Combining Ability and Gene Action Controlling Agronomic Traits for Cytoplasmic Male Sterile Line, Restorer Lines, and New Hybrids for Developing of New Drought-Tolerant Rice Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experiments Setup and Crop Management
2.3. Studied Traits
2.4. Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Effect of Water Stress on Yield Performance and Productivity
3.3. General Combining Ability (GCA) Effects
3.4. Specific Combining Ability (SCA) Effects
3.5. Interrelationships between Genotypes, Irrigation Regimes, and Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice Blast: A Disease with Implications for Global Food Security. Agronomy 2019, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Vandamme, E.; Johnson, J.-M.; Tanaka, A.; Senthilkumar, K.; Dieng, I.; Akakpo, C.; Gbaguidi, F.; Segda, Z.; Bassoro, I. Yield-limiting macronutrients for rice in sub-Saharan Africa. Geoderma 2019, 338, 546–554. [Google Scholar] [CrossRef]
- Dharminder; Singh, R.K.; Kumar, V.; Pramanick, B.; Alsanie, W.F.; Gaber, A.; Hossain, A. The Use of Municipal Solid Waste Compost in Combination with Proper Irrigation Scheduling Influences the Productivity, Microbial Activity and Water Use Efficiency of Direct Seeded Rice. Agriculture 2021, 11, 941. [Google Scholar] [CrossRef]
- CAPMAS. Central Agency for Public Mobilization, Statistics: Annual Bulletin of Statistical Crop Area and Plant Production 2017/2018, Egypt. Available online: https://www.capmas.gov.eg/Pages/Publications.aspx?page_id=5104&Year=23541 (accessed on 3 February 2021).
- Mehana, M.; Abdelrahman, M.; Emadeldin, Y.; Rohila, J.S.; Karthikeyan, R. Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt. Agriculture 2021, 11, 865. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Staggenborg, S.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes. In Advances in Agricultural Systems Modeling; American Society of Agronomy: Madison, WI, USA, 2008; Volume 1, pp. 301–355. [Google Scholar]
- Sarvestani, Z.T.; Pirdashti, S.A.H.; Sanavy, M.M.; Balouchi, H. Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pak. J. Biol. Sci. PJBS 2008, 11, 1303–1309. [Google Scholar] [CrossRef]
- Serraj, R.; McNally, K.L.; Slamet-Loedin, I.; Kohli, A.; Haefele, S.M.; Atlin, G.; Kumar, A. Drought Resistance Improvement in Rice: An Integrated Genetic and Resource Management Strategy. Plant Prod. Sci. 2011, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mellor, J.W. Irrigation agriculture and poverty reduction: General relationships and specific needs. In Managing Water for Poor: Workshop Proceedings; International Water Management Institute: Colombo, Sri Lanka, 2002; pp. 53–69. Available online: https://ageconsearch.umn.edu/record/118412/files/H029688.pdf#page=56 (accessed on 1 January 2020).
- Farooq, M.; Kobayashi, N.; Ito, O.; Wahid, A.; Serraj, R. Broader leaves result in better performance of indica rice under drought stress. J. Plant Physiol. 2010, 167, 1066–1075. [Google Scholar] [CrossRef]
- Ichsan, C.N.; Basyah, B.; Zakaria, S.; Efendi, E. Differences of water status and relationship with roots growth and yield of rice under water stress. Syst. Rev. Pharm. 2020, 11, 611–618. [Google Scholar]
- Hussain, T.; Hussain, N.; Ahmed, M.; Nualsri, C.; Duangpan, S. Responses of Lowland Rice Genotypes under Terminal Water Stress and Identification of Drought Tolerance to Stabilize Rice Productivity in Southern Thailand. Plants 2021, 10, 2565. [Google Scholar] [CrossRef]
- Sidiqui, S.U.; Kummamaru, T.; Satoh, H. Pakistan rice genetic resources-I: Grain morphological diversity and its distribution. Pak. J. Bot. 2007, 39, 841–848. [Google Scholar]
- Sattari, A.; Mahdinezhad, N.; Fakheri, B.; Noroozi, M.; Beshishtizadeh, H. Improvement of the eating and cooking qualities of rice: A review. Int. J. Farm Allied. Sci. 2015, 4, 153–160. [Google Scholar]
- Kakar, K.; Xuan, T.D.; Quan, N.V.; Wafa, I.K.; Tran, H.-D.; Khanh, T.D.; Dat, T.D. Efficacy of N-methyl-N-nitrosourea (MNU) mutation on enhancing the yield and quality of rice. Agriculture 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Reddy, K.R.; Redoña, E.D.; Walker, T. Screening of rice cultivars for morpho-physiological responses to early-season soil moisture stress. Rice Sci. 2017, 24, 322–335. [Google Scholar] [CrossRef]
- Yue, B.; Xue, W.; Xiong, L.; Yu, X.; Luo, L.; Cui, K.; Jin, D.; Xing, Y.; Zhang, Q. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance. Genetics 2006, 172, 1213–1228. [Google Scholar] [CrossRef] [Green Version]
- Todaka, D.; Shinozaki, K.; Yamaguchi-shinozaki, K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci. 2015, 6, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IRRI. Standard Evaluation System for Rice, 5th ed.; The Philippines International Rice Research Institute: Los Banos, CA, USA, 2014. [Google Scholar]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Rosielle, A.A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Clarke, J.M.; Townley-Smith, F.; McCaig, T.N.; Green, D.G.G. Growth analysis of spring wheat cultivars of varying drought resistance. Crop Sci. 1984, 24, 537–541. [Google Scholar] [CrossRef]
- Hossain, A.B.S.; Sears, R.G.; Cox, T.S.; Paulsen, G.M. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Sci. 1990, 30, 622–627. [Google Scholar] [CrossRef]
- Fernandez, G.C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992; pp. 257–270. [Google Scholar]
- Schneider, K.A.; Rosales-serna, R.; Ibarra-perez, F.; Cazares-enriquez, B.; Acosta-gallegos, J.A.; Ramirez-vallejo, P.; Wassimi, N.; Kelly, J.D. Improving common bean performance under drought stress. Crop Sci. 1997, 37, 43–50. [Google Scholar] [CrossRef]
- Rashid, A.; Saleem, Q.; Nazir, A.; Kazım, H.S. Yield potential and stability of nine wheat varieties under water stress conditions. Int. J. Agric. Biol. 2003, 5, 7–9. [Google Scholar]
- Anwar, J.; Subhani, G.M.M.; Hussain, M.; Ahmad, J.; Hussain, M.; Munir, M. Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pak. J. Bot. 2011, 43, 1527–1530. [Google Scholar]
- Mansour, E.; Desoky, E.S.M.; Ali, M.M.A.; Abdul-Hamid, M.I.; Ullah, H.; Attia, A.; Datta, A. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric. Water Manag. 2021, 247, 106754. [Google Scholar] [CrossRef]
- Wasae, A. Evaluation of drought stress tolerance based on selection indices in Haricot Bean varieties exposed to stress at different growth stages. Int. J. Agron. 2021, 2021, 6617874. [Google Scholar] [CrossRef]
- Mitra, J. Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci. 2001, 80, 758–762. [Google Scholar]
- Blum, A. Plant Breeding for Stress Environments; CRC Press: Boca Raton, FL, USA, 2018; p. 212. [Google Scholar] [CrossRef]
- Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Aly, R.S.H. Relationship between combining ability of grain yield and yield components for some newly yellow maize inbred lines via line 9 tester analysis. Alex. J. Agric. Res. 2013, 58, 115–124. [Google Scholar]
- El-Mowafi, H.F.; AlKahtani, M.D.F.; Abdallah, R.M.; Reda, A.M.; Attia, K.A.; El-Hity, M.A.; El-Dabaawy, H.E.; Husnain, L.A.; Al-Ateeq, T.K.; EL-Esawi, M.A. Combining Ability and Gene Action for Yield Characteristics in Novel Aromatic Cytoplasmic Male Sterile Hybrid Rice under Water-Stress Conditions. Agriculture 2021, 11, 226. [Google Scholar] [CrossRef]
- Kempthorne, O. An Introduction to Genetic Studies; John Willey Sons Inc.: New York, NY, USA, 1957; pp. 458–471. [Google Scholar]
- Dey, S.S.; Bhatia, R.; Bhardwaj, I.; Mishra, V.; Sharma, K.; Parkash, C. Molecular-agronomic characterization and genetic study reveals usefulness of refined Ogura cytoplasm based CMS lines in hybrid breeding of cauliflower (Brassica oleracea var. botrytis L.). Sci. Hortic. 2017, 224, 27–36. [Google Scholar] [CrossRef]
- Virmani, S.S.S.; Sun, Z.X.X.; Mou, T.M.; Ali, A.J.; Mao, C.X. Two Lines Hybrid Rice Breeding Manual; International Rice Research Institute: Los Banos, Philippines, 1997. [Google Scholar]
- Panse, V.G.; Sukhatme, P.V. Statistical Methods for Agricultural Workers; ICAR: New Delhi, India, 1954; 227p. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publishers: Ludhiana, India, 1977; p. 300. [Google Scholar]
- El-Rouby, M.M. Statistical Genetics for Plant Breeding Methods; Research Notes; University of Alexandria: Alexandria, Egypt, 2009; pp. 51–54. [Google Scholar]
- SAS JMP®. Data Analysis Software; Version 15; SAS Institute Inc.: Cary, NC, USA, 2013; Available online: http://www.jmp.com/ (accessed on 15 February 2022).
