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Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common RCC subtype with a high
mortality. It has been reported that delta-like 1 homologue (DLK1) participates in the tumor microen-
vironmental remodeling of ccRCC, but the relationship between delta-like 2 homologue (DLK2, a
DLK1 homologue) and ccRCC is still unclear. Thus, this study aims to investigate the role of DLK2 in
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the biological function and disease prognosis of ccRCC using bioinformatics analysis. The TNMplot
database showed that DLK2 was upregulated in ccRCC tissues. From the UALCAN analysis, the
overexpression of DLK2 was associated with advanced stage and high grade in ccRCC. Moreover,
the Kaplan-Meier plotter (KM Plotter) database showed that DLK2 upregulation was associated with
poor survival outcome in ccRCC. By the LinkedOmics analysis, DLK2 signaling may participated in
the modulation of ccRCC extracellular matrix (ECM), cell metabolism, ribosome biogenesis, TGF-
β signaling and Notch pathway. Besides, Tumor Immune Estimation Resource (TIMER) analysis
showed that the macrophage and CD8+ T cell infiltrations were associated with good prognosis
in ccRCC patients. Finally, DLK2 overexpression was associated with the reduced macrophage
recruitments and the M1–M2 polarization of macrophage in ccRCC tissues. Together, DLK2 may
acts as a novel biomarker, even therapeutic target in ccRCC. However, this study lacks experimental
validation, and further studies are required to support this viewpoint.

Keywords: clear cell renal cell carcinoma; delta-like 2 homologue; prognosis; biomarker

1. Introduction

As one of the most common cancers, renal cell carcinoma (RCC) accounts for around
2–3% of all malignancies [1]. Clear cell renal cell carcinoma (ccRCC) is the most prevalent
subtype of kidney cancers, accounting for ~85% of all renal cell carcinomas [2]. Metastases
are observed in ~25–30% of ccRCC patients uon first diagnosis; moreover, 20–30% of pa-
tients with localized ccRCC have metastases after standard therapy [3]. Both inherited
and sporadic ccRCCs are usually associated with structural changes in the chromosome
p3 [4], and other potential risk factors include age, gender, lifestyle, complications, drugs,
and environmental contaminants [5]. Furthermore, the development of ccRCC is related
to multiple gene dysregulations, such as polybromo-1 (PBRM1), BRCA1-associated pro-
tein 1 (BAP1), SET domain-containing 2 (SETD2), transcription elongation factor B (SIII),
polypeptide 1 (15kDa, elongin C) (TCEB1), lysine (K)-specific demethylase 5C (KDM5C),
and Von Hippel–Lindau Tumor Suppressor (VHL) [6]. Furthermore, inactivating the VHL
mutation is considered a prevalent risk factor to ccRCC [7], and the dysfunction of VHL
promotes neovascularization, which mediated the activation of the HIF/VEGF axis [8].
Although our knowledge of the ccRCC biology has updated, nephrectomy is still the pri-
mary option for ccRCC control [9]. For ccRCC patients with late stage or tumor recurrence,
some targeted-therapy agents as the first-line drugs, including sorafenib, sunitinib, and
aldesleukin, have been used [10]. However, due to different sensitivities to drugs and the
genetic background between patients, the survival outcome in ccRCC patients remains
poor [11]. Therefore, more potential diagnostic and prognostic biomarkers need to be
identified for ccRCC patients in order to guide personalized medicine.

Although Fuhrman nuclear grading and TNM systems are useful prognostic pa-
rameters [1], they are still not perfect. Recently, it has been reported that ECM- [12,13],
metabolism- [14–16], ribosome- [17], and immune-related genes [18–21] can serve as novel
prognostic biomarkers for RCC. Moreover, the immune cell infiltration including T cells and
macrophage also impacts disease prognosis in ccRCC [22–26]. These studied indicate that
the genetic change in the tumor microenvironment can impact the survival outcome and
disease prognosis in ccRCC patients. However, the further validations by more clinical and
basic studies were necessary to demonstrate the accuracy of above observations. In recent
years, high-throughput genomic analyses, including RNA sequencing and microarray
chips, have provided us with big data sets. Computational and bioinformatics techniques
have been well applied in the research of various cancers, and have been confirmed to be
reliable and powerful for identifying novel biomarkers for cancer diagnosis/prognosis and
personalized medicine [27–29].

