
����������
�������

Citation: Zhang, Y.; Chu, X.; Jiang, Y.;

Wu, H.; Quan, L. SemanticCAP:

Chromatin Accessibility Prediction

Enhanced by Features Learning from

a Language Model. Genes 2022, 13,

568. https://doi.org/10.3390/

genes13040568

Academic Editor: Anelia D. Horvath

Received: 17 February 2022

Accepted: 22 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

SemanticCAP: Chromatin Accessibility Prediction Enhanced by
Features Learning from a Language Model
Yikang Zhang 1,2, Xiaomin Chu 1, Yelu Jiang 1, Hongjie Wu 3 and Lijun Quan 1,2,4,*

1 School of Computer Science and Technology, Soochow University, Suzhou 215006, China;
ykzhang0126@gmail.com (Y.Z.); xmchu@suda.edu.cn (X.C.); 20205227080@stu.suda.edu.cn (Y.J.)

2 Jiangsu Province Key Lab for Information Processing Technologies, Soochow University,
Suzhou 215006, China

3 School of Electronic and Information Engineering, Suzhou University of Science and Technology,
Suzhou 215009, China; hongjiewu@usts.edu.cn

4 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
* Correspondence: ljquan@suda.edu.cn

Abstract: A large number of inorganic and organic compounds are able to bind DNA and form
complexes, among which drug-related molecules are important. Chromatin accessibility changes
not only directly affect drug–DNA interactions, but they can promote or inhibit the expression of
the critical genes associated with drug resistance by affecting the DNA binding capacity of TFs and
transcriptional regulators. However, the biological experimental techniques for measuring it are
expensive and time-consuming. In recent years, several kinds of computational methods have been
proposed to identify accessible regions of the genome. Existing computational models mostly ignore
the contextual information provided by the bases in gene sequences. To address these issues, we
proposed a new solution called SemanticCAP. It introduces a gene language model that models the
context of gene sequences and is thus able to provide an effective representation of a certain site in
a gene sequence. Basically, we merged the features provided by the gene language model into our
chromatin accessibility model. During the process, we designed methods called SFA and SFC to make
feature fusion smoother. Compared to DeepSEA, gkm-SVM, and k-mer using public benchmarks,
our model proved to have better performance, showing a 1.25% maximum improvement in auROC
and a 2.41% maximum improvement in auPRC.

Keywords: chromatin accessibility; drug design; language model; transformer; feature fusion

1. Introduction

In human cells, genetic and regulatory information is stored in chromatin, which is
deoxyribonucleic acid (DNA) wrapped around histones. The chromatin structure has a lot
to do with gene transcription, protein synthesis, biochemical processes, and other complex
biological expressions. Among them, the binding of small organic and inorganic molecules
to the DNA can influence numerous biological processes in which DNA participate. In
particular, many anticancer, antibiotic, and antiviral drugs exert their primary biological
effects by reversibly interacting with nucleic acids. Therefore, the study of its structure can
help us design drugs to control gene expression and to cure diseases [1]. Some regions of the
chromatin are open to transcription factors (TFs), RNA polymers (RNAPs), drug molecules,
and other cellular materials, while others are tightly entangled together and do not play
a role in most cellular processes. These two regions of the chromatin are called open
regions and closed regions, which are also known as accessible and inaccessible regions [2].
Measuring the accessibility of chromatin regions can generate clues to gene function that can
help us to identify appropriate targets for therapeutic intervention. Meanwhile, monitoring
changes in chromatin accessibility can help us to track and understand drug effects. A
study [3] found that chromatin accessibility changes at intergenic regions are associated

Genes 2022, 13, 568. https://doi.org/10.3390/genes13040568 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13040568
https://doi.org/10.3390/genes13040568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-4551-4198
https://doi.org/10.3390/genes13040568
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13040568?type=check_update&version=3

Genes 2022, 13, 568 2 of 23

with ovarian cancer drug resistance. Another example is the way that the chromatin
opening (increased accessibility) of the targeted DNA satellites can explain how the DNA-
binding pyrrole–imidazole compounds that target different Drosophila melanogaster satellites
lead to gain- or loss-of-function phenotypes [4]. In recent years, many high-throughput
sequencing technologies have been used for the detection of open regions, such as DNase-
seq [5], FAIRE-seq [6], and ATAC-seq [7]. However, biological experimental methods are
costly and time-consuming and thus cannot be applied to large-scale chemical examinations.
These restrictions have promoted the development of calculation methods.

Alongside the progress in computer science, several kinds of sequence-based cal-
culation methods have been proposed to identify functional regions. Simply put, we
can divide them into traditional machine learning methods [8–12] and neural network
methods [13–17]. Machine learning methods are mainly based on support vector machines
(SVM), which perform supervised learning for the classification or regression of data groups.
An SVM method [8] based on k-mer features, which are defined as a full set of segments of
varying lengths (3–10 bp) in a long sequence, was designed in 2011. This method recognizes
enhancers in mammalian cells. Subsequently, the gkm-SVM (gapped k-mer SVM) proposed
in 2014 [9] exploited a feature set called interval k-mer features to improve the accuracy
and stability of recognition. This method only uses the part of the segments that vary
in length, instead of all of the segments. In recent years, with the rapid development of
neural networks and the emergence of various deep learning models, a growing number of
deep network models have come to be used to solve such problems, where convolutional
neural networks (CNNs) [18] and recurrent neural networks (RNNs) [19] are dominant in
this regard. A neural network is a computational learning system that uses a network of
functions to understand and translate the data input of one form into a desired output, and
deep learning is a type of artificial neural networks in which multiple layers of processing
are used to extract progressively higher-level features from data. CNNs use the principle of
convolution to encode the local information of the data, while RNNs model the sequence
with reference to the memory function of the neurons. CNNs are used in DeepBind [13]
and DeepSEA [14] to model the sequence specificity of protein binding, and they have both
demonstrated significant performance improvements compared to traditional SVM-based
methods. Min et al. utilized long short-term memory (LSTM) [15] to predict chromatin
accessibility and achieved state-of-the-art results for the time, thus proving the effectiveness
of RNNs for DNA sequence problems.

However, we point out that the previous methods have the following shortcomings.
First, most of the previous methods are based on k-mer, that is, a segment of length k.
Specifically, it takes a segment of length k at intervals. The artificial division of the original
sequence may destroy the internal semantic information, causing difficulties when learning
subsequent models. Second, with the progress being made in language models, we have
the ability to learn the interior semantic information of sequences through pre-training.
There has been related work on existing methods, such as using GloVe [20] to train the
k-mer word vectors. However, these pre-training models are mostly traditional word
vector methods. On the one hand, they can only learn the characteristics of the word
itself and have no knowledge of the context of DNA sequences [21]. On the other hand,
they are limited to a specific dataset and thus cannot be widely applied to other scenarios.
Third, traditional CNNs and RNNs have been proven to be unsuitable for long-sequence
problems [22]. CNNs, restricted by the size of convolution kernels, fail to learn global
information effectively, while RNNs tend to cause gradient disappearance and result in
slow training due to the lack of parallelizability when receiving a long input. In contrast,
the attention mechanism (Attention) [23] can effectively learn the long-range dependence
of sequences and has been widely used in the field of natural language processing.

In response to the above disadvantages, we constructed a chromatin accessibility
prediction model called SemanticCAP, which is based on features learning from a language
model. The data and code for our system are available at github.com/ykzhang0126/
semanticCAP (accessed on 16 February 2022). The SemanticCAP model, trained on DNase-

github.com/ykzhang0126/semanticCAP
github.com/ykzhang0126/semanticCAP

Genes 2022, 13, 568 3 of 23

seq datasets, has an ability to predict the accessibility of DNA sequences from different
cell lines and thus can be used as an effective alternative to biological sequencing methods
such as DNase-seq. At a minimum, our model makes the following three improvements:

1. A DNA language model is utilized to learn the deep semantics of DNA sequences
and introduces the semantic features in the chromatin accessibility prediction process;
therefore, we are able to obtain additional complex environmental information.

2. Both the DNA language model and the chromatin accessibility model use character-
based inputs instead of k-mer which stands for segments of length k. The strategy
prevents the information of original sequences from being destroyed.

3. The attention mechanism is widely used in our models in place of CNNs and RNNs,
making the model more powerful and stable in handling long sequences.

Before formally introducing our method, we will first present some preliminary
knowledge, including some common-sense information, theorems, and corollaries.

2. Theories

Theorem 1. For two standardized distributions using layer normalization (LN), which are denoted
as X1 and X2, the concat of them, that is, X ≡ [X1, X2], is still a standardized distribution.

Proof. Suppose that X1 has n elements and X2 has m elements. As we all know, LN [24]
transforms the distribution X as

X LN→ X− µ

σ
(1)

where µ and σ are the expectation and standard deviation of X respectively. Obviously, for
the normalized distribution X1 and X2, we have

E(X1) = E(X2) = 0 (2)

D(X1) = D(X2) = 1 (3)

where E stands for the expectation function and D stands for the deviation function. The
new distribution X is derived by concating X1 and X2, and thus has n + m elements.
Inferring from Equation (2), we have

E(X) =
nE(X1) + mE(X2)

n + m
= 0 (4)

D(X) = E
(
X2)− E2(X) = E

(
X2)

=
nE(X2

1)+mE(X2
2)

n+m

(5)

For X1 and X2, we also know that

E
(

X2
1

)
= D(X1) + E2(X1) (6)

E
(

X2
2

)
= D(X2) + E2(X2) (7)

Substituting Equations (2) and (3) into Equations (6) and (7), and finally into Equa-
tion (5), we have

D(X) = 1 (8)

Equations (4) and (8) demonstrate the standardization of X. �

Theorem 2. For any two distributions X1, X2, there two coefficients λ1, λ2 that always ex-
ist, so that the concat of them, after being multiplied by the two coefficients, respectively, that
is X ≡ [λ1X1, λ2X2], is a standardized distribution.