- Awad-Allah, M.M.A.; Elekhtyar, N.M.; El-Abd, M.A.-E.-M.; Abdelkader, M.F.M.; Mahmoud, M.H.; Mohamed, A.H.; El-Diasty, M.Z.; Said, M.M.M.; Shamseldin, S.A.M.; Abdein, M.A. Development of New Restorer Lines Carrying Some Restoring Fertility Genes with Flowering, Yield and Grains Quality Characteristics in Rice (Oryza sativa L.). Genes 2022, 13, 458. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dwivedi, S.; Singh, S.; Jha, S.; Lekshmy, S.; Elanchezhian, R.; Singh, O.; Bhatt, B. Identification of drought tolerant rice genotypes by analysing drought tolerance indices and morpho-physiological traits. SABRAO J. Breed. Genet. 2014, 46, 217–230. [Google Scholar]
- Awad-Allah, M.M.A. Application of Genetic Engineering Tools on Rice Genome. Master’s Thesis, Al-Azhar University Faculty of Agriculture, Cairo, Egypt, 2006. [Google Scholar]
- Awad-Allah, M.M.A. Integrated Restorer Fertility and Wide Compatibility Genes for Producing Promising Restorer Lines in Rice. Ph.D. Thesis, Al-Azhar University Faculty of Agriculture, Cairo, Egypt, 2011. [Google Scholar]
- Awad-Allah, M.M.A.; Mohamed, A.H.; El-Bana, M.A.; El-Okkiah, S.A.F.; Abdelkader, M.F.M.; Mahmoud, M.H.; El-Diasty, M.Z.; Said, M.M.M.; Shamseldin, S.A.M.; Abdein, M.A. Assessment of Genetic Variability and Bran Oil Characters of New Developed Restorer Lines of Rice (Oryza sativa L.). Genes 2022, 13, 509. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Singh, A.; Kumar, A. Rice breeding for high grain yield under drought: A strategic solution to a complex problem. Int. J. Agron. 2014, 2014, 863683. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.I.; Kolapo, K. Drought resistance in rice from conventional to molecular breeding: A review. Int. J. Mol. Sci. 2019, 20, 3519. [Google Scholar] [CrossRef] [Green Version]
- Vikram, P.; Swamy, B.M.; Dixit, S.; Ahmed, H.U.; Cruz, M.T.S.; Singh, A.K.; Kumar, A. qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet. 2011, 12, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, M.; Huang, M.; Qiu, H.; Chun, Y.; Li, L.; Kumar, A.; Fang, J.; Zhao, J.; He, H.; Li, X. Genome-Wide Association Study of the Genetic Basis of Effective Tiller Number in Rice. Rice 2021, 14, 56. [Google Scholar] [CrossRef]
- Atlin, G.; Lafitte, H.; Tao, D.; Laza, M.; Amante, M.; Courtois, B. Developing rice cultivars for high-fertility upland systems in the Asian tropics. Field Crop. Res. 2006, 97, 43–52. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Ismail, A.; Bennett, J. Abiotic stress tolerance in rice for Asia: Progress and the future. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004; Volume 26, p. 1137. [Google Scholar]
- Abd-Allah, A.A.; Badawy, S.A.; Zayed, B.A.; El-Gohary, A.A. The role of root system traits in the drought tolerance of rice (Oryza sativa L.). J. Plant Prod. 2010, 1, 621–631. [Google Scholar] [CrossRef]
- Wang, B.; Xu, B.; Liu, Y.; Chen, X.; Liu, J.; Zhi, W.; Xing, Y.; Yang, B.; Li, J.; Chi, M.; et al. Variation of drought resistance of rice genotypes released in different years in China. J. Sci. Food Agric. 2019, 99, 4430–4438. [Google Scholar] [CrossRef]
- Ahmed, M.; Haq, M.E.; Hossain, M.M.; Md SaM, H.M. Performance of four different rice cultivars under drought Stress in the North-Western Part of Bangladesh. Int. J. Agric. For. 2017, 7, 134–139. [Google Scholar]
- El-Refaee, I.S.; Gorgy, R.N.; Metwally, T.F. Response of some rice cultivars to plant spacing for improving grain yield and productivity under different irrigation intervals. Alex. J. Agric. Res. 2012, 57, 1–15. [Google Scholar]
- Gewaily, E.E.; Amera, T.; Mohammed; Abd El-Rahem, W.T. Effect of different irrigation regimes on productivity and cooking quality of some rice varieties. World J. Agric. Sci. 2019, 15, 341–354. [Google Scholar]
- Zaman, N.K.; Bdullah, M.Y.; Othman, S. Growth and physiological performance of aerobic and lowland rice as affected by water stress at selected growth stages. Rice Sci. 2018, 25, 82–93. [Google Scholar] [CrossRef]
- Swamy, B.M.; Shamsudin, N.A.A.; Abd Rahman, S.N.; Mauleon, R.; Ratnam, W.; Cruz, M.T.S.; Kumar, A. Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice 2017, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogarten, S.M.; Sofer, T.; Chen, H.; Yu, C.; Brody, J.A.; Thornton, T.A.; Rice, K.M.M.; Conomos, M.P. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics 2019, 35, 5346–5348. [Google Scholar] [CrossRef]
- Herwibawa, B.; Sakhidin; Haryanto, T.A. Agronomic performances of aromatic and nonaromatic M1 rice under drought stress. Open Agric. 2019, 4, 575–584. [Google Scholar] [CrossRef]
- Leonilo, V.G.; Joanne, D.C.; Enriquez, J.O.S. Heterosis and combining ability analysis in CMS hybrid rice. Euphytica 2020, 216, 14. [Google Scholar] [CrossRef]