DLK1 (Delta-like 2 Homologue 1) and DLK2 (Delta-like 2 Homologue 2) belong to
the EGF-like repeat-containing protein family. Transmembrane DLK1 can also be released
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to the circulating system after cleavage by tumor necrosis factor α converting enzyme
(TACE), but DLK2 lacks the TACE protease cleavage site [30]. DLK1 as an oncoprotein is
usually upregulated in many common malignancies (liver, breast, brain, pancreas, colon,
and lung). More recently, it has been reported that the overexpression of DLK1 is shown in
endocrine-related cancers such as ovarian and adrenocortical carcinoma [31]. Reportedly,
DLK1 and DLK2 are two homologous transmembrane proteins, with six extracellular EGF-
like repeats that bind with the NOTCH1 receptor and function as endogenous NOTCH
inhibitors [32–34]. Interestingly, some studies also indicate that DLK1 participates in the
tumor progression of neuroblastoma, ovarian high-grade serous carcinoma, and lung cancer
mediated the activation of NOTCH1 [35–37]. In the DLK2 biology, DLK2 can promote the
oncogenic processes of melanoma cells through the inhibition of NOTCH signaling [38].
In kidney disease, DLK2 is upregulated in the injured kidneys after unilateral ureteral
obstruction [39], but its biological role in renal inflammation remains unclear. In the RCC
study, the DLK1 vaccine in murine models results in the inhibition of RCC growth, but
also in the compensatory expression of DLK2 by tumor-associated pericytes [40]. Vaccines
targeting both DLK1 and DLK2 show superior antitumor benefits by promoting CD8+

T cells infiltrations and tumor vascular normalization. Together, DLK2 may act as a
therapeutic target for RCC control. However, the role of DLK2 expression in the prognosis
of ccRCC patients remains unclear. To better study the impact on the cancer genetic
network of clinical outcomes, genome-wide gene expression databases, such as The Cancer
Genome Atlas (TCGA), have been set up to explore and discover large cohorts around
the world [41]. TNMplot is a database for the comparison of the gene expression among
normal, tumor, and metastatic tissues [42], and as a survival biomarker for multiple cancer
types that can be discovered and validated using the Kaplan–Meier plotter (KMplotter) [43].
For the comprehensive analysis of cancer OMICS data, UALCAN and LinkedOmics are
widely used for cancer research [44,45]. Systematical analysis of immunocytes recruitments
across multiple cancer types can be analyzed by Tumor Immune Estimation Resource
(TIMER) [46,47]. Based on bioinformatics analyses by the above-mentioned databases,
DLK2 was identified as a potential prognostic biomarker for ccRCC.

2. Materials and Methods
2.1. Pan-Cancer Analysis

The expression range for the DLK2 gene across all tissues in all available normal
and tumor RNA-Seq data was investigated using the Tumor Immune Estimation Re-
source (TIMER) analysis (https://cistrome.shinyapps.io/timer/) (accessed on 11 December
2021) [46,47].

2.2. TNMplot Analysis

The DLK2 expression between paired non-tumor and tumor tissues of ccRCC patients
was compared using TNMplot tool (https://tnmplot.com/analysis/) (accessed between 15
August 2021 and 11 December 2021). Moreover, the renal DLK2 levels in the non-ccRCC
donor and ccRCC patients were also investigated using TNMplot analysis [42].

2.3. UALCAN Analysis

The DLK2 levels in ccRCC tissues with different stages, grades, metastatic status,
tumor sub-type, ages, patient races, and genders were analyzed with the UALCAN tool
(http://ualcan.path.uab.edu) (accessed on 11 December 2021) [44].

