.
Pseudouridine is the most commonly found RNA modification and is significant as pseu-
douridine is one of the few, if not the only ring rearrangement-based naturally occurring
RNA modification. It is an isomer of uridine in which the base is attached to the sugar via
a C-glycosidic bond, instead of an N-glycosidic bond. The C-C bond gives the nucleobase
more rotational freedom and conformational flexibility [1,22,52]. The 180◦ ring rotation also
allows for an extra hydrogen bond donor at the N1 position. This ring rearrangement allows
pseudouridine to sample different pairing and possibly stabilize the structure of the RNA
when utilizing the extra hydrogen bond donor at the N1 position [22,52,54]. In wyosine,
wybutosine, and their derivatives, the purine ring of G is extended to include a third ring.
Little is known about the structural properties of the tricyclic ring or the accompanying
large side chains of these modifications that assist in maintaining the reading frame during
translation [55]. Some molecular modeling studies suggest that restricted conformation
sampling induced by the modification and its bulky side chains could be responsible for
stabilizing codon–anticodon interactions and indirectly affecting translation [56,57].

Some more exotic RNA modifications include glycosylated, geranlyated, and amino
acid-based RNA modifications. Glycosylated RNA, or glycoRNAs, are a recent discovery
and have been found in multiple cell types and mammalian species [58]. GlycoRNAs are
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modified with complex-type N-glycans with at least one terminal sialic acid residue and
have been determined to interact with surface proteins and antibodies [58]. Geranylated
RNA nucleotides (e.g., 2-geranylthiouridine) are very hydrophobic and have been found to
disrupt the helical structure and affect base pairing [39]. Amino acid-based RNA modifica-
tions make up a unique group compared to the rest of the naturally occurring modified
RNA nucleotides. Amino acid-based modifications are unable to establish base pairing,
however, they can incorporate and interact with other amino acids and proteins [59]. Struc-
turally, they are bulky and can only ‘fit’ into structural motifs that have enough ‘room’
(e.g., loops, bulges, junctions) [59].

2.3. Summary of the Classification of RNA Modifications

The location of the modification on a nucleotide and the actual chemical group together
determine how a chemical modification influences the structural behavior of the modified
RNA. The location-based categorization of the modifications yields two main categories—
nucleobase and backbone modifications. The nucleobase modifications can be further split
into W-C-F and CH edge modifications, while the backbone modifications can either occur
on the ribose or the phosphate groups. Based on the chemical nature of the modification,
the modifications can be classified into simple and complex substituents, reorganized ring
structure, and modifications shared with other biomolecules. In addition to the obvious
shift in base-pairing and base-stacking propensities of the nucleotides due to nucleobase
modifications, all modifications have the potential to affect the stability and conformational
flexibility of the RNA.

So far, there has been minimal insight into the molecular details of how modifica-
tions affect the structural and functional aspects of RNA, from both experimental and
computational efforts. However, one can conclude that RNA modifications do have the
potential to significantly affect the structure, and as a result, the biological functions of
RNAs. Perhaps, by leveraging the strengths and weaknesses of both computational and
experimental efforts, these mechanistic effects can be gleaned.

3. Molecular Dynamics Simulations (MDS) of Modified RNA

MDS are an extremely useful computational tool to elucidate how the “wiggling and
giggling” of atoms gives rise to the folding pathways, three-dimensional (3D) structure, and
interactions of biomolecules. The two key components needed for reliable MDS are accurate
initial 3D coordinates and robust “force-field” parameters, which steer the simulation over
time to explore energetically favorable conformations. Force-fields are a collection of
analytical functions and their associated model parameters that estimate the intra and
intermolecular forces between atoms and molecules in MDS. It is standard practice for
MDS to use experimentally solved 3D structures from databases like the Protein Data Bank
(PDB) [60] to study how equilibrium fluctuations of the pre-folded biomolecules explain its
biochemical function. For simulations of RNA that involve the study of its interactions with
proteins or small molecules, in the absence of an experimentally determined structure of the
complex, molecular docking can be used to generate initial guess structures. This eliminates
the need for the exhaustive simulations required to fold an RNA sequence ab-initio or for
the interacting molecules to find a suitable orientation, an endeavor which would not be
expected to succeed at this point in time due both to imperfections in available force-fields
and the lack of sufficient computing power to propagate simulations to relevant millisecond
(ms) to second (s) timescales.

However, obtaining a reasonable initial 3D structure is often a bottleneck, as only 7% of
total structures deposited in the PDB contain RNA and only a small fraction of those contain
any RNA modifications (naturally occurring or synthetically derived). While strategic mod-
eling and advanced sampling techniques can somewhat alleviate the shortage of acceptable
initial RNA structures, they cannot overcome the inability of current force-field parameters
to depict inter and intramolecular interactions of RNA accurately. This obstacle is enough
to prevent the achievable folding of RNA sequences into their characteristic 3D structures
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in silico. Fortunately, there is rapid ongoing progress in the development of improved
force-field parameters for unmodified RNA, which have been recently updated with RNA-
specific improvements in several popular force fields [61–63]. However, current iterations
have only proven successful in capturing folding and dynamics of small unmodified RNA
tetramers and tetraloop hairpins. MDS studies undertaken to understand the behavior
of even medium-sized RNAs (>10 nucleotides) encounter several challenges as has been
pointed out in recent reviews [64,65]. Due to the limitations with simulating unmodified
RNA and the sheer number of known RNA modifications, there have only been a handful
of attempts to develop force-field parameters for modified RNA nucleotides. Xu et al. [66]
and Aduri et al. [67], for example, have published works containing parameters for over
100 different RNA modifications each. Parameters for some modifications can also be
obtained from websites like the Bryce Lab’s AMBER parameter database [68] or published
work on simulations of modified RNA [39,69]. These sources primarily extend two popular
force-field parameterization strategies (AMBER and CHARMM) to include modified RNA
nucleotides in a manner that is self-consistent with how the canonical RNA nucleotides
were parameterized. However, this does not guarantee that no further calibrations are
needed, as discussed in the brief overview of parameterization strategies below.