- Zubaer, M.A.; Chowdhury, A.K.B.; Islam, M.Z.; Ahmed, T.; Hasan, M.A. Effects of water stress on growth and yield attributes of Aman rice genotypes. Int. J. Sustain. Crop Prod. 2007, 2, 25–30. [Google Scholar]
- Ismaila, A.; Echekwe, C.A. Genetics of some Agronomic and Yield Traits in rice (Oryza sativa L.). Int. J. Sci. Res. 2012, 1, 1311–1322. [Google Scholar]
- Malemba, G.M.; Nzuve, F.M.; Kimani, J.M.; Olubayo, M.F.; Muthomi, J.W. Combining ability for drought tolerance in upland rice varieties at reproductive stage. J. Agric. Sci. 2017, 9, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Awad-allah, M.M.A. Identification and Evaluation of Some New Hybrids of Rice Under Egyptian Conditions. J. Agric. Chem. Biotechnol. 2016, 7, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, C.; Raju, C.D.; Raju, C.S.; Varma, N.R. Combining ability and gene action in hybrid rice. Int. J. Pure App. Biosci. 2018, 6, 497–510. [Google Scholar] [CrossRef]
- El-Hadi, A.H.A.; El-Adl, A.M.M.; Draz, A.E.; Refai, R.M.H.G. Evaluation of Combining Ability and Heterosis for Yield and Its Components Traits of Rice under Normal Irrigation and Drought Stress Conditions. J. Agric. Chem. Biotechnol. 2020, 11, 189–196. [Google Scholar] [CrossRef]
- Awad-Allah, M.M.A.; Attia, K.A.; El-Gohary, A.A.; Mikhael, B.B. Combining ability and gene action of grain yield and its components for some parental lines used in hybrid rice production. Egypt. J. Agric. Res. 2015, 93, 187–216. [Google Scholar]
- Latha, S.; Sharma, D.; Sanghera, G.S.S. Combining ability and heterosis for grain yield and its components in rice (Oryza sativa L.). Not. Sci. Biol. 2013, 5, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Yuga, M.E.E.; Kimani, P.M.; Olubayo, M.F.; Muthomi, J.W.; Nzuve, F.M. Combining ability of heterosis for agronomic and yield traits in indica and japonica rice crosses. J. Agric. Sci. 2018, 10, 92–103. [Google Scholar] [CrossRef]
- Awad-Allah, M.M.A. Heterosis and Combining ability Estimates using Line × Tester Analysis to Develop Wide Compatibility and Restorer Lines in Rice. J. Agric. Chem. Biotechnol. 2020, 11, 383–393. [Google Scholar] [CrossRef]
- Huang, M.; Chen, L.Y.; Chen, Z.Q. Diallel analysis of combining ability and heterosis for yield and yield components in rice by using positive loci. Euphytica 2015, 205, 37–50. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kulsum, M.U.; Hossain, E.; Hossain, M.M.; Rahman, M.M.; Rahmat, N.M.F. Combining ability analysis for identifying elite parents for heterotic rice hybrids. Acad. J. Agric. Res. 2015, 3, 70–75. [Google Scholar]
- Fasahat, P.; Rajabi, A.; Rad, M.J.; Derera, J. Principles and utilization of combining ability in plant breeding. Biom. Biostat. Int. J. 2016, 4, 1–24. [Google Scholar] [CrossRef]
- Tyagi, V.; Dhillon, S.K.; Kaushik, P.; Kaur, G. Characterization for Drought tolerance and physiological efficiency in novel cytoplasmic male sterile sources of sunflower (Helianthus annuus L.). Agronomy 2018, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Waza, S.A.A.; Jaiswal, H.K.K.; Sravan, T.; Priyanka, K.; Bano, D.A.A.; Rai, V.P. Combining ability analysis for various yield and quality traits in rice (Oryza sativa L.). J. Appl. Nat. Sci. 2015, 7, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Aditya, J.P.; Bhartiya, A. Combining ability analysis for yield and components traits in fine grain rice of Mid Hills of Uttarakhand. J. Rice Res. 2015, 8, 15–22. [Google Scholar]
- Awad-Allah, M.M.A.; Elekhtyar, N.M.; Said, M.M.; Abdein, M.A.; Shamseldin, S.A.M. Gene Action and Genetic Improvement of Parental Lines in Hybrid Rice for Developing New Hybrids. J. Appl. Sci. 2022, 22, 55–67. [Google Scholar] [CrossRef]
- Awad-Allah, M.M.A.; Attia, K.A.; Omar, A.A.; Dessoky, E.S.; Alzuaibr, F.M.; Alshehri, M.A.; Abdein, M.A.; Mohamed, A.H. Development of New Iso-Cytoplasmic Rice-Restorer Lines and New Rice Hybrids with Superior Grain Yield and Grain-Quality Characteristics by Utilizing Restorers’ Fertility Genes. Genes 2022, 13, 808. [Google Scholar] [CrossRef]
Female Parents | Code | Male Parents (Parentage) | Code | Hybrids |
---|---|---|---|---|
Gang46A (G46A) Parentage (Erjiu’ai 7/V41B//Zhenshan 97/Ya’aizao) | L1 | NRL 2 (IR69A/Giza178) | T1 | L1 × T1 |
NRL 9 (IR69A/Giza178) | T2 | L1 × T2 | ||
NRL 10 (IR69A/Giza178) | T3 | L1 × T3 | ||
NRL 11 (IR69A/Giza178) | T4 | L1 × T4 | ||
NRL 12 (IR69A/Giza178) | T5 | L1 × T5 | ||
NRL 29 (G46A/BG33-5) | T6 | L1 × T6 | ||
NRL 42 (G46A/BG33-5) | T7 | L1 × T7 | ||
NRL 43 (G46A/BG33-5) | T8 | L1 × T8 | ||
NRL 44 (G46A/BG33-5) | T9 | L1 × T9 | ||
NRL 47 (IR69A/ BG34-8) | T10 | L1 × T10 | ||
NRL 50 (G46A/BG34-8) | T11 | L1 × T11 | ||
T12 (Giza175/Milyang 49) | T12 | L1 × T12 | ||
IR69625A (IR69A) | L2 | NRL 2 (IR69A/Giza178) | T1 | L2 × T1 |
NRL 9 (IR69A/Giza178) | T2 | L2 × T2 | ||
NRL 10 (IR69A/Giza178) | T3 | L2 × T3 | ||
NRL 11 (IR69A/Giza178) | T4 | L2 × T4 | ||