Genes 2022, 13, 568 4 of 23

Proof. Suppose that X1 has n elements and X2 has m elements. We denote the expectation
of the two distributions as µ1, µ2, and the variance as σ2

1 , σ2
2 . Notice that λ1 and λ2 are all

scalars. Now, pay attention to X. To prove this theorem, we want X to be a standardized
distribution, which requires the expectation of X to be 0 and the variance to be 1. Therefore,
we can list the following equation set:

E(X) =
nλ1E(X1)+mλ2E(X2)

n+m = 0

E
(
X2) = nE((λ1X1)

2)+mE((λ2X2)
2)

n+m
D(X) = E

(
X2)− E2(X) = 1

(9)

At the same time, we have equations similar to Equations (6) and (7), those being:

E
(
(λ1X1)

2
)
= D(λ1X1) + E2(λ1X1) (10)

E
(
(λ2X2)

2
)
= D(λ2X2) + E2(λ2X2) (11)

which are easy to calculate according to the nature of expectation and variance. Notice
that Equation (9) has two variables and two independent equations, meaning it should be
solvable. By calculating Equation (9), we can determine the numeric solution of λ1 and λ2
as follows:

λ2
1 =

m(n+m)µ2
2

nmµ2
2(µ2

1+σ2
1)+n2µ2

1(µ2
2+σ2

2)

λ2
2 =

n(n+m)µ2
1

nmµ2
1(µ2

2+σ2
2)+m2µ2

2(µ2
1+σ2

1)

(12)

The existence of Equation (12) ends our proof. Actually, we are able to obtain two sets
of solutions here because λ1 can either be positive or negative, and so can λ2. The signs
of λ1 and λ2 depend on the signs of µ1 and µ2, which can be easily inferred from the first
equation in Equation (9). �

Corollary 1. For any distributions X1, X2, . . ., Xn, their n coefficients λ1, λ2, . . ., λn, always
exist, so that the concat of them, after being multiplied by the n coefficients, respectively, that is
X ≡ [λ1X1, λ2X2, . . . , λnXn], is a standardized distribution.

Proof. The overall method of proof is similar to that used in Theorem 2. Note that, in
this case, we have n variables but only two independent equations, resulting in infinite
solutions according to Equation (9). To be more precise, the degree of freedom of our
solutions is n− 2. �

Theorem 3. In neural networks, for any two tensors X, Y that satisfy E(X) = E(Y) = 0, the
probability of feature disappearance of X after concating and normalizing them is Ω

(
SD(Y)
SD(X)

)
,

where SD represents the standard deviation.

Proof. Feature disappearance is defined as a situation where the features are too small.
Concretely, for a tensor X and a threshold tFD, if the result of a subsequent operation of
X is smaller than tFD, then the feature disappearance of X occurs. Here, tFD can be an
arbitrarily small value, such as 10−5.

Suppose that X has n elements and Y has m elements. We denote the expectation of
the two distributions as µ1, µ2, and the variance as σ2

1 , σ2
2 . As stated in the precondition,

we already know that
µ1 = µ2 = 0 (13)

Let Z ≡ [X, Y] and Z′ ≡ LN(Z) ≡ [X′, Y′]. With the help of Equation (9), we have

E(Z) = 0 (14)

Genes 2022, 13, 568 5 of 23

D(Z) = E
(

Z2
)
=

nσ2
1 + mσ2

2
n + m

(15)

We denote E(Z) as µ and D(Z) as σ2. According to Equation (1), for X′, we know that

E
(
X′
)
= E

(
X− E(Z)√

D(Z)

)
=

µ1 − µ

σ
(16)

D
(
X′
)
= D

(
X− E(Z)√

D(Z)

)
=

σ2
1

σ2 (17)

We denote E(X′) as µ1
′ and D(X′) as σ1

′2. Now, we consider the results of a subsequent
operation of X, which is ∑n

i=1 λiXi
′. This is very common in convolution, linear, or attention

layers. For the result, an observation is

n
∑

i=1
λiXi

′ ≤
n
∑

i=1
|λi|
∣∣Xi
′∣∣ ≤ λm

n
∑

i=1

∣∣Xi
′∣∣ (18)

where λm = max
1≤i≤n

|λi|. For the convenience of analysis, all λ are set to 1. This will not

result in a loss of generality because the value scaling from λm to 1 has no effect on the
subsequent derivation. Here, we denote ∑ X′ as SX′ . According to the central limit theorem
(Lindeberg–Lévy form) [25], we find that SX′ obeys a normal distribution, that is

SX′ ∼ N
(

nµ1
′, nσ1

′2
)

(19)

For a feature disappearance threshold tFD, we want to figure out the probability of
|SX′ | < tFD. Denote this event as FD, and we can obtain

Pr(FD) = Pr{|SX′ | < tFD}
= Pr

{∣∣∣ SX′−nµ1
′

√
nσ1
′

∣∣∣ < tFD−nµ1
′

√
nσ1
′

}
= 2Φ

(
tFD−nµ1

′
√

nσ1
′

)
− 1

(20)

where Φ is the cumulative distribution function (cdf) of the standard normal distribution.
Since it is an integral that does not have a closed form solution, we cannot directly analyze
it. According to Equations (13), (14) and (16), we know that µ1

′ = 0. At the same time, we
know that tFD is a small number, leading to tFD√

nσ1
′ → 0 . Therefore, we have the equation

as follows:
Φ(x) = Φ(0) + ϕ(0)x + R1(x)

= 0.5 + 1√
2π

x + o(x) (21)

The formula is a Taylor expansion where ϕ is the probability density function (pdf) of
the standard normal distribution, R1(x) is the Lagrange remainder, and o(x) is the Peano
remainder, standing for a high-order infinitesimal of x. Combining Equations (15), (17), (20)
and (21), we achieve

Pr(FD) = tFD

√
2(ksk2

d+1)
πn(ks+1) + o(kd)

= Ω(Kd)
(22)

where ks =
m
n and kd = σ2

σ1
. The above equation can also be written as Pr(FD) = Ω

(
SD(Y)
SD(X)

)
.

�

Corollary 2. In neural networks, feature disappearance can lead to gradient disappearance.

Proof. According to Theorem 3, feature disappearance happens if there exists a tensor T
such that |T| < tFD. Similar to the definition of feature disappearance, gradient disappear-

Genes 2022, 13, 568 6 of 23

ance is defined as a situation where the gradients are too small. Concretely, for a parameter
C with a gradient of gradC and a threshold tGD, if gradC is smaller than tGD, the gradient
disappearance of C happens. Here, tGD can be an arbitrarily small value.

Consider a subsequent operation of T, which is T′ = CTn, where n stands for the
number of layers involved in the calculation. The gradient disappearance happens if

|gradC| =
∣∣∣∣dT′

dC

∣∣∣∣ = |Tn| = |T|n < tGD (23)

At the same time, we already have |T|n < tn
FD, which means that we simply need to

meet the requirements for
tn
FD < tGD (24)

Note that tFD is a small number, which means that tFD < 1. Finally, we can derive a
formula for n:

n >
log tGD
log tFD

(25)

Thereby, we get a sufficient condition for n, and we can come to a conclusion. Gradient
disappearance occurs in layers deep enough after feature disappearance. �

The above corollary is consistent with intuition. The disappearance of gradients is
always accompanied by the disappearance of features, and it is always a problem in deep
neural networks.

Theorem 4. In neural networks, for any two tensors X1, X2 of the same dimension, there are
always two matrices M1, M2, so that the operation of concating them and the operation of adding
them after they have been multiplied in the Hadamard format by the two matrices, respectively, are
equivalent in effect.

Proof. First of all, we illustrate the definition of the Hadamard product [26]. The Hadamard
product (also known as the element-wise product) is a binary operation that takes two
matrices of the same dimensions and produces another matrix of the same dimension.
Concretely, we can define it as

A(R, N) ◦ B (R, N) = AB(R, N)
AB ij = AijBij

(26)

The symbol ‘◦’ is used to distinguish it from the more common matrix product, which
is denoted as ‘·’ and is usually omitted. The definition implies that the dimension of X1
should be the same as that of M1, as well as X2 and M2. At the same time X1 and X2 are
assumed to have the same dimensions in the precondition of our proposition. As such, we
might as well set them to RR×N . The representation of X1 and X2 is presented below:

X1 =

p1
p2
...

pR

 X2 =

q1
q2
...

qR

 (27)

Our goal is to weigh the effect of the two operations. For the convenience of com-
parison, we let the results after the two operations multiply a matrix, thus converting the
dimension to RR×M. Adding a linear layer is very common in neural networks, and it
hardly affects the network’s expression ability.

Genes 2022, 13, 568 7 of 23

Considering the first scheme, the concat of X1 and X2, we have

U = [X1, X2] · A

=

p1 q1
p2 q2
...

...
pR qR

(a1 a2 . . . aM
) (28)

where A ∈ R2N×M and U ∈ RR×M. Observing the i-th row and j-th column of U, we
find that

Uij = [pi, qi] · aj
= [pi, qi] ·

[
ajp, ajq

]
= pi · ajp + qi · ajq

(29)

Considering the second scheme, with the addition of X1 and X2 as the core, we have

V = (M1 ◦ X1 + M2 ◦ X2) · B

=

λ11 ◦ p1 + λ12 ◦ q1
λ21 ◦ p2 + λ22 ◦ q2

...
λR1 ◦ pR + λR2 ◦ qR

(b1 b2 . . . bM
) (30)

where B ∈ RN×M and V ∈ RR×M. Still, we pay attention to the i-th row and j-th column of
V and find that

Vij = (λi1 ◦ pi + λi2 ◦ qi) · bj

= ∑
(
(λi1 ◦ pi + λi2 ◦ qi) ◦ bT

j

)
= ∑

(
λi1 ◦ bT

j ◦ pi + λi2 ◦ bT
j ◦ qi

)
= ∑

(
λi1 ◦ bT

j ◦ pi

)
+ ∑

(
λi2 ◦ bT

j ◦ qi

)
= pi ·

(
λi1 ◦ bT

j

)T
+ qi ·

(
λi2 ◦ bT

j

)T

= pi ·
(
λT

i1 ◦ bj
)
+ qi ·

(
λT

i2 ◦ bj
)

(31)

Comparing Equations (29) and (31), we find that, when we let λT
i1 ◦ bj equal ajp and

λT
i2 ◦ bj equal ajq, the values of U and V are equal, which is strong evidence of effect

equivalence. �

As the equivalence has been proven, similar to the plain concat, no information is lost
in the above method. We point out that the Hadamard product is an alternative version of
the gate mechanism [27]. We use coefficients to adjust the original distribution to screen
out effective features. For the speed and stability of training, setting the initial value of M
to 1 is recommended.