3.1. Force-Field Parameterization Strategies

MDS incorporate two major types of molecular interactions as depicted in Figure 3
bonded terms that dictate the stretching and bending of covalent bonds at short atomic
distances and nonbonded terms that describe both the inter and intramolecular non-
covalent interactions at the intermediate to long ranges. Regardless of the force-field
chosen, the bonded terms are typically calculated in a “ball and spring” manner, where
each atomic nuclei is attached to another via a harmonic Hookean spring to replicate the
energy associated with covalent bond stretching and compaction. This is further extended
to include the energetic contributions associated with the relative movement of second and
third nearest neighboring atoms through bond angle and torsion rotations, respectively.
Equilibrium bond distances can be obtained from high-resolution crystal structures when
available, while the spring constants dictating the stretching magnitude are typically taken
from ab initio harmonic frequency calculations [70]. As many of the bonded interactions
can be easily verified against experimental spectroscopy data [71,72], these parameters
are considered to be accurately transferable between most biomolecular force fields. They
can also be extended to modified RNA since most of the known RNA modifications are
composed of common chemical moieties that have already been parameterized.
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The fitting of nonbonded interactions, on the other hand, are much more varied
between different force fields. The philosophy behind each parameterization strategy
will have a greater impact on how the modified RNA nucleotide will behave in MDS.
Classical, all-atom simulations of biomolecules typically include two separate nonbonded
forces: Coulombic interactions between charged atomic sites and Lennard-Jones forces to
account for electron overlap and correlational effects. Coulombic interactions are described
by static, atom-centered point charges, while Lennard-Jones forces are described by a
pairwise additive inverse power law consisting of attractive 6th power and repulsive 12th
power components (see Figure 3). These nonbonded forces are intended to reproduce the
inherently quantum mechanical (QM) phenomena of interacting atoms and molecules,
such as short-range Pauli exchange repulsion, mid-range London dispersion between
correlationally polarized electrons, and long-range frozen electrostatics. Collectively, these
terms dictate the steric collision distances between all parts of the RNA as well as weak
attractions, such as base stacking, and are mostly determined by their hybridization state
or from isolated nucleotide fragment geometries.

It should be emphasized that all these functional forms were historically chosen
purely based on computational convenience and less because of any deep connection to
the underlying quantum-mechanical phenomena they are intended to represent. Electrons
are not well-described as static point charges embedded in the center of atoms (even to a
first approximation), and dispersion forces are inherently multi-body, environment-specific
interactions that are not well described by static, spherically symmetric pairwise additive
functions. Together, however, these functional forms provide an ample parameter-space
for creating simple atom-centered classical models that can reproduce a wide range of
physical phenomena with a small number of carefully calibrated parameters (notably, the
extent to which the complex behaviors of water can be faithfully modeled by simple three
or four-point models should be considered a marvel of computational chemistry [73–77].
However, the inherent coupling of Lennard-Jones with Coulombic energies also leads to
ambiguity on how strong interactions such as hydrogen bonding or salt bridges should
be balanced by each energy function. Knowledge of the ground-state geometry of a
compound provides insufficient information on how to calibrate the effective strengths
of these two terms most accurately unless additional external constraints are imposed.
Consequently, for modified nucleotides, these parameters are often directly transferred
from standard nucleotide parameters, and only the atomic charges are re-fitted to describe
the remainder of the nonbonded interactions [78,79], which again is an assumption borne
largely out of convenience. It is here where the fitting strategies for RNA force fields
diverge significantly. Two of the most popular parameterization philosophies, AMBER and
CHARMM, use different methods for fitting the atomic charges, and it is worth commenting
on the differences and possible limitations between the two fitting strategies.

3.2. Modified Nucleotide Parameterization Strategies for AMBER and CHARMM

Among the AMBER-based parameterizations, Aduri et al. [67] published parameters
for 107 naturally occurring modified RNA nucleotides, including both sugar and nucle-
obase modifications. In the spirit of the AMBER pipeline, their work took on a modular
approach, focusing mostly on deriving atomic partial charges and transferring the remain-
ing parameters from GAFF (Generalized Amber force-field) [80]. The AMBER approach
for deriving atomic charges is to replicate the electrostatic potential (ESP) produced by a
molecule’s nuclei and quantum mechanical electrons with atom-centered point charges [81].
This is done by calculating the ESP at various positions around the molecule of interest
using Hartree–Fock-based calculations (specifically HF/6-31G*) and adjusting the atomic
charges until the ESP is replicated by the force field. The philosophy for this calculation is
rather straightforward: If two point charges interact via their electrostatic potentials and if
the charges can accurately reproduce a QM-derived potential, then the two atomic sites
should, in principle, share the correct QM interaction energy. Although this may be more
true at large distances from the atomic centers, there is no guarantee that this is true for all
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points in space, especially at close ranges when electron overlap can occur. Additionally,
the instantaneous polarization from each atomic site is also not incorporated into these
calculations. Nevertheless, the choice of combined Hartree–Fock exchange with a 6-31G*
basis set is known to artificiality “pre-polarize” the charges [78] and is explicitly chosen to
approximate these effects in a premeditated fashion. While other QM methods based on
density functional theory (PBE, B3LYP, etc.) or perturbation theory (MP2) may produce
similar charges, the same QM method used by the original AMBER parameterization
is used by Aduri et al. [67] to maintain compatibility with the remaining charges in the
canonical version of the force-field.