NRL 12 (IR69A/Giza178) | T5 | L2 × T5 | ||
NRL 29 (G46A/BG33-5) | T6 | L2 × T6 | ||
NRL 42 (G46A/BG33-5) | T7 | L2 × T7 | ||
NRL 43 (G46A/BG33-5) | T8 | L2 × T8 | ||
NRL 44 (G46A/BG33-5) | T9 | L2 × T9 | ||
NRL 47 (IR69A/ BG34-8) | T10 | L2 × T10 | ||
NRL 50 (G46A/BG34-8) | T11 | L2 × T11 | ||
Giza178 (Giza175/Milyang 49) | T12 | L2 × T12 * |
Traits Genotypes | Days to 50% Heading | Plant Height (cm) | No. of Panicles/Plant | ||||||
---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 * | 80.2 | 79.0 | 77.9 | 88.7 | 81.0 | 73.4 | 17.6 | 16.4 | 14.7 |
L2 * | 100.1 | 98.7 | 98.0 | 104.3 | 87.7 | 72.4 | 19.2 | 17.6 | 15.2 |
T1 | 103.0 | 104.3 | 105.8 | 119.6 | 97.2 | 85.8 | 15.2 | 16.3 | 16.2 |
T2 | 101.0 | 102.7 | 104.4 | 106.4 | 93.0 | 81.3 | 20.0 | 17.3 | 18.5 |
T3 | 102.0 | 103.1 | 104.7 | 110.0 | 92.8 | 88.2 | 18.2 | 17.7 | 16.8 |
T4 | 97.0 | 98.8 | 100.0 | 110.9 | 94.2 | 88.0 | 21.2 | 19.6 | 18.8 |
T5 | 99.4 | 101.5 | 103.4 | 97.3 | 85.7 | 79.8 | 19.3 | 19.3 | 14.5 |
T6 | 90.0 | 91.1 | 92.1 | 115.9 | 102.8 | 97.5 | 17.5 | 16.5 | 15.3 |
T7 | 90.6 | 91.6 | 92.3 | 92.3 | 79.8 | 74.7 | 19.7 | 18.7 | 18.3 |
T8 | 87.0 | 87.8 | 88.8 | 90.7 | 77.7 | 75.2 | 20.2 | 21.3 | 15.8 |
T9 | 87.0 | 87.8 | 88.8 | 92.8 | 78.2 | 74.2 | 17.0 | 19.1 | 15.3 |
T10 | 101.0 | 102.3 | 103.8 | 103.9 | 81.3 | 69.0 | 21.3 | 18.0 | 21.3 |
T11 | 105.0 | 106.0 | 107.2 | 138.9 | 91.3 | 101.5 | 19.7 | 18.3 | 16.7 |
T12 | 101.6 | 99.8 | 97.9 | 104.2 | 84.8 | 80.5 | 18.5 | 16.4 | 14.6 |
L1 × T1 | 103.0 | 101.9 | 100.4 | 112.2 | 101.9 | 98.2 | 28.5 | 26.4 | 21.8 |
L2 × T1 | 101.8 | 100.7 | 99.5 | 108.2 | 102.5 | 98.9 | 14.7 | 13.9 | 12.3 |
L1 × T2 | 102.2 | 100.7 | 99.5 | 105.8 | 100.6 | 97.0 | 19.9 | 18.8 | 17.7 |
L2 × T2 | 101.4 | 100.3 | 99.2 | 91.8 | 87.3 | 83.8 | 20.3 | 19.0 | 17.7 |
L1 × T3 | 101.1 | 100.0 | 98.6 | 103.9 | 99.2 | 94.0 | 21.7 | 21.0 | 19.7 |
L2 × T3 | 100.4 | 98.7 | 97.5 | 89.7 | 85.0 | 79.2 | 23.0 | 22.0 | 18.9 |
L1 × T4 | 98.4 | 97.4 | 96.0 | 99.8 | 95.5 | 91.8 | 22.3 | 21.2 | 18.7 |
L2 × T4 | 99.8 | 98.5 | 97.2 | 86.4 | 80.0 | 79.6 | 22.1 | 20.9 | 19.5 |
L1 × T5 | 100.6 | 99.4 | 98.1 | 101.2 | 96.3 | 92.4 | 23.7 | 22.6 | 21.0 |
L2 × T5 | 99.8 | 98.1 | 96.1 | 88.5 | 83.6 | 79.5 | 16.0 | 14.0 | 11.5 |
L1 × T6 | 100.2 | 99.0 | 97.2 | 92.4 | 89.3 | 77.5 | 17.8 | 16.2 | 20.3 |
L2 × T6 | 99.2 | 97.9 | 96.6 | 98.6 | 89.7 | 66.3 | 24.6 | 23.7 | 13.5 |
L1 × T7 | 101.0 | 99.1 | 97.1 | 106.5 | 96.5 | 83.3 | 22.8 | 21.3 | 12.1 |
L2 × T7 | 100.0 | 98.1 | 96.1 | 92.2 | 81.7 | 74.4 | 22.5 | 21.0 | 12.3 |
L1 × T8 | 99.1 | 100.4 | 101.8 | 98.0 | 98.2 | 84.7 | 19.7 | 18.5 | 16.0 |
L2 × T8 | 97.6 | 99.0 | 101.1 | 83.8 | 83.7 | 70.7 | 21.4 | 20.5 | 18.3 |
L1 × T9 | 99.4 | 100.7 | 102.6 | 95.8 | 97.0 | 85.0 | 18.4 | 16.5 | 11.8 |
L2 × T9 | 98.0 | 99.6 | 101.7 | 78.8 | 78.7 | 77.5 | 21.7 | 20.9 | 22.2 |
L1 × T10 | 102.1 | 100.3 | 98.3 | 92.0 | 92.5 | 86.1 | 20.6 | 19.2 | 17.6 |
L2 × T10 | 101.4 | 99.6 | 97.9 | 93.0 | 89.4 | 84.6 | 32.7 | 26.7 | 23.7 |
L1 × T11 | 106.4 | 107.9 | 109.2 | 120.2 | 108.1 | 103.4 | 28.3 | 26.1 | 22.1 |
L2 × T11 | 104.6 | 105.2 | 106.2 | 105.4 | 94.7 | 91.6 | 22.9 | 21.6 | 18.9 |
L1 × T12 | 103.4 | 101.2 | 99.9 | 124.8 | 98.0 | 91.0 | 24.5 | 23.3 | 21.4 |
L2 × T12 ‡ | 102.2 | 99.6 | 98.2 | 108.4 | 90.6 | 84.6 | 20.8 | 19.2 | 17.1 |
L.S.D. 5% | 0.72 | 0.4 | 0.4 | 4.41 | 4.93 | 3.93 | 2.0 | 2.3 | 1.9 |
L.S.D. 1% | 0.96 | 0.6 | 0.5 | 5.86 | 6.54 | 5.21 | 2.7 | 3.0 | 2.6 |
Traits Genotypes | Panicle Length (cm) | No. of Spikelets/Panicle | No. of Filled Grains/Panicle | ||||||
---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 * | 23.5 | 20.3 | 18.3 | 174.2 | 156.1 | 120.7 | 162.0 | 140.3 | 103.0 |
L2 * | 22.6 | 19.5 | 17.6 | 132.5 | 118.8 | 91.7 | 123.1 | 105.7 | 77.2 |
T1 | 26.6 | 23.1 | 21.1 | 238.5 | 170.8 | 140.3 | 220.9 | 151.2 | 120.5 |
T2 | 22.1 | 18.9 | 19.5 | 143.8 | 122.4 | 114.3 | 137.5 | 115.5 | 105.1 |
T3 | 21.8 | 21.0 | 20.4 | 143.6 | 139.8 | 124.7 | 136.7 | 133.1 | 116.6 |
T4 | 22.3 | 21.1 | 20.3 | 151.6 | 127.5 | 109.6 | 144.5 | 121.6 | 101.2 |
T5 | 21.6 | 20.4 | 19.2 | 170.5 | 147.0 | 118.3 | 166.1 | 142.9 | 114.6 |
T6 | 23.6 | 23.8 | 20.0 | 165.8 | 202.3 | 146.4 | 161.1 | 171.4 | 117.5 |
T7 | 20.0 | 18.9 | 18.1 | 141.3 | 113.4 | 83.8 | 131.8 | 97.1 | 75.4 |
T8 | 20.9 | 18.3 | 18.4 | 126.2 | 135.1 | 95.9 | 116.6 | 120.7 | 82.2 |
T9 | 21.3 | 19.8 | 17.6 | 153.0 | 122.7 | 100.5 | 141.1 | 110.1 | 78.7 |
T10 | 23.0 | 22.9 | 20.8 | 150.0 | 114.8 | 86.2 | 143.4 | 109.7 | 76.5 |
T11 | 28.4 | 24.3 | 24.7 | 222.3 | 194.9 | 169.1 | 213.5 | 174.5 | 147.2 |
T12 | 22.6 | 20.3 | 19.7 | 192.6 | 165.5 | 135.1 | 174.1 | 151.3 | 106.0 |
L1 × T1 | 26.7 | 23.1 | 20.8 | 273.6 | 223.8 | 161.8 | 233.6 | 183.1 | 128.4 |
L2 × T1 | 23.5 | 22.2 | 20.2 | 153.5 | 120.0 | 100.2 | 137.9 | 106.8 | 86.4 |
L1 × T2 | 25.0 | 22.4 | 21.3 | 248.8 | 211.4 | 197.2 | 241.2 | 202.6 | 179.0 |