2.4. Kaplan–Meier Plotter (KM Plotter) Analysis

The effect of the DLK2 expression on the overall survival and disease recurrence of
ccRCC patients was studied using the KMplotter database (https://kmplot.com/analysis/)
(accessed on 11 December 2021) [43].

https://cistrome.shinyapps.io/timer/
https://tnmplot.com/analysis/
http://ualcan.path.uab.edu
https://kmplot.com/analysis/
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2.5. LinkedOmics Database Analysis

The LinkedOmics database (http://www.linkedomics.org/admin.php) (accessed on
11 December 2021) is a web-based platform for analyzing 32 TCGA cancer-associated
multi-dimensional datasets [45]. The DLK2-related genes were analyzed statistically using
Pearson’s correlation coefficient, presenting in volcano plots, heat maps, or scatter plots.
The effect of DLK2 expression on Gene Ontology (GO), including cellular component and
molecular function, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Panther
pathway, miRNA targets, and transcription factor target in ccRCC were also analyzed with
the gene set enrichment analysis (GSEA) using the LinkedOmics database (accessed on 11
December 2021).

2.6. TIMER Database Analysis

TIMER is a comprehensive database for systematically analyzing immune cell recruit-
ments across different tumor types from TCGA (https://cistrome.shinyapps.io/timer/)
(accessed on 11 December 2021), which includes 10,897 samples across 32 cancer types [46,47].
TIMER uses a deconvolution strategy to deduce the composition of tumor-infiltrating immune
cells from the gene expression profiles. The effect of immune cells infiltrations (macrophages,
neutrophils, dendritic cells, CD4+ T cells, CD8+ T cells, and B cells) on the survival outcomes
of ccRCC patients was analyzed using the TIMER tool. The correlation of the DLK2 expression
and immune cell recruitments in ccRCC was further studied using the TIMER database, and
the effect of the DLK2 copy number variation (CNV) on immunocytes recruitments in ccRCC
was also investigated. Moreover, the correlation of the DLK2 gene expression and the levels
of tumor-associated macrophage (TAMs) markers (M1/M2 markers) was studied in ccRCC
patients using the TIMER tool.

2.7. Statistical Analysis

Differences between the groups were statistically evaluated using the unpaired Stu-
dent’s t test. The results are showen as mean ± SD, and p < 0.05 was considered statistically
significant. Moreover, the overall survival outcome and disease recurrence in DLK2High

and DLK2Low ccRCC patients was analyzed using the KMplotter tool, and the log-rank test
p < 0.05 was used to indicate the significance of the survival or recurrence time differences.
Pearson’s correlation test was used to analyze the correlation between the DLK2 expres-
sion and related gene networks or immune cells infiltrations in ccRCC, and p < 0.05 was
considered statistically significant

3. Results
3.1. DLK2 Was Upregulated in the Tumor Tissues of ccRCC Compared with Normal
Kidney Tissues

In this study, we used multiple gene databases to investigate whether DLK2 can serve
as a potential prognostic biomarker in ccRCC (Figure 1). Firstly, the DLK2 expression in
Pan-cancer was analyzed using the TIMER tool, and TNMplot was used to analyze the
DLK2 level in ccRCC tissues and normal renal tissues. For the prognositc analyses, the
UALCAN database was used to study the tumoral DLK2 expression profiles in variable
ccRCC patients with different disease stages, tumor grades, metastatic status, cancer
subtypes, ages, patient races, and genders. The survival outcome and recurrence rate
were analyzed in the DLK2High and DLK2Low ccRCC patients using KMplotter. For the
molecular functional analyses, the DLK2-related gene networks in ccRCC were identified
using the LinkedOmics database, and the effect of the DLK2 level on the immune cell
infiltrations of ccRCC was further studied with the TIMER tool. From the Pan-cancer
analysis using the TIMER tool, DLK2 was significantly upregulated in the tumor tissues
compared with the non-tumor tissues in many cancer types, including ccRCC (Figure 2A)
(*** p < 0.001). Using the TNMplot analysis, DLK2 was upregulated in paired ccRCC tissues
compared with paired non-tumor tissues (Figure 2B) (*** p < 0.001), and the expression of
DLK2 in the ccRCC tumor was significantly higher than in the kidney from the non-ccRCC

http://www.linkedomics.org/admin.php
https://cistrome.shinyapps.io/timer/
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donor (Figure 2C) (*** p < 0.001). Together, the DLK2 overexpression may participate in the
development of ccRCC.
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3.2. The DLK2 Expression Was Associated with Advanced Tumor Stages/Grades and Worse
Overall Survival in ccRCC Patients