The CHARMM approach to charge fitting, and to the fitting of the majority of their
force-field parameters, is to globally optimize all non-bonded parameters together until
specific ab initio quantities or experimental data are accurately reproduced by the force-
field [82,83]. As performed by Xu et al. [66], common choices of these include QM energies
obtained from MP2 geometry optimized structures, the non-bonded interaction distances
of these geometries and their electric dipole moments, and experimental crystal structures.
For the QM quantities, potential energy profiles are performed with a single water molecule
interacting via the possible hydrogen bonding sites of both the modified base and sugar.
As MDS are driven by the derivatives of their molecular mechanics energy profiles, the
benefit of the approach is that the resulting force-field is explicitly parameterized with ab
initio profiles in mind, whereas the AMBER approach only implicitly attempts to get these
quantities correct via the ESP fit, albeit their dependence on fundamental electrostatics.
Like AMBER, CHARMM also attempts to implicitly account for polarization effects from
water through phenomenological scaling factors applied to the ab initio energies and dipole
moments produced by HF/6-31G* calculations [84], and Xu et al. continued with this
tradition for their modification parameters.

Many of the versions of CHARMM have historically involved an iterative and highly
structured fitting procedure in which all parts of the force-field, including bond distances,
charges, torsion angles, and sometimes Lennard-Jones parameters, are continuously ad-
justed until the included QM and experimental data are reasonably reproduced by the MM
force-field [85]. For this reason, the CHARMM community has honored a stricter definition
of what is considered an addition to their force fields. Luckily, many prospective users may
not need to forgo this parameterization process, as parameters for modified nucleotides are
publicly available via the MacKerell Lab’s website [86], while the remaining standard atom
types can be taken from the CGenFF (CHARMM General Force Field) program [79].

3.3. Molecular Dynamics Simulation Studies of Modified RNA

Molecular dynamics simulations can prove extremely useful in providing atomistic
details on interactions, structural mechanisms, and the biological implications of RNA
modifications. However, MDS of modified RNA has been limited by the imperfections of
the force fields of RNA and the lack of experimental data needed for their calibration. At
this time, it is nearly impossible to capture or quantify accurately the effects of modifications
on large structural rearrangements of RNA via MDS. However, qualitative comparison with
validating experimental evidence can be used to understand the effects of modifications on
their localized inter and intramolecular interactions, and conformational stability in defined
structural contexts. Some examples of defined structural contexts include modifications
in the tRNA, in the codon–anticodon mini-helix, in standard A-form RNA duplexes, etc.
Among the few structures of naturally occurring modified RNA in the PDB, a majority
belong to independent, synthetase-bound, or ribosome-bound tRNAs.

The fully modified X-ray crystal structure of tRNAPhe [37] and the readily available
AMBER parameters for its modified nucleotides from the database maintained by the
Bryce Lab [68] have served as a robust system and act as a foundation for studying how
modifications affect overall RNA dynamics. Specifically, studies on tRNA dynamics ([87]
and how individual modifications alter the conformational landscape of the nucleotides to
induce localized structural changes [57,69,88]) have benefited from this model system.
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Another common modified RNA system that is explored using MDS is the tRNA:
mRNA minihelix in the context of the ribosome and the effects of modified nucleotides
on codon-bias, and frame-shifting. Experimental observations provide evidence of the
significance of the modification status of anticodon stem-loop (ASL) of tRNAs during trans-
lation and MDS studies alongside available experimentally derived structures, furnishing
mechanistic insights for such observations. For example, codons NNA or NNG can be
identified by the same tRNA with anticodon UNN, where N can be A, C, G, or U. Such
systems have been shown to rely on modifications at the 34th and 37th positions in the
tRNA to introduce codon bias. In eukaryotes, mcm5U34 and ms2t6A37 are both necessary
for the ASL of tRNALys

UUU to successfully recognize the AAG codon. MDS showed that
the methyl-thio group enhances the stability of the codon:anticodon minihelix by additional
stacking interactions while the threonyl group shields the codon and the anticodon from
the solvent, thus stabilizing the wobble G:U base pair in the AAG bound conformation
of the tRNA [89,90]. In contrast, in the case of tRNAILe, where Lysidine and t6A are at
the 34th and 37th positions respectively, MDS show that the Lysidine preferentially pairs
with AUA instead of AUG [91]. In bacteria, tRNAs with geranylated-2-thio uridine (ges2U)
in the 34th position were shown to recognize only G-ending codons. MDS of the mRNA
bound tRNALys ASL showed that the loss of a proton donor due to geranylation in uridine
prevents the A:ges2U pair from forming. However, the G:ges2U pair interacts with stable
hydrogen bonds in the presence of the modification, and the bulky geranyl group does
not disrupt any ribosomal interactions of the tRNA or mRNA [39]. A 2′O methylation in
the coding region of mRNA has been shown to inhibit translation, which, one MDS study
suggests could be a result of disrupted interactions between the mRNA and ribosomal
RNA at the ribosomal A-site [49].

