Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Data Collection
2.2. SNP Identification and Genotyping
2.3. Population Genetics of IGF1 and IGF1R Genes
2.4. Linkage Disequilibrium Analysis and Haplotype Construction
2.5. Statistical Analyses
3. Results
3.1. SNP Detection of IGF1 and IGF1R Genes in Hulun Buir Sheep
3.2. Population Genetic Analyses
3.2.1. Genotyping, Genotypic and Allelic Frequencies
3.2.2. Genetic Diversity and Hardy–Weinberg Equilibrium
3.3. Effects of Genotypes on Growth Traits
3.3.1. Effects of SNP Genotypes in IGF1 on Growth Traits
3.3.2. Effects of SNP Genotypes in IGF1R on Growth Traits
3.4. Linkage Disequilibrium and Haplotype Analysis
3.5. Effects of Haplotype Combinations on Growth Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, W.W.; Zhou, Y.; Wang, J.R.; Yu, X.M.; Tong, J.G. Identifying Candidate Genes Involved in the Regulation of Early Growth Using Full-Length Transcriptome and RNA-Seq Analyses of Frontal and Parietal Bones and Vertebral Bones in Bighead Carp (Hypophthalmichthys nobilis). Front. Genet. 2021, 11, 603454. [Google Scholar] [CrossRef] [PubMed]
- XU, S.S.; Li, M.H. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies. Front. Agric. Sci. Eng. 2017, 4, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Valencia, C.P.L.; Franco, L.; Herrera, D.H. Association of single nucleotide polymorphisms in the CAPN, CAST, LEP, GH, and IGF-1 genes with growth parameters and ultrasound characteristics of the Longissimus dorsi muscle in Colombian hair sheep. Trop. Anim. Health Prod. 2022, 54, 82. [Google Scholar] [CrossRef] [PubMed]
- Kindler, J.M.; Pollock, N.K.; Laing, E.M.; Jenkins, N.T.; Oshri, A.; Isales, C.; Hamrick, M.; Lewis, R.D. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls. J. Clin. Endocrinol. Metab. 2016, 101, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Cannata, D.; Lann, D.; Wu, Y.; Elis, S.; Sun, H.; Yakar, S.; Lazzarino, D.A.; Wood, T.L.; Leroith, D. Elevated circulating IGF-I promotes mammary gland development and proliferation. Endocrinology 2010, 151, 5751–5761. [Google Scholar] [CrossRef]
- Estany, J.; Tor, M.; Villalba, D.; Bosch, L.; Gallardo, D.; Jiménez, N.; Altet, L.; Noguera, J.L.; Reixach, J.; Amills, M.; et al. Association of CA repeat polymorphism at intron 1 of insulin-like growth factor (IGF-I) gene with circulating IGF-I concentration, growth, and fatness in swine. Physiol. Genom. 2007, 31, 236–243. [Google Scholar] [CrossRef]
- Hu, F.; Liu, F. Targeting tissue-specific metabolic signaling pathways in aging: The promise and limitations. Protein Cell 2014, 5, 21–35. [Google Scholar] [CrossRef]
- Shen, W.; Wisniowski, P.; Ahmed, L.; Boyle, D.W.; Denne, S.C.; Liechty, E.A. Protein anabolic effects of insulin and IGF-I in the ovine fetus. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E748–E756. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.P.N.R.; Fernandes, J.C.; Fenerich, B.A.; Coelho-Silva, J.L.; Scheucher, P.S.; Simoes, B.P.; Rego, E.M.; Ridley, A.J.; Machado-Neto, J.A.; Traina, F. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Cancer Lett. 2019, 456, 59–68. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, M.Q.; Huang, M.H.; Chen, M.F.; Zhang, D.; Luo, L.P.; Ye, G.N.; Deng, L.J.; Peng, Y.H.; Wu, X.; et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharm. Res. 2019, 144, 292–305. [Google Scholar] [CrossRef]
