Effectiveness of Two Universal Angiosperm Probe Sets Tested In Silico for Caryophyllids Taxa with Emphasis on Cacti Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genomes of the Species Analyzed
2.2. Bioinformatic Process to Test In Silico the Two Probe Sets
2.3. Phylogenomics Analysis
3. Results
3.1. Effectiveness of the Two Probe Sets
3.2. Phylogenomics Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruhfel, B.; A Gitzendanner, M.; Soltis, P.S.; E Soltis, D.; Burleigh, J.G. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 2014, 14, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gitzendanner, M.A.; Soltis, P.S.; Wong, G.K.-S.; Ruhfel, B.R.; Soltis, D.E. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. Am. J. Bot. 2018, 105, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Carpenter, E.; Matasci, N.; Ayyampalayam, S.; Barker, M.S.; Burleigh, J.G.; Gitzendanner, M.A.; et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. USA 2014, 111, E4859–E4868. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Yi, T.S.; Gao, L.M.; Ma, P.F.; Zhang, T.; Yang, J.B.; Gitzendanner, M.A.; Fritsch, P.W.; Cai, J.; Luo, Y.; et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 2019, 5, 461–470. [Google Scholar] [CrossRef]
- Coiro, M.; Doyle, J.A.; Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 2019, 223, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Parks, M.; Cronn, R.; Liston, A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, J.A.; Pennington, R.T.; Koenen, E.J.M.; Hughes, C.E.; Hearn, J.; Bunnefeld, L.; Dexter, K.G.; Stone, G.N.; Kidner, C.A. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Front. Plant Sci. 2015, 6, 710. [Google Scholar] [CrossRef] [Green Version]
- Bagley, J.C.; Uribe-Convers, S.; Carlsen, M.M.; Muchhala, N. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Mol. Phylogenet. Evol. 2020, 152, 106769. [Google Scholar] [CrossRef]
- McKain, M.R.; Johnson, M.G.; Uribe-Convers, S.; Eaton, D.; Yang, Y. Practical considerations for plant phylogenomics. Appl. Plant Sci. 2018, 6, e1038. [Google Scholar] [CrossRef]
- Yu, X.; Yang, D.; Guo, G.; Gao, L. Plant phylogenomics based on genome-partitioning strategies: Progress and prospects. Plant Divers. 2018, 40, 158–164. [Google Scholar] [CrossRef]
- Mandel, J.R.; Dikow, R.B.; Funk, V.A.; Masalia, R.R.; Staton, S.E.; Kozik, A.; Michelmore, R.W.; Rieseberg, L.H.; Burke, J.M. A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Appl. Plant Sci. 2014, 2, 1300085. [Google Scholar] [CrossRef] [PubMed]
- Stephens, J.D.; Rogers, W.L.; Heyduk, K.; Cruse-Sanders, J.M.; Determann, R.O.; Glenn, T.C.; Malmberg, R.L. Resolving phylogenetic relationships of the recently radiated carnivorous plant genus Sarracenia using target enrichment. Mol. Phylogenet. Evol. 2015, 85, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Buddenhagen, C.; Lemmon, A.R.; Lemmon, E.M.; Bruhl, J.; Cappa, J.; Clement, W.L.; Donoghue, M.; Edwards, E.J.; Hipp, A.L.; Kortyna, M.; et al. Anchored phylogenomics of angiosperms I: Assessing the robustness of phylogenetic estimates. BioRxiv 2016, 2016, 086298. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.G.; Pokorny, L.; Dodsworth, S.; Botigué, L.R.; Cowan, R.S.; Devault, A.; Eiserhardt, W.L.; Epitawalage, N.; Forest, F.; Kim, J.T.; et al. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Syst. Biol. 2019, 68, 594–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanke, S.; Mendoza, C.G.; Müller, S.; Paizanni Guillén, A.; Neinhuis, C.; Lemmon, A.R.; Lemmon, E.M.; Samain, M.-S. Recalcitrant deep and shallow nodes in Aristolochia (Aristolochiaceae) illuminated using anchored hybrid enrichment. Mol. Phylogenet. Evol. 2017, 117, 111–123. [Google Scholar] [CrossRef]
- Li, J.; Stukel, M.; Bussies, P.; Skinner, K.; Lemmon, A.R.; Lemmon, E.M.; Brown, K.; Bekmetjev, A.; Swenson, N.G. Maple phylogeny and biogeography inferred from phylogenomic data. J. Syst. Evol. 2019, 57, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.; Forest, F.; Barraclough, T.; Rosindell, J.; Bellot, S.; Cowan, R.; Golos, M.; Jebb, M.; Cheek, M. A phylogenomic analysis of Nepenthes (Nepenthaceae). Mol. Phylogenet. Evol. 2020, 144, 106668. [Google Scholar] [CrossRef]
- Larridon, I.; Villaverde, T.; Zuntini, A.R.; Pokorny, L.; Brewer, G.E.; Epitawalage, N.; Fairlie, I.; Hahn, M.; Kim, J.; Maguilla, E. Tackling rapid radiations with targeted sequencing. Front. Plant Sci. 2020, 10, 1655. [Google Scholar] [CrossRef]
- Thomas, S.K.; Liu, X.; Du, Z.-Y.; Dong, Y.; Cummings, A.; Pokorny, L.; Xiang, Q.-Y.; Leebens-Mack, J.H. Comprehending Cornales: Phylogenetic reconstruction of the order using the Angiosperms353 probe set. Am. J. Bot. 2021, 108, 1112–1121. [Google Scholar] [CrossRef]
- Butterworth, C.A.; Wallace, R.S. Phylogenetic studies of Mammillaria (Cactaceae)—Insights from chloroplast sequence variation and hypothesis testing using the parametric bootstrap. Am. J. Bot. 2004, 91, 1086–1098. [Google Scholar] [CrossRef]
- Griffith, M.P.; Porter, J.M. Phylogeny of Opuntioideae (Cactaceae). Int. J. Plant Sci. 2009, 170, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Bárcenas, R.T.; Yesson, C.; Hawkins, J.A. Molecular systematics of the Cactaceae. Cladistics 2011, 27, 470–489. [Google Scholar] [CrossRef] [PubMed]
- Arakaki, M.; Christin, P.-A.; Nyffeler, R.; Lendel, A.; Eggli, U.; Ogburn, R.M.; Spriggs, E.; Moore, M.J.; Edwards, E.J. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl. Acad. Sci. USA 2011, 108, 8379–8384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magallon, S.; Gomez-Acevedo, S.; Sanchez-Reyes, L.L.; Hernandez-Hernandez, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 2015, 207, 437–453. [Google Scholar] [CrossRef] [PubMed]
- Babraham Bioinformatics. Trim Galore. Available online: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 21 December 2021).