L2 × T2 | 24.2 | 20.8 | 19.8 | 187.7 | 159.5 | 148.8 | 176.4 | 148.0 | 134.3 |
L1 × T3 | 24.7 | 21.7 | 21.1 | 194.1 | 173.4 | 173.7 | 169.4 | 136.1 | 135.1 |
L2 × T3 | 23.4 | 22.4 | 20.4 | 186.9 | 182.0 | 162.3 | 180.9 | 170.7 | 147.3 |
L1 × T4 | 24.5 | 22.7 | 20.3 | 204.7 | 172.0 | 150.2 | 199.1 | 165.0 | 117.5 |
L2 × T4 | 25.4 | 23.1 | 21.6 | 211.2 | 177.6 | 154.7 | 207.8 | 174.2 | 151.9 |
L1 × T5 | 24.1 | 22.8 | 21.4 | 278.7 | 239.8 | 192.8 | 270.3 | 229.7 | 180.8 |
L2 × T5 | 24.1 | 22.4 | 21.3 | 219.9 | 188.8 | 151.5 | 204.4 | 173.4 | 136.9 |
L1 × T6 | 22.3 | 21.1 | 17.3 | 180.9 | 161.8 | 102.4 | 168.0 | 142.4 | 81.1 |
L2 × T6 | 22.3 | 20.8 | 18.9 | 209.8 | 169.0 | 122.0 | 205.5 | 155.6 | 107.0 |
L1 × T7 | 24.1 | 22.8 | 17.7 | 325.8 | 261.8 | 187.2 | 318.3 | 251.3 | 168.9 |
L2 × T7 | 22.4 | 20.7 | 16.4 | 232.5 | 186.6 | 137.6 | 218.9 | 172.6 | 126.6 |
L1 × T8 | 25.9 | 23.9 | 17.9 | 282.3 | 262.6 | 228.4 | 276.7 | 254.1 | 213.0 |
L2 × T8 | 24.1 | 22.0 | 16.6 | 200.6 | 187.4 | 163.1 | 194.0 | 179.0 | 153.3 |
L1 × T9 | 24.2 | 22.6 | 19.0 | 270.6 | 217.0 | 183.4 | 261.7 | 204.5 | 171.2 |
L2 × T9 | 23.5 | 21.9 | 19.4 | 246.0 | 197.0 | 160.8 | 241.4 | 189.0 | 153.4 |
L1 × T10 | 24.7 | 23.6 | 21.2 | 250.9 | 191.8 | 143.9 | 226.2 | 171.9 | 124.6 |
L2 × T10 | 24.8 | 24.0 | 21.8 | 203.3 | 155.5 | 116.7 | 180.0 | 137.0 | 94.4 |
L1 × T11 | 29.5 | 26.4 | 24.8 | 190.6 | 167.1 | 145.0 | 164.8 | 137.0 | 114.0 |
L2 × T11 | 29.0 | 26.0 | 24.3 | 168.7 | 148.1 | 128.6 | 142.9 | 119.0 | 99.1 |
L1 × T12 | 26.4 | 23.3 | 20.3 | 280.7 | 250.5 | 214.5 | 256.3 | 219.3 | 175.7 |
L2 × T12 ‡ | 25.1 | 22.2 | 20.2 | 167.4 | 149.8 | 128.3 | 158.5 | 134.5 | 107.8 |
L.S.D. 5% | 1.4 | 1.5 | 1.1 | 19.5 | 14.8 | 9.2 | 19.5 | 12.5 | 8.7 |
L.S.D. 1% | 1.8 | 2.0 | 1.5 | 25.9 | 19.6 | 12.2 | 25.9 | 16.5 | 11.5 |
Traits Genotypes | Panicle Weight (g) | Spikelet Fertility (%) | ||||
---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 * | 4.6 | 3.5 | 2.9 | 93.1 | 89.9 | 85.3 |
L2 * | 3.6 | 2.8 | 2.3 | 93.1 | 89.1 | 84.2 |
T1 | 6.6 | 3.7 | 2.7 | 92.6 | 88.8 | 86.0 |
T2 | 4.4 | 2.9 | 2.6 | 95.6 | 94.4 | 91.9 |
T3 | 4.0 | 3.0 | 2.7 | 95.2 | 95.2 | 93.5 |
T4 | 4.3 | 3.4 | 2.6 | 95.3 | 95.4 | 92.4 |
T5 | 4.9 | 3.6 | 2.8 | 97.4 | 97.2 | 96.8 |
T6 | 4.6 | 4.2 | 2.3 | 97.1 | 84.7 | 80.2 |
T7 | 4.1 | 2.8 | 1.7 | 93.3 | 85.6 | 90.0 |
T8 | 3.7 | 3.3 | 2.2 | 92.5 | 89.2 | 85.7 |
T9 | 4.2 | 3.4 | 2.2 | 92.3 | 89.7 | 78.4 |
T10 | 3.4 | 2.7 | 2.0 | 95.7 | 95.6 | 88.9 |
T11 | 5.7 | 4.8 | 3.6 | 96.1 | 89.7 | 87.0 |
T12 | 3.1 | 2.9 | 2.3 | 90.4 | 91.4 | 78.5 |
L1 × T1 | 5.5 | 3.4 | 2.5 | 85.4 | 81.8 | 79.3 |
L2 × T1 | 3.9 | 2.5 | 1.9 | 89.9 | 89.3 | 86.4 |
L1 × T2 | 7.0 | 5.5 | 5.0 | 97.0 | 95.9 | 90.8 |
L2 × T2 | 4.9 | 3.9 | 3.4 | 94.0 | 92.8 | 90.3 |
L1 × T3 | 6.4 | 5.6 | 5.1 | 87.3 | 78.6 | 77.8 |
L2 × T3 | 5.6 | 4.3 | 3.9 | 96.8 | 93.8 | 90.8 |
L1 × T4 | 6.1 | 4.7 | 3.4 | 97.3 | 95.9 | 78.4 |
L2 × T4 | 6.4 | 5.3 | 4.0 | 98.4 | 98.2 | 98.2 |
L1 × T5 | 8.2 | 6.3 | 5.0 | 96.9 | 95.8 | 93.8 |
L2 × T5 | 3.8 | 2.8 | 2.1 | 92.9 | 91.8 | 90.3 |
L1 × T6 | 3.5 | 3.1 | 2.1 | 92.9 | 88.2 | 79.3 |
L2 × T6 | 5.1 | 4.5 | 3.0 | 97.8 | 92.2 | 87.7 |
L1 × T7 | 9.8 | 6.8 | 5.0 | 97.7 | 96.0 | 90.3 |
L2 × T7 | 7.9 | 5.4 | 3.6 | 94.2 | 92.6 | 92.0 |
L1 × T8 | 7.6 | 6.7 | 5.8 | 98.0 | 96.8 | 93.3 |
L2 × T8 | 6.1 | 5.3 | 4.3 | 96.7 | 95.5 | 93.8 |
L1 × T9 | 7.0 | 5.7 | 4.8 | 96.7 | 94.3 | 93.5 |
L2 × T9 | 7.4 | 6.2 | 3.9 | 98.1 | 95.9 | 95.4 |
L1 × T10 | 6.4 | 5.1 | 3.7 | 90.1 | 89.7 | 86.7 |
L2 × T10 | 4.3 | 3.4 | 2.5 | 88.5 | 88.1 | 80.9 |
L1 × T11 | 4.5 | 3.9 | 3.0 | 86.5 | 82.1 | 78.7 |
L2 × T11 | 7.1 | 6.0 | 4.6 | 84.7 | 80.4 | 77.0 |
L1 × T12 | 4.3 | 3.7 | 2.7 | 91.3 | 87.6 | 81.9 |
L2 × T12 ‡ | 3.8 | 3.4 | 2.5 | 94.7 | 89.8 | 84.0 |
L.S.D. 5% | 0.9 | 0.8 | 2.4 | 3.0 | 4.1 | 3.4 |
L.S.D. 1% | 1.3 | 1.0 | 3.2 | 4.0 | 5.4 | 4.5 |
Traits Parents | Days to 50% Heading | Plant Height (cm) | No. of Panicles/Plant | Panicle Length (cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 | 0.45 ** | 0.52 ** | 0.49 ** | 5.33 ** | 5.26 ** | 4.74 ** | 0.24 | 0.33 * | 0.60 ** | 0.43 ** | 0.32 ** | 0.09 |
L2 | −0.45 ** | −0.52 ** | −0.49 ** | −5.33 ** | −5.26 ** | −4.74 ** | −0.24 | −0.33 * | −0.60 ** | −0.43 ** | −0.32 ** | −0.09 |
L.S.D. 5% | 0.09 | 0.05 | 0.04 | 0.52 | 0.58 | 0.46 | 0.24 | 0.27 | 0.23 | 0.16 | 0.17 | 0.13 |
L.S.D. 1% | 0.12 | 0.07 | 0.06 | 0.74 | 0.82 | 0.66 | 0.34 | 0.38 | 0.32 | 0.23 | 0.25 | 0.19 |
T1 | 1.4 ** | 1.2 ** | 0.5 ** | 11.2 ** | 9.7 ** | 12.9 ** | −0.5 | −0.5 | −0.7 * | 0.4 | −0.1 | 0.3 |
T2 | 0.8 ** | 0.4 ** | −0.1 | −0.3 | 1.5 * | 4.8 ** | −2.0 ** | −1.7 ** | −0.1 | −0.2 | −1.1 ** | 0.4 * |
T3 | −0.2 * | −0.8 ** | −1.4 ** | −2.3 ** | −0.4 | 1.0 | 0.2 | 0.9 * | 1.5 ** | −0.7 ** | −0.7 ** | 0.6 ** |
T4 | −1.9 ** | −2.2 ** | −2.8 ** | −5.9 ** | −4.7 ** | 0.1 | 0.1 | 0.4 | 1.4 ** | 0.2 | 0.2 | 0.8 ** |