It is important to point out that although the MDS studies listed above are in quali-
tative agreement with experimental observations, they are somewhat speculative when
providing mechanistic insights into the effects of the modifications on RNA structure and
function. The force-field parameters used in these studies are acquired using the AMBER
or CHARMM methodology and are only as good as those for the canonical RNAs.

3.4. Summary of MDS of Modified RNA

There is no intrinsic reason why either the AMBER or CHARMM methodology should
be better suited for simulating modified RNAs. Although the two parameterization strate-
gies are quite distinct, there is no unique mapping of the inherently many-body quantum
interaction energies into a classical, pairwise additive effective potential. Both strategies
have evolved to incorporate calibrations or assessments against experimental data when
available but must resort to fitting against gas-phase QM interaction energies in the absence
of such data. Both Xu et al. [66] and Aduri et. al. [67] deliberately noted the limitations in
their models arising from the much smaller amount of experimental information available
for modified nucleotides as compared to their canonical counterparts. While both works
aim to capture important topological properties of modified RNAs, such as backbone
torsional populations or the replication of small crystal structures containing modified
nucleotides, it is yet to be seen how each of these models perform when compared against
additional thermodynamic or energetic experimental information. Still, that is not to say
that ab initio-based calculations are not useful tools for developing modified force fields,
but the question always remains how transferable gas-phase QM calculations on minimal
molecular fragments can accurately reflect the behavior of macromolecules immersed in a
physiological milieu of water, ions, and other biomolecules.

The degree to which the parameterization strategy may matter scales directly with
the chemical nature of the modification. If the modification mostly involves space-filling
or nonpolar additions such as methylations or other simple hydrocarbon groups (many
of which are shown in Figure 2c), then the additional charge due to the modified group
will essentially be zero and relatively insensitive to the method of charge assignment. The
lack of polar groups means that polarizations are less likely to dominate intermolecular
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interactions, and direct comparison against ab initio-derived geometries may provide
enough information for the adjustment of Lennard-Jones radii or potential strengths [62].
Even when strong electron correlation effects are at play, such as dispersion-mediated
aromatic stacking, many modern DFT functionals can accurately predict equilibrium energy
locations at a significantly less cost than MP2 or other highly correlated wave-function
based calculations [92,93], resulting in the possibility of direct calibration of force-field
parameters against gas phase QM interaction energies without needing any experimental
data in the parameterization process.

However, if significantly polar modifications are involved, particularly in ones that
alter the number or strength of hydrogen bonding sites, then the quality of the fit will
depend more upon the exact atomic charges. Consequently, a more strategic approach based
on each force-fields’ original parameterization philosophy is needed to balance the strength
of intermolecular forces between charge-charge and van der Waals dispersive interactions.
It should be noted there is no best method, a priori, to decompose intermolecular interaction
energies into classical “spherical cow” terms such as point charges and van der Waals forces,
even if neglecting higher-order terms such as polarization, which are typically ignored in
classical force-fields. In such scenarios, it is essential to have experimental data suitable
for direct parameter calibration, as interaction strengths between polar moieties are very
environment specific. For biomolecular force fields, any highly polar group will interact
strongly with aqueous solvent as well as with ions, greatly reducing the applicability and
suitability of parameterizing solely against gas-phase QM calculations. When experimental
data does not exist (for example, solvation free energies, conformational preferences, base-
pairing thermodynamics), the simulator must rely on their chemical intuition for how
strong or weak bonding should occur for each modification relative to their canonical
interactions. In such a case, ab initio interaction energies can still be a useful gauge,
however, unless some sort of scheme is used to account for how the fragments interact in
a solvated environment via a thermodynamic free energy calculation, these calculations
should only be considered as a qualitative and not a quantitative measure of accuracy given
the potential complexity of the interaction.

Lastly, some modification groups may introduce a net charge or additional rotatable
bonds, and these necessitate additional considerations. Net charged moieties would be
expected to interact strongly with counter-ions, depending on how solvent-exposed and
localized the charge is distributed. RNA itself is famously a polyelectrolyte whose behavior
is altered significantly depending on both the identity and the concentration of the counter-
ions present (especially divalent ions); therefore, modifications that affect the overall charge
of the nucleic acid may also exhibit ion-dependent behavior requiring additional calibration.
In terms of rotatable bonds, simple modifications resembling the set of organic compounds
used in the genesis of early force fields [94,95] likely will perform adequately with generic
model compound torsions recycled from existing parameters without needing further
refinement. However, rotatable bonds in more exotic moieties may require custom torsional
potentials calibrated against either QM/DFT interaction profiles or experiments that reveal
conformational preferences such as NMR to ensure that the different rotamers are accurately
sampled in the simulation.

4. Experiments That Can Help Validate MD Simulation Results

Many different analytical techniques are available to study modified RNAs. However,
not all techniques afford data that is directly comparable to simulation results for parameter
calibration or overall assessment of simulation accuracy. Below, several experimental
techniques that are commonly used to investigate modified RNA systems are discussed.
First, detection methods are addressed, as identifying a possibly modified position in the
sequence of a RNA is critical as well as chemically identifying the modified nucleotide.
Then, the focus turns to structure analysis methods, as ultimately, evaluating the structural
effects of RNA modifications on a biological RNA will answer inquiries into its function.
Each technique is outlined, and the advantages and disadvantages of using the technique
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when investigating modified RNA systems and how the experimental data generated may
translate to a computational study are discussed. A summary of this section is outlined
in Table 1.