Further, we can observe the gradient of the parameters λ in Equation (30), where
we have

∇

λ11 ◦ p1 + λ12 ◦ q1
λ21 ◦ p2 + λ22 ◦ q2

...
λR1 ◦ pR + λR2 ◦ qR

 =

p1 q1
p2 q2
...

...
pR qR

 (32)

Compared to the gate mechanism, our method is simpler, saves space, and is more
direct in gradient propagation.

Of course, Theorem 4 could be generalized to cases with an arbitrary number of
tensors. We describe it in the following corollary:

Genes 2022, 13, 568 8 of 23

Corollary 3. In neural networks, for any tensors X1, X2, . . ., Xn of the same dimension, there
always exist n matrices M1, M2, . . ., Mn so that the operation of concating them and the operation of
adding them after they have been multiplied in the Hadamard format by the n matrices, respectively,
are equivalent in effect.

Proof. This proof is similar to the proof for Theorem 4. �

Theorem 5. In neural networks, for a layer composed of n neurons, the effective training times of
the neurons in this layer reach the maximum when the dropout rate is set to 0 or 1− 1

n .

Proof. The number of neurons in this layer is n, so we shall mark them as N1, N2, . . ., Nn.
Suppose that the dropout rate [28] is p, and the total number of training times is t. We
denote 1− p as q.

Consider the ti-th training. The network randomly selects nq neurons to update due
to the existence of the dropout mechanism. Denote these neurons as N1, N2, . . ., Nnq.

Without the loss of generality, we consider the next time N1 is selected, which is the
t2-th training time. We denote the number of neurons selected for update in N2, . . ., Nnq as
S, and the number of neurons selected in Nnq+1, . . ., Nn as T. We know that the selection of
neurons in S is an independent event, so we have

E(S) = q(nq− 1) (33)

At the same time, the relationship between S and T is

T = nq− 1− S (34)

Inferring from Equations (33) and (34), we achieve

E(T) = −nq2 + nq + q− 1 (35)

The neurons represented by S are the neurons that are updated jointly at time t2 and
time t1, thus belonging to the same subnetwork. We assume that they share one training
gain with N1. At the same time, the neurons represented by T have not been updated
at time t1; thus, each of them has one unique training gain. Therefore, at the update
time t2, the expected gain of N1 is 1× 1

E(T)+1 ×
1

E(S)+1 , which is derived from the above
proportion analysis. Paying attention to t1 and t2, we find that t2 − t1 obeys geometric
distribution because the selection of N1 is a Bernoulli experiment with probability q. That
is, t2 − t1 ∼ GE(q), meaning that

E(t2 − t1) =
1
q

(36)

Therefore, the expected number of training times for N1 is E
(

t
t2−t1

)
= tq. The total

training gain is the product of the number of training times and the gain of a single time
training, which we denote as G. Now, the formula emerges:

G(q) =
t

−n2q3 + (n2 + 2n)q2 − (2n + 1)q + n + 1
(37)

Denote f (q) as the denominator of G(q) and differentiate that to obtain

∂ f (q)
∂q

= −(nq− 1)(3nq− 2n− 1) (38)

With the help of Equation (38), it is easy to draw an image of G(p), shown in Figure 1,
where we set t to 1. The observation is that when q = 1

n or q = 1, that is, p is 0 or 1− 1
n , G

Genes 2022, 13, 568 9 of 23

reaches the maximum value t
n , demonstrating that the effective training times of N1 are the

largest. The conclusion can be generalized to every neuron in the layer. �

Genes 2022, 13, x FOR PEER REVIEW 9 of 24

Therefore, the expected number of training times for 𝑁ଵ is 𝐸 ቀ ௧௧మି௧భቁ = 𝑡𝑞. The total
training gain is the product of the number of training times and the gain of a single time
training, which we denote as 𝐺. Now, the formula emerges: 𝐺(𝑞) = 𝑡−𝑛ଶ𝑞ଷ + (𝑛ଶ + 2𝑛)𝑞ଶ − (2𝑛 + 1)𝑞 + 𝑛 + 1 (37)

Denote 𝑓(𝑞) as the denominator of 𝐺(𝑞) and differentiate that to obtain

 ∂𝑓(𝑞)∂𝑞 = −(𝑛𝑞 − 1)(3𝑛𝑞 − 2𝑛 − 1) (38)

With the help of Equation (38), it is easy to draw an image of 𝐺(𝑝), shown in Figure
1, where we set 𝑡 to 1. The observation is that when 𝑞 = ଵ or 𝑞 = 1, that is, 𝑝 is 0 or 1 − ଵ, 𝐺 reaches the maximum value ௧, demonstrating that the effective training times
of 𝑁ଵ are the largest. The conclusion can be generalized to every neuron in the layer. □

Figure 1. The graph of the function with respect to G derived from Equation (37) in Theorem 5. It
shows the gain of a single training time as n differs. G varies with p, and the extreme points (squares)
and turning points (triangles) vary with n. The turning point is approximately 8.72 × 10−9 n3 − 9.35 ×
10−6n2 + 2.44 × 10−3n + 0.78, which is a good choice for the dropout rate because it balances the gain
of a single time training and the representation ability of a nerual network.

Corollary 4. In neural networks, if the amount of training data is sufficient, the optimal value of
the dropout rate is 0.5; if the amount of training data is insufficient, then a number that is close to
1 is a better choice.

Proof. Theorem 5 focuses on the effective neuron training times in the network, and the
corollary focuses on the representation ability. It can be seen from Equation (37) that the
effective training times of a certain layer are directly proportional to the total training
times 𝑡. When the number of training times reaches a certain threshold, the network

Figure 1. The graph of the function with respect to G derived from Equation (37) in Theorem 5. It
shows the gain of a single training time as n differs. G varies with p, and the extreme points (squares)
and turning points (triangles) vary with n. The turning point is approximately 8.72 × 10−9 n3 − 9.35
× 10−6n2 + 2.44 × 10−3n + 0.78, which is a good choice for the dropout rate because it balances the
gain of a single time training and the representation ability of a nerual network.

Corollary 4. In neural networks, if the amount of training data is sufficient, the optimal value of
the dropout rate is 0.5; if the amount of training data is insufficient, then a number that is close to 1
is a better choice.

Proof. Theorem 5 focuses on the effective neuron training times in the network, and the
corollary focuses on the representation ability. It can be seen from Equation (37) that the
effective training times of a certain layer are directly proportional to the total training times
t. When the number of training times reaches a certain threshold, the network reaches a
balance point, and further training will not bring any performance improvements.

If the training data are sufficient, meaning that t and G are large enough, then the
network is guaranteed to be fully trained. Therefore, we do not need to worry about
whether the training times of neurons in the network is enough. However, we still need to
consider the representation ability of the network, which has a close relationship with the
number of subnetworks SN. It can be calculated as

SN =

(
n

n(1− p)

)
(39)

which is a combination number. Obviously, when p is 0.5, the number of subnetworks is
the largest, and the network’s representation ability is relatively strong.

However, when there are not enough training data, we cannot guarantee the sufficiency
of training. On the one hand, we need to set the dropout rate to a value close to 0 or 1− 1

n

Genes 2022, 13, 568 10 of 23

to guarantee the number of trainings indicated by the theorem. On the other hand, in
order to ensure the network’s representation ability, we want the dropout rate to be close
to 0.5. Here, a balanced approach is to choose the turning point shown in Figure 1, which
considers both training times and representation ability. Because this point is difficult to
analyze, we provide a fitting function shown in Figure 1, the error of which is bounded by
2× 10−2 for n smaller than 512. �

The above corollary is intuitive because the complexity of the network should be
proportional to the amount of data. A small amount of data requires a simple model,
calling for a higher dropout rate. Notice that a large dropout rate not only enables the
model to be fully trained, but it also helps to accelerate the process.

In a modern neural network framework, the discarded neurons will not participate in
gradient propagation this time, which largely reduces the number of parameters that need
to be adjusted in the network.

3. Models

To address the task of chromatin accessibility prediction, we designed SemanticCAP,
which includes a DNA language model that is shown in Section 3.1 and a chromatin acces-
sibility model that is shown in Section 3.2. Briefly, we augment the chromatin accessibility
model with the features provided by the DNA language model, thereby improving the
chromatin accessibility prediction performance. A detailed methodology is described
as follows.

3.1. DNA Language Model
3.1.1. Process of Data

We used the human reference genome GRCh37 (hg19) as the original data for our DNA
language model. The human reference genome is a digital nucleic acid sequence database
that can be used as a representative example of the gene set of an idealized individual
of a species [29]. Therefore, a model based on the database could be applied to various
genetic-sequence-related issues.

The task we designed for our DNA language model uses context to predict the inter-
mediate base. However, there are at least three challenges. The first is that there are two
inputs, the upstream and downstream, which are defined as the upper and lower sequences
of a certain base. Since we predict the middle base from the information on both sides,
the definition of the upstream and downstream are interchangeable, which means that the
context should be treated in the same way. Second, the length of the input sequence is quite
long, far from the output length of 4 bp, which stands for the classification results of bases.
The large gap between the input and output lengths points to the fact that neural networks
must be designed in a more subtle way. Otherwise, redundant calculations or poor results
may occur. Third, we do not always have such long context data in real situations. For
example, the length of the upstreams in the DNA datasets in Table 1 mostly vary from 0 bp
to 600 bp, resulting in insufficient information in some cases.