T5 | −0.8 ** | −1.4 ** | −2.3 ** | −4.2 ** | −2.5 ** | 0.3 | −2.3 ** | −2.3 ** | −1.5 ** | −0.7 ** | −0.1 | 1.2 ** |
T6 | −1.2 ** | −1.7 ** | −2.5 ** | −3.6 ** | −3.0 ** | −13.7 ** | −0.9 ** | −0.7 * | −0.8 ** | −2.4 ** | −1.8 ** | −2.0 ** |
T7 | −0.5 ** | −1.5 ** | −2.8 ** | 0.3 | −3.4 ** | −6.8 ** | 0.5 | 0.6 | −5.5 ** | −1.5 ** | −1.0 ** | −3.1 ** |
T8 | −2.6 ** | −0.5 ** | 2.0 ** | −8.2 ** | −1.6 * | −7.9 ** | −1.6 ** | −1.1 ** | −0.6 * | 0.2 | 0.3 | −2.9 ** |
T9 | −2.3 ** | 0.02 | 2.7 ** | −11.8 ** | −4.7 ** | −4.4 ** | −2.1 ** | −1.9 ** | −0.8 * | −0.9 ** | −0.4 | −1.0 ** |
T10 | 0.8 ** | −0.2 ** | −1.3 ** | −6.5 ** | −1.5 * | −0.3 | 4.5 ** | 2.3 ** | 2.9 ** | 0.02 | 1.1 ** | 1.4 ** |
T11 | 4.5 ** | 6.4 ** | 8.3 ** | 13.7 ** | 8.9 ** | 11.9 ** | 3.5 ** | 3.2 ** | 2.8 ** | 4.5 ** | 3.5 ** | 4.4 ** |
T12 | 1.8 ** | 0.2 ** | −0.4 ** | 17.5 ** | 1.8 * | 2.2 ** | 0.5 | 0.7 * | 1.5 ** | 1.0 ** | 0.04 | 0.1 |
L.S.D. 5% | 0.2 | 0.1 | 0.1 | 1.3 | 1.4 | 1.1 | 0.6 | 0.7 | 0.6 | 0.4 | 0.4 | 0.3 |
L.S.D. 1% | 0.3 | 0.2 | 0.2 | 1.8 | 2.0 | 1.6 | 0.8 | 0.9 | 0.8 | 0.6 | 0.6 | 0.5 |
Traits Parents | No. of Spikelets/Panicle | No. of Filled Grains/Panicle | Panicle Weight (g) | Spikelet Fertility (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 | 24.8 ** | 21.3 ** | 16.9 ** | 22.4 ** | 18.2 ** | 12.1 ** | 0.4 ** | 0.32 ** | 0.35 ** | −0.4 * | −0.7 ** | −1.8 ** |
L2 | −24.8 ** | −21.3 ** | −16.9 ** | −22.4 ** | −18.2 ** | −12.1 ** | −0.4 ** | −0.32 ** | −0.35 ** | 0.4 * | 0.7 ** | 1.8 ** |
L.S.D. 5% | 2.31 | 1.7 | 1.1 | 2.3 | 1.5 | 1.0 | 0.1 | 0.10 | 0.08 | 0.4 | 0.5 | 0.4 |
L.S.D. 1% | 3.27 | 2.5 | 1.6 | 3.3 | 2.1 | 1.4 | 0.2 | 0.14 | 0.12 | 0.5 | 0.7 | 0.6 |
T1 | −10.2 ** | −17.9 ** | −25.5 ** | −24.0 ** | −28.3 ** | −29.6 ** | −1.2 ** | −1.8 ** | −1.5 ** | −5.9 ** | −5.4 ** | −4.3 ** |
T2 | −5.5 | −4.3 * | 16.5 ** | −0.9 | 2.1 | 19.7 ** | 0.0 | −0.03 | 0.5 ** | 2.0 ** | 3.4 ** | 3.4 ** |
T3 | −33.2 ** | −12.1 ** | 11.5 ** | −34.6 ** | −19.8 ** | 4.2 ** | 0.1 | 0.2 | 0.8 ** | −1.5 ** | −4.7 ** | −2.8 ** |
T4 | −15.8 ** | −15.0 ** | −4.0 ** | −6.3 * | −3.6 * | −2.3 | 0.3 | 0.3 * | 0.02 | 4.3 ** | 6.1 ** | 1.2 * |
T5 | 25.6 ** | 24.5 ** | 15.7 ** | 27.6 ** | 28.4 ** | 21.8 ** | 0.1 | −0.2 | −0.1 | 1.4 ** | 2.9 ** | 5.0 ** |
T6 | −28.4 ** | −24.3 ** | −44.3 ** | −23.0 ** | −24.2 ** | −42.9 ** | −1.6 ** | −0.9 ** | −1.1 ** | 1.9 ** | −0.8 | −3.6 ** |
T7 | 55.5 ** | 34.4 ** | 5.9 ** | 58.9 ** | 38.8 ** | 10.8 ** | 2.9 ** | 1.4 ** | 0.6 ** | 2.5 ** | 3.3 ** | 4.0 ** |
T8 | 17.7 ** | 35.2 ** | 39.3 ** | 25.6 ** | 43.4 ** | 46.1 ** | 0.9 ** | 1.3 ** | 1.4 ** | 3.9 ** | 5.2 ** | 6.4 ** |
T9 | 34.6 ** | 17.2 ** | 15.6 ** | 41.8 ** | 23.5 ** | 25.3 ** | 1.3 ** | 1.2 ** | 0.7 ** | 3.9 ** | 4.1 ** | 7.3 ** |
T10 | 3.4 | −16.1 ** | −26.2 ** | −6.7 * | −18.7 ** | −27.5 ** | −0.6 ** | −0.5 ** | −0.6 ** | −4.2 ** | −2.1 ** | −3.3 ** |
T11 | −44.1 ** | −32.2 ** | −19.7 ** | −55.9 ** | −45.2 ** | −30.4 ** | −0.1 | 0.2 | 0.1 | −7.9 ** | −9.7 ** | −9.3 ** |
T12 | 0.3 | 10.4 ** | 15.0 ** | −2.4 | 3.7 * | 4.7 ** | −1.9 ** | −1.2 ** | −1.0 ** | −0.5 | −2.3 ** | −4.2 ** |
L.S.D. 5% | 5.7 | 4.3 | 2.7 | 5.6 | 3.6 | 2.5 | 0.3 | 0.2 | 0.2 | 0.9 | 1.2 | 1.0 |
L.S.D. 1% | 8.0 | 6.1 | 3.9 | 8.0 | 5.1 | 3.6 | 0.4 | 0.3 | 0.3 | 1.2 | 1.7 | 1.4 |
Traits Parents | 1000 Grain Weight (g) | Grain Yield/Plant (g) | Hulling (%) | Milling (%) | Head Rice (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 | 0.6 ** | 0.2 ** | 0.33 ** | −0.6 | 0.1 | 0.4 | 0.13 | 0.07 | 0.01 | 1.7 ** | 1.8 ** | 1.3 ** | 4.2 ** | 4.5 ** | 4.4 ** |
L2 | −0.6 ** | −0.2 ** | −0.33 ** | 0.6 | −0.1 | −0.4 | −0.13 | −0.07 | −0.01 | −1.7 ** | −1.8 ** | −1.3 ** | −4.2 ** | −4.5 ** | −4.4 ** |
L.S.D. 5% | 0.10 | 0.09 | 0.08 | 0.8 | 0.7 | 0.6 | 0.16 | 0.17 | 0.15 | 0.17 | 0.1 | 0.1 | 0.2 | 0.5 | 0.4 |
L.S.D. 1% | 0.14 | 0.13 | 0.11 | 1.1 | 1.0 | 0.8 | 0.23 | 0.24 | 0.21 | 0.24 | 0.2 | 0.2 | 0.3 | 0.8 | 0.6 |
T1 | −1.3 ** | −1.8 ** | −2.6 ** | −6.8 ** | −5.1 ** | −8.5 ** | 0.1 | −0.4 * | −1.2 ** | −1.8 ** | −2.7 ** | −2.7 ** | 3.6 ** | 7.1 ** | 7.3 ** |
T2 | −0.03 | −0.5 ** | −0.3 * | 6.0 ** | 3.9 ** | 5.7 ** | −0.2 | −0.4 * | −0.7 ** | −0.7 ** | −0.5 ** | −1.3 ** | 2.2 ** | 3.7 ** | −2.2 ** |
T3 | 0.2 | 1.1 ** | 0.8 ** | 4.6 ** | 3.9 ** | 7.7 ** | −1.6 ** | −0.6 ** | −0.5 * | −0.1 | 0.6 ** | 0.4 * | −0.5 | −0.1 | −0.8 |
T4 | 1.0 ** | 0.6 ** | 1.0 ** | 5.4 ** | 3.6 ** | 5.4 ** | −0.1 | −0.4 | −0.2 | 0.003 | 0.2 | 0.8 ** | 0.4 | 0.2 | 10.6 ** |
T5 | 0.01 | 0.6 ** | −0.1 | −4.5 ** | −4.4 ** | −1.0 | 1.5 ** | 0.9 ** | 0.2 | 0.7 ** | 1.0 ** | 0.9 ** | 0.3 | −0.1 | −0.3 |
T6 | 1.1 ** | 0.9 ** | −0.8 ** | 3.2 ** | 3.3 ** | −3.0 ** | −0.4 * | −0.7 ** | −0.3 | −0.8 ** | −1.0 ** | −1.6 ** | −1.6 ** | −0.004 | 0.5 |
T7 | 1.2 ** | 1.6 ** | 1.5 ** | 11.4 ** | 8.1 ** | −4.7 ** | −0.1 | 0.1 | −1.3 ** | −1.2 ** | −1.3 ** | −1.8 ** | −6.1 ** | −5.4 ** | −12.4 ** |