Table 1. Summary of techniques discussed: advantages, disadvantages, and the computational
information for RNA modifications that can be gleaned from each.

Experimental Methods Advantages Disadvantages Computational Information

Mass Spectrometry
Native solvent conditions
Attomolar concentrations

can be used

No 3D insight
Sample is not recoverable

Size limitations
Gas phase experiments

Chemical ID
Sequence position

Sequencing Techniques

Single nucleotide resolution
Population or single

molecule-based
methods available

Mediocre accuracy and
precision in detection Sequence position

UV Optical Experiments

Micromolar concentrations
can be used

Fast experimentation
Thermodynamics insight

Two state dependent
No insight beyond

helical stability

Melting temperature
Helical stabilityChanges in free
energy, enthalpy, and entropy

NMR
Native conditions

Sensitive to structure
fluctuations

Size limitation
Lengthy data interpretation

3D molecule resolution
difficult to attain

Distance restraints
Nucleotide/RNA 3D orientation

Secondary structure (base
pairing/non-paired)

X-ray Crystallography 3D structure can be
determined

RNAs are hard to crystallize
Non-native conditions

Requires
homogeneous crystals

3D coordinates and orientation
of RNA molecule

Cryo-EM

Heterogeneous populations
detectable

Crystals not necessary
Native conditions

Data collection, analysis, and
troubleshooting is lengthy

and complex

3D coordinates and orientation
of RNA molecule

Tertiary contacts detectable

4.1. Detection Methods
4.1.1. Mass Spectrometry (MS)

MS can be used to chemically identify RNA modifications as well as sequence modified
RNAs. MS requires a very little amount of sample (as low as attomolar concentrations),
making the technique attractive to troublesome biological targets with low yields [96]. Yet,
the sample must be pure as anything with a charge, such as salt ions and divalent metals,
will be detected and increase the complexity of the spectra.

There are three main methods one can use to analyze modified RNA by MS: top-down,
bottom-up, and nucleoside MS [96]. Top-down analysis of RNA uses an RNA sample that
has not been hydrolyzed and provides the total mass and identification of modifications
including their location and sequence context [97]. An important assessment of top-down
data is sequence coverage. Sequence coverage describes the number of cleavage sites where
at least one resulting product could be detected. There are a fair number of techniques
used for this method (CAD [98], EDD [99], RTD [100], AINETD [101], etc.) but the overall
methodology remains the same: Fragment the structured ion and analyze the fragments to
achieve overlapping coverage for the sequence. The major benefits of this method are the
ability to perform de-novo sequencing, identify RNA modifications within the sequence,
and the location of such modifications [96]. An advantage of this method is that most
mass spectrometers are fully capable of performing this with acceptable accuracy and
precision [96]. However, equal mass modifications (such as m1A, m6A, etc.) or “mass-
silent” modifications (pseudouridine and uridine) cannot be immediately distinguished by
mass and would require either additional separation methods or the ability to isolate and
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fragment the mass in question [96]. Data analysis and interpretation can be a hassle as it is
not straightforward due to spectra complexity and lack of software.

Bottom-up analysis typically uses partially hydrolyzed RNAs for mass mapping and
to provide some sequence context, though this method does require a sequence to compare
back to [102]. These partially hydrolyzed oligonucleotides can be separated and analyzed
by tandem MS/MS. Oligonucleotides of length 5–15 nucleotides are desirable as this length
will be unique yet small enough to decrease the complexity of data analysis. In recent
years, there has been a push to identify and implement new RNases that can be used in
combination to increase sequence coverage through the generation of overlapping digestion
products [103–105]. However, as these RNases have been produced in-house in the labs
that develop them, they suffer from a lack of reproducibility.

Nucleoside MS of a fully hydrolyzed RNA can give chemical identities of modifica-
tions even at extremely low abundances [106,107]. Hydrolysis is typically achieved using
endonucleases and phosphodiesterases and then the sample is subsequently dephospho-
rylated using alkaline phosphatase [106]. The resulting sample only contains the free
nucleosides. These nucleosides can be separated by liquid chromatography, chemically
identified by fragmentation methods, and quantified. However, the analysis of nucleoside
digests has several disadvantages. First, the sample must be extremely pure, otherwise, the
quantification of detectable RNA modifications will be affected [96]. Second, artifacts can
be easily introduced due to the hydrolysis protocol [96]. Labile RNA modifications can be
easily destroyed under the mild alkaline conditions [108]. Additionally, isocytidines may
emerge through the amination/imination of carbonotiolated nucleosides [109]. Thirdly,
the enzymes used to hydrolyze the RNA sample may not be capable of cleaving modified
RNA [110,111].

MS experiments are sensitive to RNA modifications and can provide the chemical
identity, sequence position, and the number of RNA modifications. Through -omics
methodology, MS can provide these data via high throughput technologies for larger RNAs
as well as heterogeneous biological samples (cell lysates, etc.) [112–114]. Additionally,
advances have been made in native MS to provide tertiary contact information as well
as the stability of certain folded RNAs [115–118]. Data from these experiments could be
useful to computational studies, however, MS experiments take place within a vacuum.
Gas phase force fields have not advanced enough to take advantage of this information
when investigating modified RNA structure and dynamics.