To solve the above problems, we designed a simple but effective input format and
training method. First of all, we randomly selected a certain position, taking the upstream
and downstream sequences with lengths of 512 bp as the input, and the output is the base
connecting the upstream and downstream, i.e., A, T, C, and G.

Genes 2022, 13, 568 11 of 23

Table 1. An overall view of accessible DNA segments of each cell. l_mean and l_med show the
approximate length of the data, and l_std describes how discrete the data is. The length is denoted
as bp.

Cell Type Code Size l_min l_max l_mean l_med l_std

GM12878 ENCSR0000EMT 244,692 36 11,481 610 381 614
K562 ENCSR0000EPC 418,624 36 13,307 675 423 671

MCF-7 ENCSR0000EPH 503,816 36 12,041 471 361 391
HeLa-S3 ENCSR0000ENO 264,264 36 11,557 615 420 524
H1-hESC ENCSR0000EMU 266,868 36 7795 430 320 347
HepG2 ENCSR0000ENP 283,148 36 14,425 652 406 626

For the first challenge, we combined the upstream and downstream into one sequence,
separated by a special prediction token [LOST], and provided different segment embed-
dings for the two parts. Additionally, a special classification token [CLS] was added to
the beginning of the sequence so that the model could learn an overall representation of
it. For the second challenge, the final hidden state corresponding to the token [LOST] was
used as the aggregate sequence representation for classification tasks, by which the output
dimension was reduced quickly without complex network structures. This technique was
used by Bert [30] for the first time. For the third challenge, some data augmentation tricks
were applied to enhance the capabilities of the model. First, we constructed symmetric
sequences based on the principle of base complementation and the non-directionality of
DNA sequences, including the axial symmetry and mirror symmetry. This helps the model
learn the two properties of DNA sequences. Second, we did not include all of the inputs
in the model, which helps to enhance the model’s prediction ability under conditions
with insufficient information. Basically, we mask some percentage of the input tokens at
random, and concretely there are two strategies. For a certain sequence, either upstream or
downstream, we mask (replace with [MASK]) 20% of random tokens in 10% of cases or 40%
of consecutive tokens in 15% of cases. Figure 2 is an example of our mask operation. In this
case, two random tokens of the upstream and three consecutive tokens of the downstream
are masked.

Genes 2022, 13, x FOR PEER REVIEW 11 of 24

redundant calculations or poor results may occur. Third, we do not always have such long
context data in real situations. For example, the length of the upstreams in the DNA
datasets in Table 1 mostly vary from 0 bp to 600 bp, resulting in insufficient
information in some cases.

To solve the above problems, we designed a simple but effective input format and
training method. First of all, we randomly selected a certain position, taking the upstream
and downstream sequences with lengths of 512 bp as the input, and the output is the
base connecting the upstream and downstream, i.e., A, T, C, and G.

Table 1. An overall view of accessible DNA segments of each cell. l_mean and l_med show the
approximate length of the data, and l_std describes how discrete the data is. The length is denoted as bp.

Cell Type Code Size l_min l_max l_mean l_med l_std
GM12878 ENCSR0000EMT 244,692 36 11,481 610 381 614

K562 ENCSR0000EPC 418,624 36 13,307 675 423 671
MCF-7 ENCSR0000EPH 503,816 36 12,041 471 361 391

HeLa-S3 ENCSR0000ENO 264,264 36 11,557 615 420 524
H1-hESC ENCSR0000EMU 266,868 36 7795 430 320 347
HepG2 ENCSR0000ENP 283,148 36 14,425 652 406 626

For the first challenge, we combined the upstream and downstream into one
sequence, separated by a special prediction token ሾLOSTሿ, and provided different segment
embeddings for the two parts. Additionally, a special classification token ሾCLSሿ was
added to the beginning of the sequence so that the model could learn an overall
representation of it. For the second challenge, the final hidden state corresponding to the
token ሾLOSTሿ was used as the aggregate sequence representation for classification tasks,
by which the output dimension was reduced quickly without complex network
structures. This technique was used by Bert [30] for the first time. For the third challenge,
some data augmentation tricks were applied to enhance the capabilities of the model.
First, we constructed symmetric sequences based on the principle of base
complementation and the non-directionality of DNA sequences, including the axial
symmetry and mirror symmetry. This helps the model learn the two properties of DNA
sequences. Second, we did not include all of the inputs in the model, which helps to
enhance the model’s prediction ability under conditions with insufficient information.
Basically, we mask some percentage of the input tokens at random, and concretely there
are two strategies. For a certain sequence, either upstream or downstream, we mask
(replace with ሾMASKሿ) 20% of random tokens in 10% of cases or 40% of consecutive
tokens in 15% of cases. Figure 2 is an example of our mask operation. In this case, two
random tokens of the upstream and three consecutive tokens of the downstream are
masked.

Figure 2. An example of mask operation on a random DNA sequence. Here, C and T of the upstream
and C, G, and A of the downstream are masked. The intermediate base is T, which is the target that
needs to be predicted.

Finally, there is no need to worry about overfitting. First, we have 109 bases in the DNA
dataset, meaning that we will not over-learn some specific data. Second, we have mask
and dropout operations in our training, which both are great ways to avoid over-training.

Genes 2022, 13, 568 12 of 23

3.1.2. Model Structure

The input and output are constructed as described in Section 3.1.1, and we denote
them as Tin and Tout. Basically, the model can be described as

Tin
embed→ Tembed

multi−conv→ Tcnns
transformer→ Ttrans

mlp→ Tout

(40)

where embed is the input embedding layer, multi − conv stands for our multi-kernel
CNN, transformer represents the transformer blocks, and mlp contains a linear layer and a
softmax function. Figure 3 shows the full picture of the model.

Genes 2022, 13, x FOR PEER REVIEW 12 of 24

Figure 2. An example of mask operation on a random DNA sequence. Here, C and T of the upstream
and C, G, and A of the downstream are masked. The intermediate base is T, which is the target
that needs to be predicted.

Finally, there is no need to worry about overfitting. First, we have 109 bases in the DNA
dataset, meaning that we will not over-learn some specific data. Second, we have mask and
dropout operations in our training, which both are great ways to avoid over-training.

3.1.2. Model Structure
The input and output are constructed as described in Section 3.1.1, and we denote

them as 𝑇 and 𝑇௨௧. Basically, the model can be described as

 𝑇 ୣ୫ୠୣୢሱ⎯⎯⎯ሮ 𝑇ௗ ୫୳୪୲୧ିୡ୭୬୴ሱ⎯⎯⎯⎯⎯⎯⎯ሮ 𝑇௦୲୰ୟ୬ୱ୭୰୫ୣ୰ሱ⎯⎯⎯⎯⎯⎯⎯ሮ 𝑇௧௦ ୫୪୮ሱ⎯ሮ 𝑇௨௧ (40)

where embed is the input embedding layer, multi − conv stands for our multi-kernel
CNN, transformer represents the transformer blocks, and mlp contains a linear layer
and a softmax function. Figure 3 shows the full picture of the model.

Figure 3. DNA language model. The box on the right displays our smooth feature addition (SFA).

Function embed() is the encoding layer transforming the input sequence into a ma-
trix. The dimension conversion is ℕ → ℝ×ா, where 𝐿 is the length of the sequence, and 𝐸 is the encoding length. Specifically, we encode the input as

 embed(𝑇) = word − embed(𝑇)+position − embed(𝑇)+segment − embed(𝑇) (41)

where word − embed() is the meaning of the word itself, position − embed() provides
the representation of different positions, and segment − embed() distinguishes the

Figure 3. DNA language model. The box on the right displays our smooth feature addition (SFA).

Function embed() is the encoding layer transforming the input sequence into a matrix.
The dimension conversion is NL → RL×E, where L is the length of the sequence, and E is
the encoding length. Specifically, we encode the input as

embed(Tin) = word− embed(Tin)
+position− embed(Tin)
+segment− embed(Tin)

(41)

where word− embed() is the meaning of the word itself, position− embed() provides the
representation of different positions, and segment− embed() distinguishes the upstream
and the downstream. An intuitive approach is to concatenate the three encodings without
losing semantics, but this requires triple the space. Instead, we directly add these three
encodings. This works because the three parameters are all leaf nodes of the training
graph and can automatically adapt to each other’s distributions. In this way, we reduce the
dimension of the coded matrix, thus reducing the parameter space and data space.

Function multi− conv() is the multi-kernel convolution layer learning a short-range
relationship of the sequence. The dimension conversion is RL×E → RL×H , where H is

Genes 2022, 13, 568 13 of 23

the hidden dimension. Here, we use convolution kernels of different lengths to learn
local relationships at different distances, and we propose a smooth feature addition (SFA)
method to fuse these features. Specifically, we carry out

multi− conv(Tembed) =
k

∑
i=0

λi ◦ LN(convi(Tembed)) (42)

where convi() is a normal, one-dimensional, convolution layer with a kernel length of li, the
output dimension of which is RL×H , λi is a network parameter with a dimension of RL×H ,
and k is the number of kernels of different lengths. The sizes of the convolution kernels
are small rather than large, and their advantages have been verified in DenseNet [31]. On
the one hand, small convolution kernels use less space than large convolution kernels.
On the other hand, we need small convolution kernels to learn the local information of
the sequence, while the long-range dependence of the sequence is to be explored by the
subsequent transformer module.

Now, we will explain how we designed the smooth feature addition (SFA) algorithm.
Before that, we must provide insight into what happens in the plain concat of features.

In a sequence problem, we often directly concat two features in the last dimension.
Specifically, if we have two features with dimensions RL×M and RL×N , the dimension
of the features after concat is RL×(M+N). We thought that this approach would not lose
information, but, in fact, there is a danger of feature disappearance. For two features
with different distributions learning from different modules, plain concat will create an
unbalanced distribution, where some values are extremely small. To make matters worse,
layer normalization is usually used to adjust the distribution after a concat operation,
causing the values to be concentrated near 0. Quantitative analysis can be seen in Theorem
3. Finally, as the network goes deeper, the gradient disappears, leading to the difficulty of
learning. This is proven in Corollary 2.