From the UALCAN analysis, DLK2 was significantly upregulated in the advanced
ccRCC stage compared with the early stage (** p < 0.01) (Figure 3A). Moreover, DLK2
upregulation was observed in ccRCC tissues with high grades (* p < 0.05) (Figure 3B), and
an elevated DLK2 level was also shown in the ccRCC tissues of older patients (* p < 0.05)
(Figure 3C). Furthermore, the cancer subtype, metastatic status, patient race, and gender
did not significantly affect the expression of DLK2 in ccRCC tissues (Figure 3D–G). To study
the effect of the DLK2 expression on the overall survival and disease-free survival in ccRCC
patients, the KMplotter tool was used in this study. From the Kaplan–Meier analysis,
ccRCC patients with a higher DLK2 level had a significantly shorter overall survival
(*** p < 0.001) (Figure 4A), but the DLK2 level in ccRCC tissues did not significantly affect
disease-free survival (Figure 4B). Together, DLK2 may serve as a potential prognostic
biomarker for ccRCC.
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in ccRCC patients with a low or high DLK2 expression.

3.3. The Gene Clusters Positively and Negatively Correlated with DLK2 Expression Were Identified
in ccRCC

From the LinkedOmics database analysis, the Volcano Plot showed the genes highly
associated with the DLK2 level in ccRCC (Figure 5A). The top 50 significant genes positively
and negatively correlated with the DLK2 level are shown in the heat map in Figure 5B,C.
Using Pearson’s correlation analysis, the DLK2 expression showed a strong positive cor-
relation with the transforming growth factor β 1 (TGFβ1) (r = 0.502, p = 2.235 × 10−35),
transmembrane protein 91 (TMEM91) (r = 0.4992, p = 6.114 × 10−35), HtrA serine pepti-
dase 1 (HTRA1) (r = 0.4992, p = 6.114 × 10−35), AGAP2 antisense RNA 1 (AGAP2-AS1)
(LOC100130776) (r = 0.4781, p = 8.475 × 10−32), and 5-Hydroxytryptamine receptor 6
(HTR6) (r = 0.478, p = 8.919 × 10−32) levels in human ccRCC tissues (Figure 6). In addi-
tion, the expressions of branched chain keto acid dehydrogenase E1 subunit β (BCKDHB)
(r = −0.4698, p = 1.293 × 10−30), pleckstrin homology domain containing B2 (PLEKHB2)
(r = −0.4499, p = 6.472 × 10−28), GTP binding elongation factor GUF1 (GUF1) (r = −0.447,
p = 1.51 × 10−27), adenosine deaminase like (ADAL) (r = −0.4282, p = 3.533 × 10−25), and
ELMO domain containing 2 (ELMOD2) (r = −0.4245, p = 9.855 × 10−25) were highly and
negatively correlated to the DLK2 levels in the ccRCC tumors (Figure 7).

To further identify the molecular targets of DLK2 in ccRCC, we analyzed the potent
miRNA and transcription factor targets using the LinkedOmics tool. The most correlated
microRNA-targets of DLK2 in ccRCC were GGGGCCC, miR-296 (p = 0), CCAGGGG,
miR-331 (p = 0), AGCTCCT, miR-28 (p = 0.002294), CATGTAA, miR-496 (p = 0.032258),
and TTTTGAG, miR-373 (p = 0.045455) (Table 1). Furthermore, the most correlated
transcript factor-targets of DLK2 in ccRCC were V$LFA1_Q6 (genes with 3’UTR con-
taining motif GGGSTCWR, which matches annotation for ITGAL) (p = 0), V$MAZR_01
(genes with 3’UTR containing motif NSGGGGGGGGMCN, which matches annotation
for ZNF278) (p = 0), V$VDR_Q3 (genes with 3’UTR containing motif GGGKNARNR-
RGGWSA, which matches annotation for VDR) (p = 0), V$ZIC3_01 (genes with 3’UTR
containing motif NGGGKGGTC, which matches annotation for ZIC3) (p = 0), and GGGN-
NTTTCC_V$NFKB_Q6_01 (genes with 3′UTR containing motif GGGNNTTTCC, which
matches annotation for NFκB) (p = 0).