4.1.2. Sequencing Techniques

RNA sequencing techniques are a rapidly developing field. The field is currently
split into two generations: next generation and third generation. Both generations provide
single nucleotide resolution, allowing the position of RNA modifications to be uncovered.
However, these techniques may not provide the identification of the exact modification.

Next generation sequencing (NGS) techniques rely upon various chemical treatments
that affect particular RNA modifications, allowing them to be detected as either: a reverse
transcription (RT)-stop (naturally or chemically induced), as a misincorporation of nu-
cleotides into the cDNA, through chemically-induced cleavage of the backbone, or through
antibody-based enrichment methods (MeRIP-Seq, i/miCLIP) [119,120]. Natural RT stops
are visualized as an altered reading of the modification during primer extension. This can
result in a full stop of the RT or misincorporations in addition to the aborted RT product.
Chemically inducing RT stops is considered one of the more reliable methods of NGS [120].
By using certain chemical reagents, a treated sample can be compared to a mock (untreated)
sample, and signals can be excluded or reduced, leading to the identification of a modified
position [120]. Chemically-induced cleavage, or selective ligation, works very similarly
and is dependent on the strength of the signal to indicate either enhanced cleavage or
a protected site, both of which can indicate a modified position [120]. Antibody-based
enrichment methods have been in use since the late 70s and are still in development to-
day [119]. Cross-linking and immunoprecipitation (CLIP-Seq) has become popular to
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identify RNA-binding protein binding sites and has some functionality towards identifying
the binding sites of RNA modifying proteins, such as writers and erasers [119,121–123].
After identifying the binding site of such proteins, the associated RNA can be sequenced
and possible modification sequence positions uncovered [119,121–123]. However, this
method is plagued by low affinity and specificity [120]. Additionally, enrichment methods
for modified RNAs are lacking and there are multiple types of artifacts that can occur [96].
Still, this method is widely used for many modified RNA sequences.

Third generation sequencing (TGS) takes advantage of single-molecule analysis. NGS
involves amplification steps and provides only an average picture of the possible modified
positions in a RNA sequence, whereas TGS techniques can provide the exact combination
of modified sites for a given single RNA molecule. Two TGS techniques have been devel-
oped recently: PacBio SMRT technology [124] and Oxford nanopores [125]. PacBio SMRT
technology uses zero-mode waveguide arrays to monitor single RNA molecules as they are
sequenced [124]. Oxford nanopores carry out sequencing by predicting sequences from
electric current patterns, which change as each nucleobase passes through the pore [125].
Both techniques suffer from the same pitfalls. Precision in both techniques is mediocre and
data analysis can be arduous due to lack of appropriate data analysis software.

Both NGS and TGS techniques can detect some RNA modifications and can provide a
sequence position for RNA modifications within a modified RNA. TGS shows the most
promise as both PacBio SMRT technology and Oxford nanopores analyze a single molecule
and can passively detect a modification without interpreting an RT stop or misincorporation.
NGS techniques are still under development regarding the detection of RNA modifications,
however, there have been some recent successes combining CLIP with RNA-modifying
enzymes to identify dihydrouridine positions across the transcriptome [126].

4.2. Structural Analysis Methods
4.2.1. UV Optical Melting Experiments

Optical melting experiments using UV spectroscopy have been used for decades to
determine thermodynamic data for RNA. The principle depends on a two-state model,
where a double-stranded RNA is subjected to increasing temperatures that break the
hydrogen bonds between base pairs, resulting in a single-stranded/unstructured RNA [127].
Relatively small amounts of RNA are needed (micromolar concentrations), the experiments
are fast, and the instrumentation is inexpensive [127].

Optical melting experiments can provide melting temperature, enthalpy, entropy, and
free energy changes for state changes including duplex formation [127]. These data indicate
the stability of a helical structure and have become the core of nucleic acid secondary
structure prediction algorithms [127,128]. In addition to optical melting experiments, other
spectroscopic techniques such as Fourier Transform Infrared (FT-IR) spectroscopy [129–131],
Raman spectroscopy [132–136], circular dichroism [137–141], and fluorescence-based tech-
niques (microscale thermophoresis) [142–148] have also been employed to study RNA
structure. Similar experimental information (melting temperature, helical stability, en-
thalpy, entropy, and free energy changes) can be gleaned from each and translated to
computational endeavors. However, to keep this article concise, we will not go into further
detail, but each technique has been reviewed elsewhere. RNA modifications have been
known to affect base pairing, stacking, and the stability of the duplex structure, therefore,
replicating this behavior in simulations would provide a more accurate modified RNA
model. While there have been several studies on duplexes containing RNA modifica-
tions [149–153], they are by no means comprehensive over all naturally occurring RNA
modifications. Additionally, optical melting experiments do not provide insight beyond
helical stability, (e.g., tertiary junctions, ligands, protein binding, etc.), so insight into more
complex modified RNA structures would be lacking.
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4.2.2. Nuclear Magnetic Resonance (NMR)

NMR is a powerful tool when investigating RNA structure and is particularly sensitive
to the effects of RNA modifications on a modified RNA structure. The RNA of interest
must be labeled (13C, 15N) to be detected, which requires some preparation and quite a
bit of care must be taken to maintain the purity of both sample and structure to use NMR
successfully [96]. NMR can detect protons, typically H, C, N, and P within RNAs. These
proton signals can give several NMR data: NOE contacts, J-couplings, residual dipolar
couplings, and cross-correlated relaxation rates [96]. Complete interpretation of these data
will lead to a three-dimensional structure determination of an RNA sample.