A naive thought is to normalize the two distributions before concating them, which is
proven to be correct in Theorem 1. However, it is not effective, for it converts the dimension
from RL×H to RL×kH , posing a challenge for the subsequent module design. Considering
that the dimensions of convolution features are the same, this inspired us to find a way to
smoothly add them using some tuning parameters. This is how we designed SFA. Corollary
3 proves the equivalence of SFA and plain concat, and it illustrates the working mechanism
of SFA and its advantages in space occupation, feature selection, and gradient propagation.

Function transformer() is the stack of transformer blocks learning a long-range rela-
tionship of the sequence. The dimension conversion is RL×H → RL×H . Simply, it can be
described as

transformer(Tcnns) = sub(ff, sub(attention, Tcnns)) (43)

where sub(f , x) = LN(x + f (x)). ff represents the feed forward function, and attention is
short for multi-head attention. The module was proposed by Vaswani et al. in 2017 [23].

Function mlp() is the output layer and is responsible for converting the hidden state to
the output. The dimension conversion is RL×H → N. We extract the tensor corresponding
to the token [LOST], convert it into an output probability through a linear layer, and
generate the prediction value via a softmax function. The output process is

mlp(Ttrans) = softmax
(

linear
(

Ttrans

[
′[LOST]′

]))
(44)

3.2. Chromatin Accessibility Model
3.2.1. Process of Data

We selected DNase-seq experiment data from six typical cell lines, including GM12878,
K562, MCF-7, HeLa-S3, H1-hESC, and HepG2, as the original data for our chromatin
accessibility model. GM12878 is a type of lymphoblast produced by EBV transformation
from the blood of a female donor of Northern European and Western European descent.

Genes 2022, 13, 568 14 of 23

K562 is an immortalized cell derived from a female patient with chronic myeloid
leukemia (CML). MCF-7 is a breast cancer cell sampled from a white female. HeLa-S3 is an
immortal cell derived from a cervical cancer patient. H1-hESC is a human embryonic stem
cell. HepG2 comes from a male liver cancer patient.

For each cell type, we downloaded the original sequence data from the ENCODE
website, used a short read aligner tool bowtie [32] to map the DNA sequence to the human
reference genome (hg19), and used HOTSPOT [33] to identify chromatin accessibility
regions (peaks), i.e., genome-wide open chromatin regions that can yield information about
possible protein binding regions on a genome-wide scale. We treated these variable-length
sequences as positive samples. At the same time, we sampled the same number and
same size sequences from the whole genome as negative samples. An overview of the
data is shown in Table 1, which shows the number of sequences, the minimum value, the
median value, the maximum value, and the standard deviation in lengths. Additionally,
the distribution statistics of different datasets are shown in Figure 4. For the fairness of
comparison, we removed sequences with lengths of less than 36 bp. We truncated or
expanded each sequence symmetrically to a sequence of length 768 bp, and we took a
context of a length of 512 bp for each site in it. Therefore, the actual input length of our
model is 768 + 512× 2 = 1792 bp. From Figure 4, we can observe that most of the lengths
are clustered between 36 and 1792. This proves that our cut-off has little impact and is
reasonable. Similar to our DNA language model, a special classification token [CLS] was
added to the beginning of the sequence to predict the accessibility. Compared to the input
length of 800 bp in [15], our prediction length increased by 124%, and the quantity of the
DNA sequences that did not need to be truncated in the original dataset increased by 17.4%.
Moreover, we did not pay a great price for such a long input because our context was
transferred to a pre-trained model for the predictions. The output is the accessibility of the
input sequence, i.e., either 0 for inaccessibility or 1 for accessibility.

Genes 2022, 13, x FOR PEER REVIEW 15 of 24

Figure 4. The length distribution of each cell, which is a more intuitive display of the content of the
data. It can be seen that most of the lengths are concentrated between 102–103.

Finally, the ratio of our training set, validation set, and test set is 0.85: 0.05: 0.10. The
training set was used to train the model, the validation set was used to adjust the hyperpa-
rameters to prevent overfitting, and the test set was used to test the performance of the
final model.

3.2.2. Model Structure
The input and output were constructed as described in Section 3.2.1. and are denoted

as 𝑇 and 𝑇௨௧. Basically, the model can be described as 𝑇 ୣ୫ୠୣୢሱ⎯⎯⎯ሮ 𝑇ௗ ୫୳୪୲୧ିୡ୭୬୴ሱ⎯⎯⎯⎯⎯⎯⎯ሮ 𝑇௦ ୱୡ୭୬ୡୟ୲ሱ⎯⎯⎯⎯ሮ 𝑇௦௧୲୰ୟ୬ୱ୭୰୫ୣ୰ሱ⎯⎯⎯⎯⎯⎯⎯ሮ 𝑇௧௦ ୫୪୮ሱ⎯ሮ 𝑇௨௧ (45)

where embed is the input embedding layer, multi − conv stands for our multi-kernel CNN, sconcat is short for our SConcat module, transformer represents the transformer blocks, and mlp contains a linear layer and a sigmoid function. Figure 5 shows a full picture of the model.
One may find that the accessibility model is very similar to our DNA language model. Indeed,
we only modified some of the model structures and changed the hyperparameters, but they
are all very critical adjustments that make the model suitable for the task.

Figure 4. The length distribution of each cell, which is a more intuitive display of the content of the
data. It can be seen that most of the lengths are concentrated between 102–103.

Finally, the ratio of our training set, validation set, and test set is 0.85 : 0.05 : 0.10.
The training set was used to train the model, the validation set was used to adjust the
hyperparameters to prevent overfitting, and the test set was used to test the performance
of the final model.

Genes 2022, 13, 568 15 of 23

3.2.2. Model Structure

The input and output were constructed as described in Section 3.2.1. and are denoted
as Tin and Tout. Basically, the model can be described as

Tin
embed→ Tembed

multi−conv→ Tcnns
sconcat→ Tsconcat

transformer→ Ttrans
mlp→ Tout

(45)

where embed is the input embedding layer, multi − conv stands for our multi-kernel
CNN, sconcat is short for our SConcat module, transformer represents the transformer
blocks, and mlp contains a linear layer and a sigmoid function. Figure 5 shows a full
picture of the model. One may find that the accessibility model is very similar to our DNA
language model. Indeed, we only modified some of the model structures and changed the
hyperparameters, but they are all very critical adjustments that make the model suitable
for the task.

Genes 2022, 13, x FOR PEER REVIEW 16 of 24

Figure 5. Chromatin accessibility model. The box on the right displays our smooth feature concat
(SFC).

Function embed() is the encoding layer transforming the input sequence into a fea-
ture matrix. The dimension conversion is ℕ → ℝ×ா , where 𝐿 is the length of the se-
quence, and 𝐸 is the encoding length. Specifically, we encode the input as embed(𝑇) = word − embed(𝑇)+position − embed(𝑇) (46)

Note that there is no segment − embed() in this task because there is no need to dis-
tinguish between the different segments.

Function multi − conv() has been explained in Section 3.1.2. The dimension conver-
sion is ℝ×ா → ℝ×ீ, where 𝐺 is the dimension of features learning from this layer.

Function sconcat() is the concat layer that fuses the features of the language model
with the features learned from multi − conv . The dimension conversion is ℝ×ீ → ℝ×(ீାு), where 𝐻 is the dimension of features generated from the DNA lan-
guage model. Basically, the language model was used to construct features for different
sites in the sequence, and a smooth feature concat (SFC) method was proposed to fuse
them with the previous features: sconcat(𝑇, 𝑇௦) = LN൫ൣ𝜆ଵ ∘ LM൫𝑇పሬ⃖ሬሬ⃗ ൯, 𝜆ଶ ∘ 𝑇௦൧൯ (47)

where 𝑇పሬ⃖ሬሬ⃗ stands for the context of sites in 𝑇; 𝜆ଵ and 𝜆ଶ are two network parameters
with a dimension of ℝ; and LM refers to our DNA language model. Here, it receives a
DNA sequence, then constructs the context for each site in the sequence, and produces an
output of length 𝐻. Specifically, if the length of the sequence is 𝐿, it will construct 𝐿 pairs
of contexts as the input and output an ℝ×ு matrix.

Now, we explain how we designed the smooth feature concat (SFC) algorithm. First,
we should mention that the output dimension of the language model is ℝ×ு, and the
dimension of 𝑇௦ is ℝ×ீ, which means we cannot directly apply SFA in this scenario.

Fortunately, the analysis in Section 3.1.2 has already provided a solution to this prob-
lem. We can normalize the two distributions separately before concating them. However,
this method uses LN twice and consumes additional parameter space and data space.
One question is whether it is possible to use LN only once. It appears that this is the case.
Theorem 2 states that, for any two distributions, there always exist two coefficients, so

Figure 5. Chromatin accessibility model. The box on the right displays our smooth feature concat
(SFC).

Function embed() is the encoding layer transforming the input sequence into a feature
matrix. The dimension conversion is NL → RL×E, where L is the length of the sequence,
and E is the encoding length. Specifically, we encode the input as

embed(Tin) = word− embed(Tin)
+position− embed(Tin)

(46)

Note that there is no segment − embed() in this task because there is no need to
distinguish between the different segments.

Function multi− conv() has been explained in Section 3.1.2. The dimension conver-
sion is RL×E → RL×G, where G is the dimension of features learning from this layer.

Function sconcat() is the concat layer that fuses the features of the language model
with the features learned from multi− conv. The dimension conversion isRL×G → RL×(G+H),
where H is the dimension of features generated from the DNA language model. Basically,

Genes 2022, 13, 568 16 of 23

the language model was used to construct features for different sites in the sequence, and a
smooth feature concat (SFC) method was proposed to fuse them with the previous features:

sconcat(Tin, Tcnns) = LN
([

λ1 ◦ LM
(↔

Tin

)
, λ2 ◦ Tcnns

])
(47)

where
↔
Tin stands for the context of sites in Tin; λ1 and λ2 are two network parameters

with a dimension of RL; and LM refers to our DNA language model. Here, it receives a
DNA sequence, then constructs the context for each site in the sequence, and produces an
output of length H. Specifically, if the length of the sequence is L, it will construct L pairs
of contexts as the input and output an RL×H matrix.