- Reyna, X.F.; Montoya, H.M.; Castrellón, V.V.; Rincón, A.M.; Bracamonte, M.P.; Vera, W.A. Polymorphisms in the IGF1 gene and their effect on growth traits in Mexican beef cattle. Genet. Mol. Res. 2010, 9, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Szewczuk, M.; Zyh, S.; Wójcik, J.; Czerniawska-Piątkowska, E. Association of two SNPs in the coding region of the insulin-like growth factor 1 receptor (IGF1R) gene with growth-related traits in Angus cattle. J. Appl. Genet. 2013, 54, 305–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putra, D.E. Polymorphism of Insulin-like Growth Factor 1 Gene (IGF1/TasI, IGF1/SnaBI, IGF1/RsaI) and the Association with Daily Gain of Pesisir Cattle Local Breed from West Sumatera, Indonesia. Pak. J. Biol. Sci. 2017, 20, 210–216. [Google Scholar] [CrossRef]
- El-Magd, M.A.; Abbas, H.E.; El-kattawy, A.M.; Mokhbatly, A. Novel polymorphisms of the IGF1R gene and their association with average daily gain in Egyptian buffalo (Bubalus bubalis). Domest. Anim. Endocrinol. 2013, 45, 105–110. [Google Scholar] [CrossRef]
- Wang, B.; Li, P.; Zhou, W.; Gao, C.; Liu, H.; Li, H.; Niu, P.; Zhang, Z.; Li, Q.; Zhou, J.; et al. Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs. Animals 2019, 9, 858. [Google Scholar] [CrossRef] [Green Version]
- Yue, M.; Tian, Y.G.; Wang, Y.J.; Gu, Y.; Bayaer, N.; Hu, Q.; Gu, W.W. Associated analysis of single nucleotide polymorphisms found on exon 3 of the IGF-1 gene with Tibetan miniature pig growth traits. Genet. Mol. Res. 2014, 13, 1263–1269. [Google Scholar] [CrossRef]
- Luo, J.; Qin, F.; Deng, C.; Li, F.; Li, W.; Yue, X. Polymorphisms of IGF-IR gene and their association with economic traits in two indigenous Chinese dairy goat breeds. Gene 2019, 695, 51–56. [Google Scholar] [CrossRef]
- Wang, W.J.; Hui, K.; Su, X.F.; Xu, M.S.; Chen, X.; Guan, S. Polymorphism of Insulin-like Growth Factor 1 Receptor Gene in 12 Pig Breeds and Its Relationship with Pig Performance Traits. Asian-Australas. J Anim. Sci. 2006, 19, 1541–1545. [Google Scholar] [CrossRef]
- Naicy, T.; Venkatachalapathy, R.T.; Aravindakshan, T.V.; Kurian, E. Association of a Cac8I polymorphism in the IGF1 gene with growth traits in Indian goats. J. Genet. Eng. Biotechnol. 2017, 15, 7–11. [Google Scholar] [CrossRef]
- Lestari, D.A.; Oikawa, T.; Sutopo, S.; Purbowati, E.; Setiaji, A.; Kurnianto, E. Effect of insulin-like growth factor 1 gene on growth traits of Kejobong goat and its growth analysis. Vet. World 2020, 13, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Meira, A.N.; Montenegro, H.; Coutinho, L.L.; Mourão, G.B.; Azevedo, H.C.; Muniz, E.N.; Machado, A.L.; Sousa, L.P., Jr.; Pedrosa, V.B.; Pinto, L.F.B. Single nucleotide polymorphisms in the growth hormone and IGF type-1 (IGF1) genes associated with carcass traits in Santa Ines sheep. Animal 2019, 13, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.N.; Zhang, B.Y.; Chu, M.X.; Wang, P.Q.; Feng, T.; Cao, G.L.; Di, R.; Fang, L.; Huang, D.W.; Tang, Q.Q.; et al. Polymorphism of insulin-like growth factor 1 gene and its association with litter size in Small Tail Han sheep. Mol. Biol. Rep. 2012, 39, 9801–9807. [Google Scholar] [CrossRef] [PubMed]
- Grochowska, E.; Lisiak, D.; Akram, M.Z.; Adeniyi, O.O.; Lühken, G.; Borys, B. Association of a polymorphism in exon 3 of the IGF1R gene with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. Meat. Sci. 2021, 172, 108314. [Google Scholar] [CrossRef] [PubMed]
- Grochowska, E.; Borys, B.; Janiszewski, P.; Knapik, J.; Mroczkowski, S.J.A.A.B. Effect of the IGF-I gene polymorphism on growth, body size, carcass and meat quality traits in Coloured Polish Merino sheep. Arch. Anim. Breed. 2017, 60, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Negahdary, M.; Hajihosseinlo, A.; Ajdary, M. PCR-SSCP Variation of IGF1 and PIT1 Genes and Their Association with Estimated Breeding Values of Growth Traits in Makooei Sheep. Genet. Res. Int. 2013, 2013, 272346. [Google Scholar] [CrossRef]