Genes 2022, 13, 629 9 of 22Genes 2022, 13, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 5. The genes positively and negatively correlated with the DLK2 level in ccRCC are identified 
using LinkedOmics database. (A) The Volcano Plot shows the total genes highly associated with the 
DLK2 level in ccRCC. Heat maps of the top 50 genes (B) positively and (C) negatively correlated 
with DLK2 in ccRCC. 

Figure 5. The genes positively and negatively correlated with the DLK2 level in ccRCC are identified
using LinkedOmics database. (A) The Volcano Plot shows the total genes highly associated with the
DLK2 level in ccRCC. Heat maps of the top 50 genes (B) positively and (C) negatively correlated with
DLK2 in ccRCC.
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Figure 6. The top five genes positively correlated with the DLK2 level in ccRCC are identified using
the LinkedOmics database. Pearson’s correlation analysis for the relationship between DLK2 level
and (A) TGFβ1, (B) TMEM91, (C) HTRA1, (D) LOC100130776, and (E) HTR6.
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Figure 7. The top five genes negatively correlated with the DLK2 level in ccRCC are identified using
LinkedOmics database. Pearson’s correlation analysis for the relationship between DLK2 level and
(A) BCKDHB, (B) PLEKHB2, (C) GUF1, (D) ADAL, and (E) ELMOD2.
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Table 1. The miRNA- and transcription factor-target networks highly associated with DLK2 in ccRCC
(LinkedOmics).

Enriched Category Gene Set Normalized
Enrichment Score FDR Leading Edge Number p Value

miRNA Target GGGGCCC, miR-296 1.865499 0.002889 25 0
CCAGGGG, miR-331 1.643038 0.038283 29 0
AGCTCCT, miR-28 1.555229 0.119423 27 0.002294

CATGTAA, miR-496 −1.258861 0.475076 32 0.032258
TTTTGAG, miR-373 −1.157875 0.485488 31 0.045455

Transcription Factor
Target V$LFA1_Q6 1.723831 0.003247 73 0

V$MAZR_01 1.724924 0.003788 60 0
V$VDR_Q3 1.748140 0.004132 79 0
V$ZIC3_01 1.727236 0.004546 94 0

GGGNNTTTCC_V$NFKB_Q6_01 1.751883 0.005510 50 0

3.4. DLK2-Associated Functional Enrichment Items in ccRCC Were Identified Using the
LinkedOmics Tool

In order to examine the DLK2-related functions in ccRCC, we performed an enrich-
ment analysis using the LinkedOmics tool. The Gene Ontology (GO) analysis for cellular
components showed that DLK2 was mainly involved in the positive regulation of the
extracellular matrix-, cell-substrate junction-, transcription factor complex-, spliceoso-
mal complex-, nuclear chromatin-, and postsynaptic specialization-associated gene clus-
ters (Figure 8A), and endosome membrane-/vacuolar membrane-/mitochondria inner
membrane-/mitochondria matrix-related gene expressions were negatively correlated with
the DLK2 level in ccRCC. In the GO analysis for molecular function, DLK2 may positively
regulate the genes participating in the extracellular matrix structural constituent, structural
constituent of ribosome, glycosaminoglycan binding, DNA-binding transcription repres-
sor activity (RNA polymerase II-specific), cytokine binding, receptor ligand activity, and
DNA-binding transcription activator activity (RNA polymerase II-specific) (Figure 8B), and
the cell molecular functions for cysteine-type peptidase activity/ligase activiy/cofactor
binding may be negatively modulated by DLK2 in ccRCC. Moreover, the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analysis showed that DLK2 were positively
modulated in the gene networks that participated in ribosome biogenesis, splicesome
formation, protein digestion/absorption, axon guidance, cytokine–cytokine receptor inter-
action, transcriptional misregulation of cancer, and pathways in cancer (Figure 8C), and
lysosome-/carbon metabolism-/oxidative phosphorylation-related gene networks was
negatively regulated by DLK2 in ccRCC. By the Panther pathway analysis, DLK2 may
positively modulate the Notch signaling pathway, integrin signaling pathway, angiogenesis,
TGF-β signaling pathway, blood coagulation, Alzheimer disease-presenilin pathway, Wnt
signaling pathway, heterotrimeric G-protein signaling pathway/Gs α mediated pathway,
and inflammation mediated by chemokine/cytokine signaling pathway (Figure 8D), and
the tricarboxylic acid (TCA) cycle was negatively modulated by DLK2 in ccRCC. Together,
the extracellular matrix (ECM), cell metabolism, ribosome biogenesis, TGF-β signaling,
and Notch pathway may have participated in the DLK2-promoted oncogenic processes
in ccRCC.
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Figure 8. The gene sets positively and negatively correlated with the DLK2 level in ccRCC are
identified using the LinkedOmics tool. The (A,B) GO, (C) KEGG, and (D) Panther pathways analyses
for DLK2 in ccRCC. The blue bars indicate the gene clusters positively correlated with DLK2. The
orange bars indicate the gene clusters negatively correlated with DLK2.
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3.5. DLK2 Expression Was Negatively Correlated with the Macrophages Infiltrations and
Positively Correated with the M1 to M2 Polarization of Macrophages in ccRCC