Now, we explain how we designed the smooth feature concat (SFC) algorithm. First,
we should mention that the output dimension of the language model is RL×H , and the
dimension of Tcnns is RL×G, which means we cannot directly apply SFA in this scenario.

Fortunately, the analysis in Section 3.1.2 has already provided a solution to this prob-
lem. We can normalize the two distributions separately before concating them. However,
this method uses LN twice and consumes additional parameter space and data space. One
question is whether it is possible to use LN only once. It appears that this is the case.
Theorem 2 states that, for any two distributions, there always exist two coefficients, so that
the concat after they are multiplied by these two coefficients is a standardized distribution.
That is how our SFA works. We multiply the two tensors by two coefficients, and we then
carry out layer normalization after their concatenation. As such, we fused the two features
smoothly with only one use of the LN operation. Interestingly, this method is a weakened
version of Theorem 4.

Function transformer() is the same as that described in Section 3.1.2. The dimension
conversion is RL×F → RL×F, where F = G + H.

Function mlp() is the output layer and is responsible for transforming the hidden
state to the output. The dimension conversion is RL×F → N. We extracted the tensor
corresponding to the token [CLS], converted it into an output probability through a linear
layer, and generated the prediction value via a sigmoid function. The output process is

mlp(Ttrans) = sigmoid
(
linear

(
Ttrans

[′[CLS]′
]))

(48)

4. Results and Discussions
4.1. Semantic DNA Evaluation

We compared the performance of our proposed method with several baseline methods,
including the gapped k-mer SVM (gkm-SVM) [9], DeepSEA [14], and k-mer [15] methods.
For the sake of fairness, all of the parameters were set as defaults. Moreover, to prove
the effectiveness of the DNA language model, we also tested our accessibility model after
excluding the DNA language model. For evaluation purposes, we computed two often-
used measures, the area under the receiver operating characteristic curve (auROC) and the
area under the precision-recall curve (auPRC), which are good indicators of the robustness
of a prediction model. The classification results for six datasets are shown in Table 2.
Compared to the best baseline k-mer, our system shows a maximum improvement of 1.25%
in auROC, and a maximum improvement of 2.41% in auPRC. Although some results on
some datasets are not good, our model outperforms k-mer on average, with a 0.02% higher
auROC score and a 0.1% higher auPRC score. Compared to gkm-SVM and DeepSEA,
SemanticCAP shows an average improvement of about 2–3%. Finally, the introduction of
our DNA language model resulted in performance improvements of 2%.

Genes 2022, 13, 568 17 of 23

Table 2. The results of the comparative experience to test the chromatin accessibility prediction
system. Refer to Table 1 for the codenames of these datasets.

System MT PC PH NO MU NP Average

(a) auROC
Gkm-SVM 0.8528 0.8203 0.8967 0.8648 0.8983 0.8359 0.8697
DeepSEA 0.8788 0.8629 0.9200 0.8903 0.8827 0.8609 0.8782

k-mer 0.8830 0.8809 0.9212 0.9016 0.9097 0.8722 0.8975
no feature 1 0.8727 0.8664 0.9058 0.8840 0.8849 0.8699 0.8806

SemanticCAP 0.8907 0.8883 0.9241 0.9001 0.8982 0.8847 0.8977
(b) auPRC
Gkm-SVM 0.8442 0.8081 0.8860 0.8627 0.8823 0.8123 0.8504
DeepSEA 0.8758 0.8551 0.9146 0.8888 0.8705 0.8508 0.8801

k-mer 0.8774 0.8732 0.9156 0.8992 0.8968 0.8630 0.8973
no feature 1 0.8745 0.8663 0.9053 0.8852 0.8878 0.8730 0.8820

SemanticCAP 0.8914 0.8896 0.9218 0.9004 0.8993 0.8871 0.8983
1 no feature is SemanticCAP without pre-trained features.

We also tested the accessibility prediction accuracy of the loci shared in different
cell lines. For example, GM12878 and HeLa-S3 have 20 common loci, and the prediction
accuracy of these 20 loci in both cell lines is 85% and 90%, respectively. Another example
is that K562 and MCF-7 have 21 common loci, and the prediction accuracy is 80.9% and
90.5%, respectively. This shows the applicability of our system on the common loci between
different cell lines.

4.2. Analysis of Models
4.2.1. Effectiveness of Our DNA Language Model

We performed experiments on several different DNA language model structures,
which can be divided roughly into two categories. The first category can be attributed to
methods based on normal CNNs, and the second category uses our multi-conv architecture
with data augmentation. Six structures were tested. At the same time, in order to test the
prediction ability of different models in the case of insufficient information, we randomly
masked some words and tested the results. The complete results are shown in Table 3.
Through the comparison of LSTM and Attention, we found that the attention mechanism
can greatly improve the prediction ability of the DNA language model. When using the
MaxPooling and ReLU functions, we observed that the output of the last hidden layer
was mostly 0, where the number of effective (not zero) neurons is about 3/192. This
happens because the ReLU function shields neurons whose values are less than 0, and
MaxPooling selectively updates specific neurons. Therefore, we replaced MaxPooling with
AveragePooling, and the Attention layer that uses the ReLU function was replaced with a
transformer. That is the third method listed in Table 3. The second category uses multi-conv
to extract the local features of the sequence. The introduction to the multi-conv mechanism
with data augmentation strategies brought increases in accuracy, especially when some
tokens were masked. There are three kinds of feature fusion strategies: plain concat (PC),
plain add (PA), and our smooth feature add (SFA). The third, fourth, and fifth items in the
table indicate that SFA outperforms the other two fusion methods. The last item in Table 3,
mconv(SFA)+trans, is the model that we finally chose as our DNA language model.

Genes 2022, 13, 568 18 of 23

Table 3. The results of the experiment comparing DNA language models.

Model Loss
(No Mask)

Accuracy
(No Mask)

Accuracy
(Mask 30%)

convs (max) + lstms 1.152 0.4538 0.3265
convs (max) + attention (ReLU) 1.113 0.4814 0.3687

convs (avg) + trans 1 1.097 0.4926 0.3599
mconv 2 (PC 3) + trans 0.968 0.5114 0.4572
mconv (PA 3) + trans 0.931 0.5187 0.4784
mconv (SFA 3) + trans 0.921 0.5202 0.4793

1 trans refers to transformer+linear. 2 mconv stands for our multi-conv layer. 3 PA is plain add, PC is plain concat,
and SFA is our smooth feature addition method.

4.2.2. Effectiveness of Our Chromatin Accessibility Model

We experimented with several chromatin accessibility model structures, all of which
were based on the transformer. The main difference is the use of multi-conv and the
modules after the transformer. A complete comparison of the results is shown in Table 4.

Table 4. The results of the experiment comparing the chromatin accessibility models.

Model Parameters
(M)

Total
(h) auROC auPRC F1

PC + trans 1 + lstm 4.16 4.6 0.8595 0.8625 0.7880
PC + trans + conv + lstm 4.95 2.9 0.8741 0.8765 0.8036

PC + trans + flatten 16.4 2.0 0.8822 0.8839 0.8124
PC + trans + conv + flatten 6.13 2.8 0.8817 0.8834 0.8119

PC + trans + linear 3.84 1.5 0.8839 0.8854 0.8144
mconv + PC + trans + linear 5.61 2.5 0.8881 0.8902 0.8590

mconv + SFC 2 + trans + linear 5.61 2.5 0.8907 0.8914 0.8606
1 trans is short for transformer blocks. 2 SFC is our smooth feature concat method.

First, we focused on the module before the transformer. We noticed that the intro-
duction of multi-conv also resulted in performance improvements, especially in F1. In
our chromatin accessibility model, we concatenated the features provided by the DNA
language model, where we could either directly concat (PC) them or use our SFC method.
The evaluation values of the last two items show the superiority of SFC.

Now, we will turn to the comparison of modules after the transformer. The trans-
formation from the features of the transformer to the result is a challenge. In this part,
five methods were tested. It should be mentioned that mconv + SFC + trans + linear is
the final model. In terms of training time, our model can be fully parallelized, making it
more advantageous than LSTM, based on recurrent networks. At the same time, our model
has fewer parameters and has a simpler structure than Flatten after CNNs and can thus
converge quickly. In terms of evaluation, the LSTM-based methods performed poorly. The
main reason for this is that it is difficult for LSTM to learn the long-range dependence of a
sequence. The convolution layer improves the performance of the LSTM to some extent
by shortening the sequence length. In methods that are based on Flatten, introducing
convolution layers actually reduces the accuracy. This could be caused by the convolution
layers destroying the sequence features learned from the transformer. During multiple
chromatin accessibility models, the method using multi-conv and our smoother concat
(SFC) method obtained the best results with a relatively small number of parameters.

4.3. Analysis of [CLS]

We were able to observe the effectiveness of introducing the [CLS] symbol into our
accessibility model. A direct indicator is the feature corresponding to [CLS] after the trans-
former layer, i.e., the value of Ttrans[′[CLS]′] in Equation (48). We randomly selected a
certain number of positive and negative samples and used our chromatin accessibility

Genes 2022, 13, 568 19 of 23

model to predict them. For each sample, we output the 256-dimensional tensor correspond-
ing to [CLS] after the transformer layer, and we reduced it to 2-dimensional space with
t-SNE, which is shown in Figure 6. According to the figure, the feature has the ability to
distinguish positive and negative examples, which is strong evidence of its effectiveness.

Genes 2022, 13, x FOR PEER REVIEW 20 of 24

predict them. For each sample, we output the 256-dimensional tensor corresponding to ሾCLSሿ after the transformer layer, and we reduced it to 2-dimensional space with t-SNE, which
is shown in Figure 6. According to the figure, the feature has the ability to distinguish positive
and negative examples, which is strong evidence of its effectiveness.