- Proskura, W.S.; Szewczuk, M.J.P.V.J. The Polymorphism in the IGF1R Gene is Associated with Body Weight and Average Daily Weight Gain in Pomeranian Coarsewool Ewes. Pak. Vet. J. 2014, 34, 514–517. [Google Scholar] [CrossRef]
- Li, X.; Ding, N.; Zhang, Z.Z.; Tian, D.H.; Han, B.Y.; Liu, S.J.; Liu, D.H.; Tian, F.; Zhao, K. Identification of Somatostatin Receptor Subtype 1 (SSTR1) Gene Polymorphism and Their Association with Growth Traits in Hulun Buir Sheep. Genes 2021, 13, 77. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Gao, H.D.; Sahana, G.; Zan, Y.Z.; Fan, H.Y.; Liu, J.X.; Shi, L.Y.; Wang, H.W.; Du, L.X.; Wang, L.X.; et al. Genome-wide association studies revealed candidate genes for tail fat deposition and body size in the Hulun Buir sheep. J. Anim. Breed. Genet. 2019, 136, 362–370. [Google Scholar] [CrossRef]
- Zhi, D.F.; Da, L.; Liu, M.N.; Cheng, C.; Zhang, Y.K.; Wang, X.; Li, X.N.; Tian, Z.P.; Yang, Y.Y.; He, T.Y.; et al. Whole Genome Sequencing of Hulunbuir Short-Tailed Sheep for Identifying Candidate Genes Related to the Short-Tail Phenotype. G3 Genes Genomes Genet. 2018, 8, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.Y.; Hou, Y.L.; Sahana, G.; Gao, H.D.; Zhu, C.Y.; Du, L.X.; Zhao, F.P.; Wang, L.X. A Transcriptomic Study of the Tail Fat Deposition in Two Types of Hulun Buir Sheep According to Tail Size and Sex. Animals 2019, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- Nei, M.; Roychoudhury, A.K. Sampling Variances of Heterozygosity and Genetic Distance. Genetics 1974, 76, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; et al. The structure of haplotype blocks in the human genome. Science. 2002, 296, 2225–2229. [Google Scholar] [CrossRef] [Green Version]
- Renaville, R.; Hammadi, M.; Portetelle, D. Role of the somatotropic axis in the mammalian metabolism. Domest. Anim. Endocrinol. 2002, 23, 351–360. [Google Scholar] [CrossRef]
- Wrigley, S.; Arafa, D.; Tropea, D. Insulin-like growth factor 1: At the crossroads of brain development and aging. Front. Cell Neurosci. 2017, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Byun, S.O.; Zhou, H.; Hickford, J.G. Polymorphism of the ovine insulin-like growth factor I receptor (IGFIR) gene. Mol. Cell. Probes 2008, 22, 131–132. [Google Scholar] [CrossRef]
- Kurokawa, M.; Sato, F.; Aramaki, S.; Soh, T.; Yamauchi, N.; Hattori, M.A. Monitor of the myostatin autocrine action during differentiation of embryonic chicken myoblasts into myotubes: Effect of IGF-I. Mol. Cell. Biochem. 2009, 331, 193–199. [Google Scholar] [CrossRef]
- Wyszyńska-Koko, J.; Pierzchała, M.; Flisikowski, K.; Kamyczek, M.; Rózycki, M.; Kurył, J. Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs. J. Appl. Genet. 2006, 47, 131–138. [Google Scholar] [CrossRef]
- Bonafè, M.; Barbieri, M.; Marchegiani, F.; Olivieri, F.; Ragno, E.; Giampieri, C.; Mugianesi, E.; Centurelli, M.; Franceschi, C.; Paolisso, G. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: Cues for an evolutionarily conserved mechanism of life span control. J. Clin. Endocrinol. Metab. 2003, 88, 3299–3304. [Google Scholar] [CrossRef]