Previous studies have reported that immune cells infiltrations impact the disease
prognosis in ccRCC patients [22,48]. The TIMER database was used to comprehensively
study the effect of tumor immune cells recruitment on the survival outcome in ccRCC
patients (Table 2). The Cox proportional hazard model showed that the tumor infiltrations
of macrophages and CD8+ T cells were significantly associated with a reduced mortality
rate in ccRCC patients (* p < 0.05). Furthermore, the tumor infiltrations of neutrophils,
dendritic cells, CD4+ T cells, and B cells did not significantly impact the survival outcome
of ccRCC patients. From the Pearson’s correlation test, the DLK2 level was not significantly
associated with tumor purity, which indicates that the tumor microenvironment is also
a source of DLK2 expression (Figure 9A). Moreover, the DLK2 level was significantly
associated with reduced macrophage infiltrations (** p < 0.01), and the recruitments of
neutrophils, dendritic cells, CD4+ T cells, CD8+ T cells, and B cells were not significantly
correlated with DLK2 expression in ccRCC (Figure 9B). From the SCNA module of the
TIMER tool, arm-level deletion of the DLK2 gene caused the reduction of B cell (** p < 0.01),
CD8+ T cells (** p < 0.01), CD4+ T cells (** p < 0.01), neutrophil (** p < 0.01), and dendritic
cell infiltrations (** p < 0.01) in ccRCC (Figure 10). Second, arm-level gain of DLK2 gene
reduced CD8+ T cells (*** p < 0.001), CD4+ T cells (** p < 0.01), macrophage (** p < 0.01),
neutrophil (*** p < 0.001), and dendritic cell infiltrations (** p < 0.01) in tumor tissue. In
the macrophage recruitment, the results from the Pearson’s correlation analysis and SCNA
module were consistent in this study.

Table 2. Cox proportional hazard model showing hazard ratios for ccRCC conferred by variables.

Variable Coefficient HR 95% CI p Value

Macrophage −2.774 0.062 0.006–0.647 * 0.020
Neutrophil 3.211 24.809 0.389–1582.755 0.130

Dendritic cell 1.119 3.062 0.517–18.131 0.217
CD4+ T cell −0.524 0.592 0.039–8.902 0.705
CD8+ T cell −1.741 0.175 0.037–0.837 * 0.029

B cell −0.600 0.549 0.022–13.757 0.714
* p < 0.05.