Figure 6. Features corresponding to the token [CLS] after the transformer for different samples. The 256-dimensional tensor corresponding to ሾCLSሿ is reduced to a 2-dimensional value with t-SNE,
and each axis represents one of them. Accessible points and inaccessible points can be roughly dis-
tinguished.

4.4. Analysis of SFA and SFC
In this section, we conducted two comparison experiments of PA, PC, SFA, and SFC.
When testing the various DNA language models, we made a comparison between

SFA, PA, and PC, which correspond to the last three items in Table 3. We used 5 × 10
samples to train the three models, drew a training loss map of them, and saw what would
happen, which is shown in Figure 7a. PA quickly reduces losses at the fastest speed at the
beginning because all of the features in multi-conv are trained to the same degree at the
same time. However, in the later stage, there appears a phenomenon in which some fea-
tures are overtrained while others are not, leading to the oscillation of loss.

Figure 6. Features corresponding to the token [CLS] after the transformer for different samples.
The 256-dimensional tensor corresponding to [CLS] is reduced to a 2-dimensional value with t-SNE,
and each axis represents one of them. Accessible points and inaccessible points can be roughly
distinguished.

4.4. Analysis of SFA and SFC

In this section, we conducted two comparison experiments of PA, PC, SFA, and SFC.
When testing the various DNA language models, we made a comparison between SFA,

PA, and PC, which correspond to the last three items in Table 3. We used 5× 106 samples
to train the three models, drew a training loss map of them, and saw what would happen,
which is shown in Figure 7a. PA quickly reduces losses at the fastest speed at the beginning
because all of the features in multi-conv are trained to the same degree at the same time.
However, in the later stage, there appears a phenomenon in which some features are
overtrained while others are not, leading to the oscillation of loss.

Genes 2022, 13, 568 20 of 23Genes 2022, 13, x FOR PEER REVIEW 21 of 24

Figure 7. Loss in training time: (a) The loss curve for SFA, PA, and PC in the training of the DNA
language model; and (b) the loss curve for SFC and PC in the training of the chromatin accessibility
model.

In the experiment of various chromatin accessibility models, we made a comparison be-
tween SFC and PC, corresponding to the last two items in Table 4. The first 5 × 10ଷ samples
were used to measure its training state, which is shown in Figure 7b. As we can see, PC has a
lower training speed because it has a problem regarding gradient disappearance. Compared
to it, the gradient propagation of SFA is selective and more stable for the whole term.

We can observe the effectiveness of SFA from another angle. Paying attention to the
parameters 𝐶ௌி of SFA in multi-conv, whose dimension is ℝ××ு, where 𝐾 is the num-
ber of kernels, 𝐿 is the sequence length, and 𝐻 is the hidden dimension, we normalized
it, and converted it to 𝐶′ௌி, whose dimension is ℝ×. This was carried out for both the
language model and the chromatin accessibility model, and they can be observed in Fig-
ure 8. Note that the sum of the vertical axis in Figure 8a,b is always 1 due to the normal-
ization. Obviously, different sequence positions and different convolution kernels have
different weights, which proves SFA’s ability to regulate features.

Figure 8. SFA and SFC parameters: (a) Parameters of SFA in the DNA language model; and (b) Param-
eters of SFC in the chromatin accessibility model. We found that different sequence positions and differ-
ent convolution kernels have different weights, which proves SFA’s ability to regulate features.

In general, SFA and SFC make training smoother, faster, and better than ordinary
concatenation and addition. They are smoother because we used parameters to regulate
features. They are faster because they speed up the training of the model by avoiding the
gradient problem. They are simple but effective. In fact, since they share the same essence
(the Hadamard product), they share the same advantages.

Figure 7. Loss in training time: (a) The loss curve for SFA, PA, and PC in the training of the
DNA language model; and (b) the loss curve for SFC and PC in the training of the chromatin
accessibility model.

In the experiment of various chromatin accessibility models, we made a comparison
between SFC and PC, corresponding to the last two items in Table 4. The first 5× 103

samples were used to measure its training state, which is shown in Figure 7b. As we can see,
PC has a lower training speed because it has a problem regarding gradient disappearance.
Compared to it, the gradient propagation of SFA is selective and more stable for the
whole term.

We can observe the effectiveness of SFA from another angle. Paying attention to
the parameters CSFA of SFA in multi-conv, whose dimension is RK×L×H , where K is the
number of kernels, L is the sequence length, and H is the hidden dimension, we normalized
it, and converted it to C′SFA, whose dimension is RK×L. This was carried out for both
the language model and the chromatin accessibility model, and they can be observed
in Figure 8. Note that the sum of the vertical axis in Figure 8a,b is always 1 due to the
normalization. Obviously, different sequence positions and different convolution kernels
have different weights, which proves SFA’s ability to regulate features.

Genes 2022, 13, x FOR PEER REVIEW 21 of 24

Figure 7. Loss in training time: (a) The loss curve for SFA, PA, and PC in the training of the DNA
language model; and (b) the loss curve for SFC and PC in the training of the chromatin accessibility
model.

In the experiment of various chromatin accessibility models, we made a comparison be-
tween SFC and PC, corresponding to the last two items in Table 4. The first 5 × 10ଷ samples
were used to measure its training state, which is shown in Figure 7b. As we can see, PC has a
lower training speed because it has a problem regarding gradient disappearance. Compared
to it, the gradient propagation of SFA is selective and more stable for the whole term.

We can observe the effectiveness of SFA from another angle. Paying attention to the
parameters 𝐶ௌி of SFA in multi-conv, whose dimension is ℝ××ு, where 𝐾 is the num-
ber of kernels, 𝐿 is the sequence length, and 𝐻 is the hidden dimension, we normalized
it, and converted it to 𝐶′ௌி, whose dimension is ℝ×. This was carried out for both the
language model and the chromatin accessibility model, and they can be observed in Fig-
ure 8. Note that the sum of the vertical axis in Figure 8a,b is always 1 due to the normal-
ization. Obviously, different sequence positions and different convolution kernels have
different weights, which proves SFA’s ability to regulate features.

Figure 8. SFA and SFC parameters: (a) Parameters of SFA in the DNA language model; and (b) Param-
eters of SFC in the chromatin accessibility model. We found that different sequence positions and differ-
ent convolution kernels have different weights, which proves SFA’s ability to regulate features.

In general, SFA and SFC make training smoother, faster, and better than ordinary
concatenation and addition. They are smoother because we used parameters to regulate
features. They are faster because they speed up the training of the model by avoiding the
gradient problem. They are simple but effective. In fact, since they share the same essence
(the Hadamard product), they share the same advantages.

Figure 8. SFA and SFC parameters: (a) Parameters of SFA in the DNA language model; and (b) Pa-
rameters of SFC in the chromatin accessibility model. We found that different sequence positions and
different convolution kernels have different weights, which proves SFA’s ability to regulate features.

In general, SFA and SFC make training smoother, faster, and better than ordinary
concatenation and addition. They are smoother because we used parameters to regulate
features. They are faster because they speed up the training of the model by avoiding the

Genes 2022, 13, 568 21 of 23

gradient problem. They are simple but effective. In fact, since they share the same essence
(the Hadamard product), they share the same advantages.

5. Conclusions

In this article, we propose a chromatin accessibility prediction model called Seman-
ticCAP. Our model is able to predict open DNA regions, thus having a guiding role in
disease detection, drug design, etc. For example, a gene called CYMC from cell H1-hESC
mutated in the middle with a length of 5 bp, and its accessibility decreased from 0.98 to 0.14
as predicted by our model, which is consistent with the experimental data that it reduces
transcription [34]. Another example is a mutation in a gene called HNF4A from cell K562,
which leads to a reduction in gene expression [35]. Our model predicted that its accessibility
decreased from 0.66 to 0.2, which provides a reasonable explanation for the experimental
phenomena of reduction in gene expression caused by HNF4A mutation. Similarly, we
can monitor the accessibility changes of DNA targeted by drugs (especially anticancer
drugs), and the change of accessibility will provide guidance for drug action. Our main
innovations are as follows. First, we introduced the concept of language models in natural
language processing to model DNA sequences. This method not only provides the word
vector presentation of the base itself, but it also provides sufficient information about the
context of a site in a DNA sequence. Second, we used a small number of parameters to
solve the feature fusion problem between different distributions. Specifically, we solve
the problem of the smooth addition of distributions with the same dimensions using SFA
and the problem of the smooth concatenation of distributions with different dimensions
using SFC.

Third, we use an end-to-end model design, in which we fully utilize the learning
ability and characteristics of the convolution and attention mechanism, thus achieving a
better result with fewer parameters and a shorter training time.

Of course, there is still room for improvement in our method. In terms of the sample
construction, we randomly selected the same number of DNA sequences with the same
length as negative samples. This approach may be modified. For example, we could
deliberately use an unbalanced dataset because there are so much DNA data, and we
could then use some strategies, such as ensemble learning [36], to eliminate the negative
effects of data imbalance [37]. In terms of data input, sequence truncation, and sequence
completion operations exist in our model, which may cause information loss or redundant
calculations. Additionally, the task we designed for the DNA language model could also
be enhanced. Multiple positions can be predicted simultaneously, similar to the cloze
problem in Bert. There are also some limitations in the current study. The first limitation is
that the attention mechanism consumes too much memory, which could be replaced by a
short-range attention or a mixed-length attention [38]. Additionally, our smooth feature
fusion methods, SFA and SFC, could also be used in the multi-head attention to save space
and accelerate training. Moreover, the dropout mechanism makes all neurons effective in
the prediction phase, but there may exist a more reasonable way of fusing subnetworks.
These issues need to be further explored.

Author Contributions: Conceptualization: Y.Z. and L.Q.; Data curation: L.Q.; Formal analysis: Y.Z.
and Y.J.; Investigation: Y.Z.; Supervision: X.C., H.W. and L.Q.; Validation: X.C., H.W. and L.Q.;
Writing—original draft: Y.Z.; Writing—review and editing: L.Q. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the following: the National Natural Science Foundation
of China (31801108, 62002251); the Natural Science Foundation of Jiangsu Province Youth Fund
(BK20200856); and a project funded by the Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD). This work was partially supported by the Collaborative Innovation
Center of Novel Software Technology and Industrialization. The authors would also like to acknowl-
edge the support of Jiangsu Province Key Lab for providing information processing technologies.