T8 | −0.1 | 0.7 ** | 1.2 ** | 2.5 * | 3.4 ** | 0.3 | −0.5 * | 0.1 | −0.4 * | −0.5 * | −0.6 ** | 0.3 | −7.3 ** | −7.7 ** | −10.2 ** |
T9 | −0.4 ** | −0.2 | 0.9 ** | 2.5 * | 6.4 ** | 14.9 ** | −0.3 | −0.1 | 1.7 ** | −0.8 ** | 0.1 | 2.5 ** | −8.0 ** | −7.6 ** | −0.6 |
T10 | 0.1 | 0.3 * | 1.2 ** | 3.0 ** | −0.7 | −0.3 | 0.6 ** | 1.0 ** | 1.3 ** | 3.5 ** | 3.9 ** | 2.2 ** | 5.6 ** | −0.2 | −0.7 |
T11 | 0.2 | −1.3 ** | −1.1 ** | −16.0 ** | −12.5 ** | −10.7 ** | 0.8 ** | 0.9 ** | 1.8 ** | 0.5 * | 0.7 ** | 2.0 ** | 6.7 ** | 8.4 ** | 7.9 ** |
T12 | −2.0 ** | −2.0 ** | −1.5 ** | −11.3 ** | −9.9 ** | −5.7 ** | 0.4 | −0.3 | −0.5 * | 1.3 ** | −0.4 * | −1.7 ** | 4.8 ** | 1.7 * | 1.2 * |
L.S.D. 5% | 0.2 | 0.2 | 0.2 | 1.9 | 1.8 | 1.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.6 | 1.3 | 1.1 |
L.S.D. 1% | 0.3 | 0.3 | 0.3 | 2.7 | 2.5 | 2.0 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 | 0.8 | 1.8 | 1.5 |
Traits Tester | Days to 50% Heading | Plant Height (cm) | No. of Panicles/Plant | Panicle Length (cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 × T1 | 0.15 | 0.09 | −0.02 | −3.35 ** | −5.55 ** | −5.12 ** | 6.66 ** | 5.95 ** | 4.16 ** | 1.14 ** | 0.15 | 0.20 |
L2 × T1 | −0.15 | −0.09 | 0.03 | 3.35 ** | 5.55 ** | 5.12 ** | −6.66 ** | −5.95 ** | −4.16 ** | −1.14 ** | −0.15 | −0.20 |
L1 × T2 | −0.05 | −0.36 ** | −0.31 ** | 1.65 | 1.35 | 1.84 * | −0.45 | −0.41 | −0.60 | −0.005 | 0.44 | 0.66 * |
L2 × T2 | 0.05 | 0.36 ** | 0.31 ** | −1.65 | −1.35 | −1.84 * | 0.45 | 0.41 | 0.60 | 0.005 | −0.44 | −0.66 * |
L1 × T3 | −0.10 | 0.13 | 0.09 | 1.75 | 1.84 | 2.68 ** | −0.87 * | −0.81 | −0.20 | 0.22 | −0.67 * | 0.27 |
L2 × T3 | 0.10 | −0.13 | −0.09 | −1.75 | −1.84 | −2.68 ** | 0.87 * | 0.81 | 0.20 | −0.22 | 0.67 * | −0.27 |
L1 × T4 | −1.15 ** | −1.09 ** | −1.09 ** | 1.35 | 2.47 * | 1.39 | −0.12 | −0.15 | −1.00 * | −0.87 ** | −0.53 | −0.71 ** |
L2 × T4 | 1.15 ** | 1.09 ** | 1.09 ** | −1.35 | −2.47 * | −1.39 | 0.12 | 0.15 | 1.00 * | 0.87 ** | 0.53 | 0.71 ** |
L1 × T5 | −0.05 | 0.11 | 0.54 ** | 1.06 | 1.09 | 1.73 * | 3.61 ** | 4.00 ** | 4.13 ** | −0.40 | −0.12 | −0.07 |
L2 × T5 | 0.05 | −0.11 | −0.54 ** | −1.06 | −1.09 | −1.73 * | −3.61 ** | −4.00 ** | −4.13 ** | 0.39 | 0.12 | 0.07 |
L1 × T6 | 0.07 | 0.01 | −0.18 * | −8.41 ** | −5.43 ** | 0.84 | −3.64 ** | −4.10 ** | 2.81 ** | −0.45 | −0.18 | −0.89 ** |
L2 × T6 | −0.07 | −0.01 | 0.18 * | 8.41 ** | 5.43 ** | −0.84 | 3.64 ** | 4.10 ** | −2.81 ** | 0.45 | 0.18 | 0.89 ** |
L1 × T7 | 0.05 | −0.02 | 0.02 | 1.80 | 2.15 * | −0.26 | −0.09 | −0.16 | −0.70 | 0.41 | 0.72 * | 0.54 * |
L2 × T7 | −0.05 | 0.02 | −0.02 | −1.80 | −2.15 * | 0.26 | 0.09 | 0.16 | 0.70 | −0.41 | −0.72 * | −0.54 * |
L1 × T8 | 0.30 * | 0.16 | −0.13 | 1.77 | 1.99 | 2.23 * | −1.09 * | −1.31 * | −1.74 ** | 0.45 | 0.61 * | 0.55 * |
L2 × T8 | −0.30 * | −0.16 | 0.13 | −1.77 | −1.99 | −2.23 * | 1.09 * | 1.31 * | 1.74 ** | −0.45 | −0.61 * | −0.55 * |
L1 × T9 | 0.25 | 0.03 | −0.01 | 3.19 ** | 3.90 ** | −0.97 | −1.89 ** | −2.55 ** | −5.79 ** | −0.09 | 0.01 | −0.29 |
L2 × T9 | −0.25 | −0.03 | 0.01 | −3.19 ** | −3.90 ** | 0.97 | 1.89 ** | 2.55 ** | 5.79 ** | 0.09 | −0.01 | 0.29 |
L1 × T10 | −0.10 | −0.17 | −0.28 ** | −5.81 ** | −3.71 ** | −3.97 ** | −6.25 ** | −4.10 ** | −3.62 ** | −0.47 | −0.55 | −0.37 |
L2 × T10 | 0.10 | 0.17 | 0.27 ** | 5.81 ** | 3.71 ** | 3.97 ** | 6.25 ** | 4.10 ** | 3.62 ** | 0.47 | 0.55 | 0.37 |
L1 × T11 | 0.45 ** | 0.83 ** | 1.01 ** | 2.10 * | 1.47 | 1.17 | 2.48 ** | 1.92 ** | 1.00 * | −0.16 | −0.10 | 0.17 |
L2 × T11 | −0.45 ** | −0.83 ** | −1.01 ** | −2.10 * | −1.47 | −1.17 | −2.48 ** | −1.92 ** | −1.00 * | 0.16 | 0.10 | −0.17 |
L1 × T12 | 0.15 | 0.29 ** | 0.34 ** | 2.90 ** | −1.57 | −1.56 | 1.63 ** | 1.70 ** | 1.55 ** | 0.23 | 0.20 | −0.03 |
L2 × T12 ‡ | −0.15 | −0.29 ** | −0.34 ** | −2.90 ** | 1.57 | 1.56 | −1.63 ** | −1.70 ** | −1.55 ** | −0.23 | −0.20 | 0.03 |
L.S.D. 5% | 0.3 | 0.2 | 0.2 | 1.8 | 2.0 | 1.6 | 0.8 | 0.9 | 0.8 | 0.6 | 0.6 | 0.5 |
L.S.D. 1% | 0.4 | 0.2 | 0.2 | 2.6 | 2.9 | 2.3 | 1.2 | 1.3 | 1.1 | 0.8 | 0.9 | 0.7 |
Traits Tester | No. of Spikelets/Panicle | No. of Filled Grains/Panicle | Panicle Weight (g) | Spikelet Fertility (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 × T1 | 35.31 ** | 30.56 ** | 13.90 ** | 25.45 ** | 19.93 ** | 8.88 ** | 0.38 | 0.10 | −0.07 | −1.87 ** | −3.00 ** | −1.72 * |
L2 × T1 | −35.31 ** | −30.56 ** | −13.90 ** | −25.45 ** | −19.93 ** | −8.88 ** | −0.38 | −0.10 | 0.07 | 1.87 ** | 3.00 ** | 1.72 * |
L1 × T2 | 5.82 | 4.62 | 7.29 ** | 10.02 * | 9.07 ** | 10.24 ** | 0.62 ** | 0.52 ** | 0.42 ** | 1.91 ** | 2.27 * | 2.06 ** |
L2 × T2 | −5.82 | −4.62 | −7.29 ** | −10.02 * | −9.07 ** | −10.24 ** | −0.62 ** | −0.52 ** | −0.42 ** | −1.91 ** | −2.27 * | −2.06 ** |