Reportedly, M1 macrophages (anti-tumor phenotype) are associated with a favorable
outcome, while M2 macrophages (pro-tumor phenotype) indicate a worse outcome in
RCC [22]. Thus, the correlation between the DLK2 level and the expressions of M1/M2
macrophage markers in ccRCC was investigated using the TIMER tool. According to the
Pearson’s correlation analysis, the tumor DLK2 level was negatively correlated with the
expressions of M1 macrophage markers such as HLA class II histocompatibility antigen,
DR α chain (HLA-DRA) (* p = 0.0278), CD11c (integrin α X, ITGAX) (p = 0.0557), and CD86
(p = 0.0783) [49,50] (Figure 11A). Moreover, the expressions of M2 macrophage markers
such as CD206 (mannose receptor C-type 1, MRC1) (** p = 0.00326) and CD23 (Fc epsilon
receptor II, FCER2) (* p = 0.0444) were positively associated with the DLK2 level in ccRCC
(Figure 11B). Thus, the DLK2 expression may impact not only macrophage infiltrations,
but also M1 to M2 polarization in ccRCC.
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Figure 9. The correlation between DLK2 expression and immune cells infiltrations in ccRCC is
analyzed using the TIMER database. (A) The correlation between the DLK2 level and tumor purity
in ccRCC. (B) The correlation between the DLK2 expression and the recruitments of macrophages,
neutrophils, dendritic cells, CD4+ T cells, CD8+ T cells, and B cells in ccRCC tissues.
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Figure 10. The copy number variation (CNV) of DLK2 affects the immune cells infiltration in ccRCC
based on the TIMER analysis. The effect of DLK2 CNV on the B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells in ccRCC. ** p < 0.01; *** p < 0.0001.
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Figure 11. The DLK2 expression is associated with the M1 to M2 polarization of macrophages in
ccRCC based on the TIMER analysis. The correlation between DLK2 level and the expressions of
(A) M1 or (B) M2 macrophage markers in ccRCC tissues.

4. Discussion

Based on this meta-analysis by multiple gene expression databases, DLK2 was upreg-
ulated in ccRCC tumors compared with normal renal tissues. In addition, DLK2 overex-
pression was associated with an advanced stage and a poorly differentiated grade, and was
correlated with a worse survival outcome in ccRCC patients, indicating that DLK2 may
play an oncogenic role and serve as a promising and novel prognostic factor for ccRCC.
Through the molecular and functional analysis of the bioinformatics, we herewith proposed
a mechanistic model for the oncogenic processes of DLK2 in ccRCC (Figure 12). DLK2
may participate in ECM remodeling, ribosome biogenesis, the activation of TGF-β/Notch
oncogenic signaling, gene transcriptional regulation, M1 to M2 polarization of macrophage,
and the increment of tumor suppressor miRNAs targets (possible oncogenes). Moreover,
aerobic metabolism in the mitochondria and the transcription of oncogenic miRNAs targets
(possible tumor suppressor genes) may be shut down by DLK2 signaling. Together, DLK2
may act as a potent therapeutic target for ccRCC control by modulating the oncogenic
processes of tumor cell and the tumor microenvironment.