Institutional Review Board Statement: Not applicable.

Genes 2022, 13, 568 22 of 23

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and code are available at github.com/ykzhang0126/semanticCAP
(accessed on 16 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aleksić, M.; Kapetanović, V. An Overview of the Optical and Electrochemical Methods for Detection of DNA-Drug Interactions.

Acta Chim. Slov. 2014, 61, 555–573. [PubMed]
2. Wang, Y.; Jiang, R.; Wong, W.H. Modeling the Causal Regulatory Network by Integrating Chromatin Accessibility and Transcrip-

tome Data. Natl. Sci. Rev. 2016, 3, 240–251. [CrossRef] [PubMed]
3. Gallon, J.; Loomis, E.; Curry, E.; Martin, N.; Brody, L.; Garner, I.; Brown, R.; Flanagan, J.M. Chromatin Accessibility Changes at

Intergenic Regions Are Associated with Ovarian Cancer Drug Resistance. Clin. Epigenet. 2021, 13, 122. [CrossRef] [PubMed]
4. Janssen, S.; Cuvier, O.; Müller, M.; Laemmli, U.K. Specific Gain-and Loss-of-Function Phenotypes Induced by Satellite-Specific

DNA-Binding Drugs Fed to Drosophila Melanogaster. Mol. Cell 2000, 6, 1013–1024. [CrossRef]
5. Song, L.; Crawford, G.E. DNase-Seq: A High-Resolution Technique for Mapping Active Gene Regulatory Elements Across the

Genome from Mammalian Cells. Cold Spring Harb. Protoc. 2010, 2010, pdb-prot5384. [CrossRef]
6. Simon, J.M.; Giresi, P.G.; Davis, I.J.; Lieb, J.D. Using Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) to Isolate

Active Regulatory DNA. Nat. Protoc. 2012, 7, 256–267. [CrossRef]
7. Buenrostro, J.D.; Wu, B.; Chang, H.Y.; Greenleaf, W.J. ATAC-Seq: A Method for Assaying Chromatin Accessibility Genome-Wide.

Curr. Protoc. Mol. Biol. 2015, 109, 21–29. [CrossRef]
8. Lee, D.; Karchin, R.; Beer, M.A. Discriminative Prediction of Mammalian Enhancers from DNA Sequence. Genome Res. 2011, 21,

2167–2180. [CrossRef]
9. Ghandi, M.; Lee, D.; Mohammad-Noori, M.; Beer, M.A. Enhanced Regulatory Sequence Prediction Using Gapped k-Mer Features.

PLoS Comput. Biol. 2014, 10, e1003711. [CrossRef]
10. Beer, M.A. Predicting Enhancer Activity and Variant Impact Using Gkm-SVM. Hum. Mutat. 2017, 38, 1251–1258. [CrossRef]
11. Xu, Y.; Strick, A.J. Integration of Unpaired Single-Cell Chromatin Accessibility and Gene Expression Data via Adversarial

Learning. arXiv 2021, arXiv:2104.12320.
12. Kumar, S.; Bucher, P. Predicting Transcription Factor Site Occupancy Using DNA Sequence Intrinsic and Cell-Type Specific

Chromatin Features. BMC Bioinform. 2016, 17, S4. [CrossRef] [PubMed]
13. Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the Sequence Specificities of DNA-and RNA-Binding Proteins by

Deep Learning. Nat. Biotechnol. 2015, 33, 831–838. [CrossRef]
14. Zhou, J.; Troyanskaya, O.G. Predicting Effects of Noncoding Variants with Deep Learning–Based Sequence Model. Nat. Methods

2015, 12, 931–934. [CrossRef]
15. Min, X.; Zeng, W.; Chen, N.; Chen, T.; Jiang, R. Chromatin Accessibility Prediction via Convolutional Long Short-Term Memory

Networks with k-Mer Embedding. Bioinformatics 2017, 33, i92–i101. [CrossRef] [PubMed]
16. Liu, Q.; Xia, F.; Yin, Q.; Jiang, R. Chromatin Accessibility Prediction via a Hybrid Deep Convolutional Neural Network.

Bioinformatics 2018, 34, 732–738. [CrossRef] [PubMed]
17. Guo, Y.; Zhou, D.; Nie, R.; Ruan, X.; Li, W. DeepANF: A Deep Attentive Neural Framework with Distributed Representation for

Chromatin Accessibility Prediction. Neurocomputing 2020, 379, 305–318. [CrossRef]
18. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A Convolutional Neural Network for Modelling Sentences. arXiv 2014,

arXiv:1404.2188.
19. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
20. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing—EMNLP, Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
21. Sun, C.; Yang, Z.; Luo, L.; Wang, L.; Zhang, Y.; Lin, H.; Wang, J. A Deep Learning Approach with Deep Contextualized Word

Representations for Chemical–Protein Interaction Extraction from Biomedical Literature. IEEE Access 2019, 7, 151034–151046.
[CrossRef]

22. Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You
Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

24. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
25. Giné, E. The lévy-Lindeberg Central Limit Theorem. Proc. Am. Math. Soc. 1983, 88, 147–153. [CrossRef]
26. Horn, R.A. The Hadamard Product. In Proceedings of the Symposia in Applied Mathematics, Phoenix, AZ, USA, 10–11 January

1989; Volume 40, pp. 87–169.
27. Liu, F.; Perez, J. Gated End-to-End Memory Networks. In Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Long Papers. Volume 1, pp. 1–10.

github.com/ykzhang0126/semanticCAP
http://www.ncbi.nlm.nih.gov/pubmed/25286211
http://doi.org/10.1093/nsr/nww025
http://www.ncbi.nlm.nih.gov/pubmed/28690910
http://doi.org/10.1186/s13148-021-01105-6
http://www.ncbi.nlm.nih.gov/pubmed/34090482
http://doi.org/10.1016/S1097-2765(00)00100-3
http://doi.org/10.1101/pdb.prot5384
http://doi.org/10.1038/nprot.2011.444
http://doi.org/10.1002/0471142727.mb2129s109
http://doi.org/10.1101/gr.121905.111
http://doi.org/10.1371/journal.pcbi.1003711
http://doi.org/10.1002/humu.23185
http://doi.org/10.1186/s12859-015-0846-z
http://www.ncbi.nlm.nih.gov/pubmed/26818008
http://doi.org/10.1038/nbt.3300
http://doi.org/10.1038/nmeth.3547
http://doi.org/10.1093/bioinformatics/btx234
http://www.ncbi.nlm.nih.gov/pubmed/28881969
http://doi.org/10.1093/bioinformatics/btx679
http://www.ncbi.nlm.nih.gov/pubmed/29069282
http://doi.org/10.1016/j.neucom.2019.10.091
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/ACCESS.2019.2948155
http://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://doi.org/10.1090/S0002-9939-1983-0691297-1

Genes 2022, 13, 568 23 of 23

28. Baldi, P.; Sadowski, P.J. Understanding Dropout. Adv. Neural Inf. Process. Syst. 2013, 26, 2814–2822.
29. Pan, B.; Kusko, R.; Xiao, W.; Zheng, Y.; Liu, Z.; Xiao, C.; Sakkiah, S.; Guo, W.; Gong, P.; Zhang, C.; et al. Similarities and Differences

Between Variants Called with Human Reference Genome Hg19 or Hg38. BMC Bioinform. 2019, 20, 17–29. [CrossRef]
30. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understand-

ing. arXiv 2018, arXiv:1810.04805.
31. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
32. De Ruijter, A.; Guldenmund, F. The bowtie method: A review. Saf. Sci. 2016, 88, 211–218. [CrossRef]
33. John, S.; Sabo, P.J.; Thurman, R.E.; Sung, M.-H.; Biddie, S.C.; Johnson, T.A.; Hager, G.L.; Stamatoyannopoulos, J.A. Chromatin

Accessibility Pre-Determines Glucocorticoid Receptor Binding Patterns. Nat. Genet. 2011, 43, 264–268. [CrossRef]
34. Klenova, E.M.; Nicolas, R.H.; Paterson, H.F.; Carne, A.F.; Heath, C.M.; Goodwin, G.H.; Neiman, P.E.; Lobanenkov, V.V. CTCF,

a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein
differentially expressed in multiple forms. Mol. Cell. Biol. 1993, 13, 7612–7624.

35. Colclough, K.; Bellanne-Chantelot, C.; Saint-Martin, C.; Flanagan, S.E.; Ellard, S. Mutations in the genes encoding the transcription
factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia.
Hum. Mutat. 2013, 34, 669–685. [CrossRef]

36. Dietterich, T.G. Ensemble Learning. In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 2002;
Volume 2, pp. 110–125.

37. Chawla, N.V.; Sylvester, J. Exploiting Diversity in Ensembles: Improving the Performance on Unbalanced Datasets. In Proceedings
of the International Workshop on Multiple Classifier Systems, Prague, Czech Republic, 23–25 May 2007; Springer: Berlin, Germany,
2007; pp. 397–406.

38. Choromanski, K.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlos, T.; Hawkins, P.; Davis, J.; Mohiuddin, A.; Kaiser, L.;
et al. Rethinking Attention with Performers. arXiv 2020, arXiv:2009.14794.

http://doi.org/10.1186/s12859-019-2620-0
http://doi.org/10.1016/j.ssci.2016.03.001
http://doi.org/10.1038/ng.759
http://doi.org/10.1002/humu.22279

	Introduction
	Theories
	Models
	DNA Language Model
	Process of Data
	Model Structure

	Chromatin Accessibility Model
	Process of Data
	Model Structure

	Results and Discussions
	Semantic DNA Evaluation
	Analysis of Models
	Effectiveness of Our DNA Language Model
	Effectiveness of Our Chromatin Accessibility Model

	Analysis of [CLS]
	Analysis of SFA and SFC

	Conclusions
	References