- Liu, X.Y.; Lu, R.; Xia, Y.L.; Sun, J. Global analysis of the eukaryotic pathways and networks regulated by Salmonella typhimurium in mouse intestinal infection in vivo. BMC Genom. 2010, 11, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supek, F.; Minana, B.; Valcarcel, J.; Gabaldon, T.; Lehner, B. Synonymous Mutations Frequently Act as Driver Mutations in Human Cancers. Cell 2014, 156, 1324–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diederichs, S.; Bartsch, L.; Berkmann, J.C.; Frose, K.; Heitmann, J.; Hoppe, C.; Iggena, D.; Jazmati, D.; Karschnia, P.; Linsenmeier, M.; et al. The dark matter of the cancer genome: Aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol. Med. 2016, 8, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.E.; Mis, S.D.; Jia, K.E.; Wilke, C.O. Reduced mRNA Secondary-Structure Stability Near the Start Codon Indicates Functional Genes in Prokaryotes. Genome Biol. Evol. 2012, 4, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, D.; Wei, L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 2019, 19, 359. [Google Scholar] [CrossRef]
- Dettori, M.L.; Pazzola, M.; Paschino, P.; Amills, M.; Vacca, G.M. Association between the GHR, GHRHR, and IGF1 gene polymorphisms and milk yield and quality traits in Sarda sheep. J. Dairy Sci. 2018, 101, 9978–9986. [Google Scholar] [CrossRef] [Green Version]
- Li, S.B.; Zhou, H.T.; Zhao, F.F.; Fang, Q.; Wang, J.Q.; Liu, X.; Luo, Y.Z.; Hickford, J.G.H. Nucleotide Sequence Variation in the Insulin-Like Growth Factor 1 Gene Affects Growth and Carcass Traits in New Zealand Romney Sheep. DNA Cell Biol. 2020, 40, 265–271. [Google Scholar] [CrossRef]
- Abousoliman, I.; Reyer, H.; Oster, M.; Murani, E.; Mourad, M.; Rashed, M.A.S.; Mohamed, I.; Wimmers, K. Analysis of Candidate Genes for Growth and Milk Performance Traits in the Egyptian Barki Sheep. Animals 2020, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Routtu, J.; Hall, M.D.; Albere, B.; Beisel, C.; Bergeron, R.D.; Chaturvedi, A.; Choi, H.; Colbourne, J.; De Meester, L.; Stephens, M.T.; et al. An SNP-based second-generation genetic map of Daphnia magna and its application to QTL analysis of phenotypic traits. BMC Genom. 2014, 15, 1033. [Google Scholar] [CrossRef] [Green Version]
- Akey, J.; Jin, L.; Xiong, M.M. Haplotypes vs single marker linkage disequilibrium tests: What do we gain? Eur. J. Hum. Genet. 2001, 9, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.R.; Lai, E.H.; Gilbert, J.R.; Rogala, A.R.; Afshari, A.J.; Riley, L.; Finch, K.L.; Stevens, F.; Livak, K.J.; Slotterbeck, B.D.; et al. SNPing away at complex diseases: Analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am. J. Hum. Genet. 2000, 67, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, J.C.; Schneider, J.A.; Tanguay, D.A.; Choi, J.; Acharya, T.; Stanley, S.E.; Jiang, R.H.; Messer, C.J.; Chew, A.; Han, J.H.; et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001, 293, 489–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryckman, K.K.; Simhan, H.N.; Krohn, M.A.; Williams, S.M. Molecular Human Reproduction: Predicting risk of bacterial vaginosis: The role of race, smoking and corticotropin-releasing hormone-related genes. Mol. Hum. Reprod. 2009, 15, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; Meurs, J.B.V.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common Genetic Determinants of Vitamin D Insufficiency: A Genome-Wide Association Study. Lancet 2011, 376, 180–188. [Google Scholar] [CrossRef] [Green Version]
Gene | Mutant Loci | SNPs | RefSNP | Region | Allele | Amino Acid Variation | Mutation Type | |
---|---|---|---|---|---|---|---|---|
A | B | |||||||
IGF1 | c.144G>A | SNP1 | rs600896367 | exon2 | G | A | Ala | synonymous |
c.150T>C | SNP2 | rs159876393 | exon2 | T | C | Pro | synonymous | |