From the Panther pathway and Pearson’s correlation analyses based on the Linke-
dOmics database, DLK2 signaling may positively regulate the TGF-β1 and Notch signaling
pathways, and it has been reported that an extensive cross-talk between the TGF-β1 and
Notch signaling cascades is associated with the aggressiveness of ccRCC [51]. It has been
reported that Notch activation can inhibit the TCA cycle in Drosophila wing discs and
human microvascular cells [52]. Importantly, the TGF-β/HDAC7 signaling pathway can
repress oxidative phosphorylation in RCC [53], and the administration of TGF-β inhibitor
restores the expression of TCA cycle enzymes and inhibits tumor progression in the ortho-
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topic RCC model. In ECM biology, both TGF-β1 and Notch signaling play a critical role
in ECM remodeling [54,55], and TGF-β1-promoted ECM remodeling impacts the survival
outcome in ccRCC patients [56]. Importantly, it has been reported that DLK1 signaling
promotes the upregulation of matrix metalloproteinase-9 (MMP9) through the activation
of Notch1 signaling [37]. In ribosome biogenesis, many ribosome-related proteins can
serve as prognostic biomarkers and therapeutic targets in RCC [17,57,58], and some stud-
ies indicate that TGF-β1 and Notch are involved in the modulation of ribosome-related
pathways [59,60]. Thus, TGF-β1 and Notch signaling may participate in DLK2-promoted
ribosome biogenesis in ccRCC. Reportedly, M2 macrophage infiltration is a risk factor for
poor prognosis in ccRCC patients, and M2 macrophage can serve as a potential biomarker
for prognosis and novel targets for immunotherapy in ccRCC [26]. Moreover, both TGF-β1-
induced Snail signaling and the Jagged1-mediated Notch pathway can also promote the
M2 polarization of the macrophage in the tumor microenvironment [61,62], and this means
that DLK2-activated TGF-β1 and Notch signaling may participate in the M2 polarization of
the macrophage in the ccRCC tumor microenvironment.
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In addition to the TGF-β1 level, the expressions of HTRA1 and AGAP2-AS1 were
highly and positively correlated with the DLK2 level in ccRCC tissues. Previous studies
indicate that HTRA1 participates in the neovascularization mediated activation of Notch1
signaling [63]. Moreover, AGAP2-AS1 (LOC100130776) can promote the radioresistance
of lung cancer cells [64] and act as an independent predictor of poor survival in ccRCC
patients [65]. Thus, HTRA1 and AGAP2-AS1 signaling pathways may be involved in the
DLK2-promoted oncogenic processes of ccRCC cells. Furthermore, the expressions of GUF1
and ELMOD2 were significantly and negatively correlated with the DLK2 level in ccRCC.
It has been reported that GUF1 and ELMOD2 promote mitochondria protein synthesis
and fusion, respectively [66,67], and these genes may participate in the DLK2-modulated
mitochondria metabolism. Another gene, PLEKHB2 (also called evectin-2), negatively
correlated with the DLK2 level, plays a critical role in the YAP oncogenic pathway of
proliferating cells [68], and it is also downregulated in colon cancer [69]. In the miRNA
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analysis, the expressions of miR-296, miR-331, and miR-28 targets (possible oncogenes)
were positively correlated with the DLK2 level, and previous studies indicate that miR-296,
miR-331, and miR-28 sever as tumor suppressors [70–72]. Furthermore, the DLK2 level was
negatively correlated with the expressions of miR-496 and miR-373 targets (possible tumor
suppressor genes). In addition, it has been reported that miR-496 and miR-373 also play an
oncogenic role in cancer progression [73,74]. From the LinkedOmics database analysis for
transcription factor targets positively associated with the DLK2 level, the expressions of
CD11A (also called LFA1 or ITGAL)-, Zinc finger protein 278 (ZNF278, also called MAZR)-,
vitamin D receptor (VDR)-, Zic Family Member 3 (ZIC3)-, and NFκB-related transcription
targets were highly associated with the DLK2 level in ccRCC. Moreover, CD11A, ZNF278,
VDR, ZIC3, and NFκB also play critical roles in the modulation of oncogenic processes in
many type cancers [75–79]. Together, DLK2-modulated miRNA targets and transcription
factor targets may play a crucial role in the carcinogenesis of ccRCC. In addition to surgery
and radiotherapy, first-line systemic treatments including tyrosine kinase inhibitors (TKIs)
and immunotherapy are also used for ccRCC control [80]. However, the therapeutic efficacy
of TKIs and immune checkpoint inhibitors for ccRCC remains unsatisfactory due to drug
resistance [81]. Thus, DLK2 targeting may serve as a novel therapeutic strategy for ccRCC
management. In the future, more clinical, animal, and cell studies are required for further
validation of DLK2’s role in ccRCC.

5. Conclusions

In conclusion, this systematic review and meta-analysis illustrated that DLK2 may
constitute a novel prognostic biomarker in ccRCC based on multiple gene expression
databases. The upregulation of DLK2 in tumor tissues was associated with advanced stage,
high tumor grade, and poor survival outcome in ccRCC patients. At the same time, we also
found that DLK2 may serve as a potent oncogene in ccRCC by regulating ECM remodeling,
mitochondria metabolism, ribosome biogenesis, TGF-β signaling, and Notch pathway.
However, this study lacks experimental evidence, and the actual effect of DLK2 on the
oncogenic processes and disease prognosis of ccRCC should be further investigated using
a series of in vitro, in vivo, and clinical studies. If DLK2 is a poor prognostic factor and
oncogene in ccRCC, and it may act as a novel biomarker or therapeutic target for ccRCC
management in the future.
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