Because RNA modifications are chemically diverse compared to the canonical RNA
nucleotides, their signals are easily recognized, typically occurring in regions of NMR
spectra devoid of RNA canonical signals. In fact, early tRNA studies used the modified
nucleotides as molecular probes to explore its 3D folding and stability [154,155]. In more
recent years, NMR has been used for investigating the structural effects and changes in
dynamics due to the presence of RNA modifications [156,157]. In this way, NMR can be
considered more powerful than other structural techniques, such as X-ray crystallography,
as it both captures structural and dynamics information. Recent novel approaches using
NMR allow investigators to monitor tRNA maturation continually, and therefore, gain
insight into tRNA modification events [158].

However, NMR does have a size limitation before the data becomes too complex to
process. Solution state NMR studies have an intrinsic molecular weight limit of around
40 kDa or between 120 and 150 nt [159]. Solid state NMR experiments will be dependent
upon the quality of the sample preparation, which has a direct effect on spectral linewidth
and crowding [160]. Typically, anything larger than 50 nt will require nonuniform isotopic
labeling strategies [160]. In addition, larger RNAs are often studied in sections, with the
assumption that there are no long-range interactions between the sections [159].

NMR data can easily provide information about the secondary structure of RNA and
identify base pairs and their types. However, if determination of the 3D structure is the
goal, then a full assignment of RNA signals is necessary. This can be done through a
hybrid approach using both bond experiments (HCP) and assignment of distance restraints
(NOESY) [159]. NOEs can only be detected within 6Å and since RNAs tend to be long,
flexible dynamic structures, it can be difficult to resolve the entire molecule [96]. The
experimental NOEs can be used to generate a 3D model for use in further computational
experiments. Yet, the generated 3D file from these coordinates can be biased due to the
simulated annealing and subsequent refinement as the quality of the 3D file is completely
dependent on the accuracy of the force fields used [96].

4.2.3. X-ray Crystallography

X-ray crystallography is a well-known structural technique for biomolecules. However,
the crystallization of RNA molecules is often more challenging than proteins. Analyzing
modified RNA by X-ray crystallography is hampered by two major limiting factors: crystal-
lization and phase problem [161]. RNA’s higher order folding landscape is often complex
and contains kinetic traps, encouraging sample heterogeneity. To encourage better crys-
tallization, RNAs of interest are typically altered to encourage crystal contacts, improve
crystal packing, and discourage phase separation [161]. These alterations can include
substituting the 2′ oxygen with selenium, adding “sticky ends” or hanging nucleotides
as well as decreasing flexible areas of interest to only use a “minimal structure” [161].
Additionally, sequences might be altered to prevent crystal twinning. Phase problems
interfere with the quality of phase information, which is critical to calculate the 3D structure
of macromolecules after diffraction data is collected [161].

Experimentalists have developed a methodology to convert naturally occurring RNAs
into sequences/structures that can crystallize [162–164]. This method focuses on a motif of
interest, a hairpin for instance, and evaluates the surrounding sequence for highly variable
regions. These regions are considered nonfunctional and therefore perfect for sequence
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alteration or subtraction to encourage crystallization [162–164]. However, RNAs for which
the structures are solved via this approach are often generated using in vitro transcription
and are inherently devoid of modified nucleotides. This altered composition can affect
the results significantly, leading to a lack of desired insight into naturally occurring RNA
structure and function.

X-ray crystallography data can provide the three-dimensional coordinates of a biomolecule
within a crystal. This is particularly helpful in determining the position and orientation
of RNA modifications within a structure. However, as discussed above, very rarely are
RNA modifications within a solved RNA crystal structure (which themselves are rare), and
even so, the structure may not be considered ‘native’ due to the crystallization process.
Therefore, the 3D coordinates provided by X-ray crystallography would not give insight
into the modifications’ structural effect on the native, biologically relevant RNA.

4.2.4. Cryogenic Electron Microscopy (Cryo-EM)

Cryo-EM gathered attention as an alternative to X-ray crystallography and NMR
for biomolecule structural determination as it removed the need for crystallization [165].
When a sample is analyzed by Cryo-EM, it is flash frozen and then irradiated with electron
beams. The two-dimensional projection images are then recorded, typically providing an
ensemble of many molecules in different orientations. In contrast to X-ray crystallography,
Cryo-EM only requires microgram amounts of samples that are directly affixed on cryo
grids after purifications, bypassing the need to form stable, homogeneous crystals [165,166].
In addition, Cryo-EM does not require detergents and solvents, which can destabilize or
otherwise affect the structure of the biomolecule [165,166].

Cryo-EM data includes images collected on direct electron detectors that have several
frames per image, increasing sensitivity and allowing for conformationally heterogeneous
samples to be separated [167]. Cryo-EM still requires the cryo-grids to be well-populated
with intact particles and due to the time between sample application to the grid and actual
vitrification, preferential structures or aggregation can occur, creating an artifact within the
data [167]. Troubleshooting these problems can take an extreme amount of time (months
to years) for a single sample [167]. Additionally, data collection can take much longer
than X-Ray crystallography due to data collection and lack of automation; data processing
and analysis typically requires extensive computational time even when using parallel
processing on GPUS [167].