c.495G>A | SNP3 | rs400398060 | exon5 | G | A | Thr | synonymous | |
IGF1R | c.244C>T | SNP4 | - | exon3 | C | T | p.Arg81Cys | nonsynonymous |
c.714G>A | SNP5 | rs162159917 | exon6 | G | A | Lys | synonymous | |
c.924T>C | SNP6 | rs161166969 | exon8 | T | C | Asp | synonymous | |
c.939C>T | SNP7 | rs162159919 | exon8 | C | T | Cys | synonymous | |
c.1305T>C | SNP8 | - | exon11 | T | C | Asp | synonymous | |
c.1320G>A | SNP9 | rs601806812 | exon11 | G | A | Thr | synonymous | |
c.1401A>G | SNP10 | rs161166977 | exon11 | A | G | Ala | synonymous | |
c.1722T>C | SNP11 | rs161166984 | exon12 | T | C | Ser | synonymous | |
c.2253C>T | SNP12 | rs193644211 | exon17 | C | T | Ala | synonymous | |
c.2634C>G | SNP13 | rs161167008 | exon19 | C | G | Gly | synonymous |
Gene | SNPs | Genotype Frequency | Allele Frequency | Ne | Ho | He | PIC | P (HWE) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Wild Type | Hybrid Subtype | Mutant Type | Wild Type | Mutant Type | |||||||
AA | AB | BB | A | B | |||||||
IGF1 | SNP1 | 0.984 | 0.016 | 0 | 0.992 | 0.008 | 1.017 | 0.016 | 0.016 | 0.016 | 0.057 |
SNP2 | 0.490 | 0.436 | 0.074 | 0.708 | 0.292 | 1.705 | 0.436 | 0.414 | 0.328 | 0.604 | |
SNP3 | 0.646 | 0.329 | 0.025 | 0.811 | 0.189 | 1.443 | 0.329 | 0.307 | 0.260 | 0.485 | |
IGF1R | SNP4 | 0.948 | 0.052 | 0 | 0.974 | 0.026 | 1.053 | 0.052 | 0.051 | 0.049 | 0.085 |
SNP5 | 0.810 | 0.190 | 0 | 0.905 | 0.095 | 1.208 | 0.190 | 0.172 | 0.157 | 0.685 | |
SNP6 | 0.307 | 0.451 | 0.242 | 0.532 | 0.468 | 1.992 | 0.450 | 0.498 | 0.374 | 0.841 | |
SNP7 | 0.368 | 0.493 | 0.139 | 0.615 | 0.385 | 1.900 | 0.494 | 0.474 | 0.361 | 0.818 | |
SNP8 | 0.320 | 0.511 | 0.169 | 0.576 | 0.424 | 1.955 | 0.511 | 0.489 | 0.369 | 0.562 | |
SNP9 | 0.797 | 0.203 | 0 | 0.898 | 0.102 | 1.224 | 0.203 | 0.183 | 0.166 | 0.085 | |
SNP10 | 0.693 | 0.281 | 0.026 | 0.833 | 0.167 | 1.385 | 0.281 | 0.278 | 0.239 | 0.685 | |
SNP11 | 0.723 | 0.247 | 0.030 | 0.846 | 0.154 | 1.352 | 0.247 | 0.260 | 0.226 | 0.841 | |
SNP12 | 0.931 | 0.069 | 0 | 0.965 | 0.035 | 1.072 | 0.069 | 0.067 | 0.065 | 0.818 | |
SNP13 | 0.493 | 0.416 | 0.091 | 0.701 | 0.299 | 1.721 | 0.416 | 0.419 | 0.331 | 0.562 |
Haplotype | SNP6 | SNP7 | Frequency | Haplotype Combination | Frequency |
---|---|---|---|---|---|
H1 (TC) | T | C | 0.537 | H1H1 | 0.310 |
H2 (CT) | C | T | 0.389 | H1H2 | 0.402 |
H3 (CC) | C | C | 0.074 | H1H3 | 0.096 |
H2H2 | 0.052 | ||||
H2H3 | 0.140 |
Haplotype | SNP8 | SNP9 | Frequency | Haplotype Combination | Frequency |
---|---|---|---|---|---|
H4 (CG) | C | G | 0.321 | H1H1 | 0.114 |
H5 (TG) | T | G | 0.581 | H1H2 | 0.367 |
H6 (CA) | C | A | 0.098 | H1H3 | 0.048 |
H2H2 | 0.323 | ||||
H2H3 | 0.148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, N.; Tian, D.; Li, X.; Zhang, Z.; Tian, F.; Liu, S.; Han, B.; Liu, D.; Zhao, K. Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep. Genes 2022, 13, 666. https://doi.org/10.3390/genes13040666
Ding N, Tian D, Li X, Zhang Z, Tian F, Liu S, Han B, Liu D, Zhao K. Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep. Genes. 2022; 13(4):666. https://doi.org/10.3390/genes13040666
Chicago/Turabian StyleDing, Ning, Dehong Tian, Xue Li, Zhichao Zhang, Fei Tian, Sijia Liu, Buying Han, Dehui Liu, and Kai Zhao. 2022. "Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep" Genes 13, no. 4: 666. https://doi.org/10.3390/genes13040666
APA StyleDing, N., Tian, D., Li, X., Zhang, Z., Tian, F., Liu, S., Han, B., Liu, D., & Zhao, K. (2022). Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep. Genes, 13(4), 666. https://doi.org/10.3390/genes13040666