- Johnson, M.G.; Gardner, E.M.; Liu, Y.; Medina, R.; Goffinet, B.; Shaw, A.J.; Zerega, N.J.C.; Wickett, N.J. HybPiper: Extracting Coding Sequence and Introns for Phylogenetics from High-Throughput Sequencing Reads Using Target Enrichment. Appl. Plant Sci. 2016, 4, 1600016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Borowiec, M.L. AMAS: A fast tool for alignment manipulation and computing of summary statistics. PeerJ 2016, 4, e1660. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. Model Finder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 7, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Cuénoud, P.; Savolainen, V.; Chatrou, L.W.; Powell, M.; Grayer, R.J.; Chase, M.W. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am. J. Bot. 2002, 89, 132–144. [Google Scholar] [CrossRef]
- Walker, J.F.; Yang, Y.; Feng, T.; Timoneda, A.; Mikenas, J.; Hutchison, V.; Edwards, C.; Wang, N.; Ahluwalia, S.; Olivieri, J.; et al. From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. Am. J. Bot. 2018, 105, 446–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Yang, Y.; Moore, M.J.; Brockington, S.F.; Walker, J.F.; Brown, J.W.; Liang, B.; Feng, T.; Edwards, C.; Mikenas, J.; et al. Evolution of Portulacineae marked by gene tree conflict and gene family expansion associated with adaptation to harsh environments. Mol. Biol. Evol. 2019, 36, 112–126. [Google Scholar] [CrossRef]
- Edwards, E.J.; Nyffeler, R.; Donoghue, M.J. Basal Cactus Phylogeny: Implications of Pereskia (Cactaceae) Paraphyly for the Transition to the Cactus Life Form. Am. J. Bot. 2005, 92, 1177–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Number of Loci Recovered | Number of Loci with >50% Sequence Length | Total Length of Exons (bp): Quotient | Number of Paralogous Loci |
---|---|---|---|---|
A. hypochondriacus | 264 (316) | 256 (167) | 68,205 (65,658):0.96 | 24 (8) |
C. gigantea | 129 (270) | 123 (165) | 32,133 (124,773):3.88 | 12 (8) |
C. fernambucensis | 132 (269) | 125 (145) | 30,822 (116,277):3.77 | 13 (1) |
L. schottii | 137 (287) | 135 (194) | 35,127 (140,259):3.99 | 18 (6) |
M. huitzilopochtli | 177 (319) | 168 (245) | 43,875 (174,285):3.97 | 36 (21) |
O. sulphurea | 155 (292) | 149 (204) | 40,611 (150,720):3.71 | 18 (8) |
P. pringlei | 123 (253) | 121 (158) | 31,683 (122,844):3.88 | 6 (4) |
P. humboldtii | 68 (173) | 67 (69) | 18,885 (65,658):3.48 | 2 (2) |
S. undatus | 154 (287) | 149 (170) | 37,866 (133,071):3.51 | 16 (6) |
S. thurberi | 145 (290) | 143 (204) | 37,656 (143,322):3.81 | 16 (8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chincoya, D.A.; Solórzano, S. Effectiveness of Two Universal Angiosperm Probe Sets Tested In Silico for Caryophyllids Taxa with Emphasis on Cacti Species. Genes 2022, 13, 570. https://doi.org/10.3390/genes13040570
Chincoya DA, Solórzano S. Effectiveness of Two Universal Angiosperm Probe Sets Tested In Silico for Caryophyllids Taxa with Emphasis on Cacti Species. Genes. 2022; 13(4):570. https://doi.org/10.3390/genes13040570
Chicago/Turabian StyleChincoya, Delil A., and Sofía Solórzano. 2022. "Effectiveness of Two Universal Angiosperm Probe Sets Tested In Silico for Caryophyllids Taxa with Emphasis on Cacti Species" Genes 13, no. 4: 570. https://doi.org/10.3390/genes13040570
APA StyleChincoya, D. A., & Solórzano, S. (2022). Effectiveness of Two Universal Angiosperm Probe Sets Tested In Silico for Caryophyllids Taxa with Emphasis on Cacti Species. Genes, 13(4), 570. https://doi.org/10.3390/genes13040570