However, the data provided by cryo-EM experiments directly translates to a 3D model.
Additionally, if the signal to noise ratio is good and the refinement is of high quality, one can
obtain several 3D models representative of different structural populations of RNA [168].
Since RNA modifications can influence RNA structure, this sensitivity can be key to
discerning the subtleties of the folding pathway of modified RNA [168]. Additionally,
multiple 3D models allow for a better understanding of the long-distance interactions
within a larger modified RNA. Structural context and long-distance interactions are types
of data that are unknown regarding RNA modifications, making cryo-EM data that much
more valuable.

4.3. Summary of Experimental Approaches for Modified RNA Research

Computational investigations into modified RNAs require experimental data to give
context to the modifications’ effects on structure and dynamics. However, no one experi-
mental technique can provide enough context to parameterize these modified nucleotides to
effectively simulate a modified RNA (Figure 4). Therefore, the techniques described above
are best used in concert to provide the most structural context. First, modifications must be
reliably detected and identified within a sequence. MS and TGS techniques can provide
primary sequence context for modified RNA, yet only MS can provide chemical identity.
Then, the secondary structure needs to be determined, as h-bond-derived base-pairing
drives the formation of RNA structure. NMR and UV optical melting experiments give
insight into the secondary structure as well as the dynamics and stability of RNA motifs,
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such as hairpins and loops. Ultimately, 3D information is key to giving context to the effect
of RNA modifications on structure. While X-ray crystallography has historically been a
standard in structural techniques, RNA, in general, is more suited to other techniques such
as Cryo-EM or NMR to provide tertiary context, where crystallization is not required.
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Figure 4. This figure illustrates the relative strengths and weaknesses of each experimental technique
for each piece of data that is useful in computational investigations. There are five pieces of data
highlighted here: (clockwise on the figure) chemical identity (of the RNA modification), stability
(of the modified RNA structure), secondary structure information (of the modified RNA), tertiary
information (of the modified RNA), and sequence position (of the RNA modification). Strengths are
represented by higher numbers (towards the outside of the circle) while weaknesses are represented
by lower numbers (inside of the circle). The relative strength score was based upon how much
information the experimental technique could impart to each type.

5. Perspective

In the past decade, interest in RNA modifications has skyrocketed due to improve-
ments in detection and identification methods that have revealed them to play a much
larger role in biology than previously assumed. However, a detailed understanding of their
function remains elusive. In many cases, the presence and identity of specific modifica-
tions can be detected, but their actual effect on RNA folding and function is still poorly
understood. Techniques such as X-ray crystallography, NMR, and Cryo-EM, which are
all well-suited for obtaining high-resolution 3D structures of proteins, face challenges
for characterizing RNA, whose structures are often unresolvable due to RNA’s inherent
flexibility and dynamics. This creates a pressing need for accurate physics-based computer
simulations of modified RNAs that could potentially provide atomistic insight into how
modifications affect RNA structure and function.

In this review, we highlighted some of the challenges faced by both experimental
and computational approaches with a focus on how that affects our ability to model and
simulate modified RNAs. In a more mature field, a review article such as this would be
expected to give an overview of notable past successes as well as detailed established
best practices in the field. However, when it comes to atomistic simulations of modified
RNAs, the field is still very much in its infancy. At the current time, even unmodified
RNAs of >20 nucleotides cannot be accurately folded de-novo using unbiased all-atom
molecular dynamics simulations, and these are systems where incredibly abundant detailed
biophysical information on their conformational thermodynamics is readily available.
With so little that is experimentally known about how modifications affect RNA folding,
dynamics, and molecular recognition, it is extremely difficult to ascertain if the behavior of
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a simulated modified RNA is realistic or not. This leads to an inherent chicken-and-egg
problem (hence the graphical abstract), that on one hand simulations are needed to provide
mechanistic insight into the behavior of modified nucleotides that are difficult to measure
experimentally, and on the other hand, with absent detailed experimental measurements,
we cannot meaningfully assess how accurate these simulations predictions are, much less
calibrate them to improve their performance.

That said, MDS can still be utilized to provide useful insights in cases where the
modifications occur in a well-defined structural context such as in a synthetic double-helix
(i.e., nearest-neighbor thermodynamics [169]) or the long-known occurrences in tRNAs.
However, for most modifications, answering even basic questions regarding modification
induced conformation, stability, and interaction changes remains challenging. Unlike
proteins, there have been very few success stories with regards to ab initio folding of
RNA [62,170,171]. So, while one can obtain a set of parameters for modified RNA that are
self-consistent with unmodified RNA parameters in a particular biomolecular force field
(i.e., CHARMM or AMBER), this is necessary but not sufficient to prove they accurately
depict the salient chemical properties of each modification. At best, the results can be
considered “as good as” their canonical counterparts, which have not been able to fold
anything more complex than tetraloop hairpins. This is not intended as a criticism, as it
merely reflects the paucity of structural and thermodynamic data available for simulation
developers to assess the accuracy of their models.

So where do we go from here? There are lessons that can be learned from the successes
in protein simulations. The systematic improvement in protein force fields required widely
agreed-upon test systems that were both computationally tractable and experimentally
well-characterized, as detailed in Lindorff-Larson et al.’s review [172]. The frequent ex-
change of ideas between the simulation and experimental communities, which can result in
clever, better ways to compare models vs measurements, is a second vital ingredient. Just
as the Turner group used invaluable NMR experiments to gauge the accuracy of canon-
ical RNA simulations [173,174], there is a need for similarly strategic experiments that
could be used as a “Rosetta Stone” to both calibrate and assess the behavior of modified
nucleotide simulations.
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