L1 × T3 | −21.16 ** | −25.59 ** | −11.21 ** | −28.11 ** | −35.52 ** | −18.22 ** | 0.003 | 0.37 * | 0.28 | −4.33 ** | −6.89 ** | −4.67 ** |
L2 × T3 | 21.16 ** | 25.59 ** | 11.21 ** | 28.11 ** | 35.52 ** | 18.22 ** | 0.003 | −0.37 * | −0.28 | 4.33 ** | 6.89 ** | 4.67 ** |
L1 × T4 | −28.02 ** | −24.12 ** | −19.16 ** | −26.71 ** | −22.85 ** | −29.31 ** | −0.58 * | −0.59 ** | −0.63 ** | −0.16 | −0.38 | −8.08 ** |
L2 × T4 | 28.02 ** | 24.12 ** | 19.16 ** | 26.71 ** | 22.85 ** | 29.31 ** | 0.58 * | 0.59 ** | 0.63 ** | 0.16 | 0.38 | 8.08 ** |
L1 × T5 | 4.63 | 4.19 | 3.74 | 10.54 * | 9.93 ** | 9.83 ** | 1.81 ** | 1.44 ** | 1.08 ** | 2.43 ** | 2.74 ** | 3.54 ** |
L2 × T5 | −4.63 | −4.19 | −3.74 | −10.54 * | −9.93 ** | −9.83 ** | −1.81 ** | −1.44 ** | −1.08 ** | −2.43 ** | −2.74 ** | −3.54 ** |
L1 × T6 | −39.21 ** | −24.94 ** | −26.71 ** | −41.10 ** | −24.83 ** | −25.07 ** | −1.19 ** | −1.05 ** | −0.79 ** | −2.08 ** | −1.27 | −2.41 ** |
L2 × T6 | 39.21 ** | 24.94 ** | 26.71 ** | 41.10 ** | 24.83 ** | 25.07 ** | 1.19 ** | 1.05 ** | 0.79 ** | 2.08 ** | 1.27 | 2.41 ** |
L1 × T7 | 21.89 ** | 16.27 ** | 7.89 ** | 27.32 ** | 21.15 ** | 9.04 ** | 0.52 * | 0.41 * | 0.33 * | 2.14 ** | 2.45 ** | 0.93 |
L2 × T7 | −21.89 ** | −16.27 ** | −7.89 ** | −27.32 ** | −21.15 ** | −9.04 ** | −0.52 * | −0.41 * | −0.33 * | −2.14 ** | −2.45 ** | −0.93 |
L1 × T8 | 16.08 ** | 16.28 ** | 15.75 ** | 18.99 ** | 19.33 ** | 17.73 ** | 0.31 | 0.40 * | 0.43 ** | 1.07 | 1.39 | 1.50 * |
L2 × T8 | −16.08 ** | −16.28 ** | −15.75 ** | −18.99 ** | −19.33 ** | −17.73 ** | −0.31 | −0.40 * | −0.43 ** | −1.07 | −1.39 | −1.50 * |
L1 × T9 | −12.46 ** | −11.33 ** | −5.61 ** | −12.20 ** | −10.47 ** | −3.22 | −0.62 ** | −0.57 ** | 0.07 | −0.29 | −0.07 | 0.80 |
L2 × T9 | 12.46 ** | 11.33 ** | 5.61 ** | 12.20 ** | 10.47 ** | 3.22 | 0.62 ** | 0.57 ** | −0.07 | 0.29 | 0.07 | −0.80 |
L1 × T10 | −0.93 | −3.16 | −3.34 | 0.70 | −0.75 | 2.96 | 0.64 ** | 0.52 ** | 0.25 | 1.18 | 1.52 | 4.66 ** |
L2 × T10 | 0.93 | 3.16 | 3.34 | −0.70 | 0.75 | −2.96 | −0.64 ** | −0.52 ** | −0.25 | −1.18 | −1.52 | −4.66 ** |
L1 × T11 | −13.84 ** | −11.80 ** | −8.73 ** | −11.43 ** | −9.18 ** | −4.67 * | −1.70 ** | −1.40 ** | −1.16 ** | 1.30 * | 1.57 | 2.61 ** |
L2 × T11 | 13.84 ** | 11.80 ** | 8.73 ** | 11.43 ** | 9.18 ** | 4.67 * | 1.70 ** | 1.40 ** | 1.16 ** | −1.30 * | −1.57 | −2.61 ** |
L1 × T12 | 31.87 ** | 29.02 ** | 26.19 ** | 26.52 ** | 24.20 ** | 21.83 ** | −0.18 | −0.14 | −0.22 | −1.29 * | −0.35 | 0.77 |
L2 × T12 ‡ | −31.87 ** | −29.02 ** | −26.19 ** | −26.52 ** | −24.20 ** | −21.83 ** | 0.18 | 0.14 | 0.22 | 1.29 * | 0.35 | −0.77 |
L.S.D. 5% | 8.0 | 6.1 | 3.9 | 8.0 | 5.1 | 3.6 | 0.4 | 0.3 | 0.3 | 1.2 | 1.7 | 1.4 |
L.S.D. 1% | 11.3 | 8.6 | 5.5 | 11.3 | 7.2 | 5.0 | 0.6 | 0.5 | 0.4 | 1.8 | 2.4 | 1.9 |
Traits Tester | 1000 Grain Weight (g) | Grain Yield/Plant (g) | Hulling (%) | Milling (%) | Head Rice (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
L1 × T1 | −0.54 ** | −0.24 | −0.32 * | −3.88 ** | −3.24 * | −2.60 * | 1.57 ** | 1.62 ** | 1.39 ** | 1.56 ** | 1.30 ** | 1.77 ** | 0.70 | 0.13 | 0.38 |
L2 × T1 | 0.54 ** | 0.24 | 0.32 * | 3.88 ** | 3.24 * | 2.60 * | −1.57 ** | −1.62 ** | −1.39 ** | −1.56 ** | −1.30 ** | −1.77 ** | −0.70 | −0.13 | −0.38 |
L1 × T2 | 0.73 ** | 0.97 ** | 0.83 ** | 7.65 ** | 3.68 ** | −7.10 ** | 0.50 | 0.48 | 0.45 | −0.45 | −0.45 | −0.01 | 1.83 ** | 2.91 ** | 8.34 ** |
L2 × T2 | −0.73 ** | −0.97 ** | −0.83 ** | −7.65 ** | −3.68 ** | 7.10 ** | −0.50 | −0.48 | −0.45 | 0.45 | 0.45 | 0.01 | −1.83 ** | −2.91 ** | −8.34 ** |
L1 × T3 | 0.18 | 0.53 ** | −0.03 | 7.51 ** | 5.93 ** | −1.83 | −0.86 ** | −0.62 * | 0.62 * | 1.09 ** | 1.47 ** | 0.72 ** | 6.27 ** | 6.37 ** | 6.51 ** |
L2 × T3 | −0.18 | −0.53 ** | 0.03 | −7.51 ** | −5.93 ** | 1.83 | 0.86 ** | 0.62 * | −0.62 * | −1.09 ** | −1.47 ** | −0.72 ** | −6.27 ** | −6.37 ** | −6.51 ** |
L1 × T4 | 0.25 | 0.49 ** | 0.27 | −0.04 | 2.18 | 0.53 | −0.52 | −0.64 * | −0.58 * | −1.09 ** | −1.13 ** | −0.15 | −4.32 ** | −4.61 ** | −3.70 ** |
L2 × T4 | −0.25 | −0.49 ** | −0.27 | 0.04 | −2.18 | −0.53 | 0.52 | 0.64 * | 0.58 * | 1.09 ** | 1.13 ** | 0.15 | 4.32 ** | 4.61 ** | 3.70 ** |
L1 × T5 | −0.56 ** | −0.49 ** | −0.38 * | 18.80 ** | 13.75 ** | 9.65 ** | −0.42 | −0.37 | −0.25 | 0.04 | 0.19 | 0.64 * | −3.20 ** | −3.64 ** | −1.93 * |
L2 × T5 | 0.56 ** | 0.49 ** | 0.38 * | −18.80 ** | −13.75 ** | −9.65 ** | 0.42 | 0.37 | 0.25 | −0.04 | −0.19 | −0.64 * | 3.20 ** | 3.64 ** | 1.93 * |
L1 × T6 | −0.24 | −1.66 ** | −2.51 ** | −13.68 ** | −11.33 ** | 1.27 | −0.53 | −0.71 * | −0.65 * | −0.26 | −0.33 | 0.13 | −0.26 | −0.58 | −0.79 |
L2 × T6 | 0.24 | 1.66 ** | 2.51 ** | 13.68 ** | 11.33 ** | −1.27 | 0.53 | 0.71 * | 0.65 * | 0.26 | 0.33 | −0.13 | 0.26 | 0.58 | 0.79 |
L1 × T7 | −0.38 * | −1.06 ** | −0.003 | 3.10 * | −0.93 | 4.33 ** | 0.04 | 0.10 | 0.40 | −0.52 | −0.59 * | −0.13 | −7.03 ** | −7.38 ** | 0.17 |
L2 × T7 | 0.38 * | 1.06 ** | 0.003 | −3.10 * | 0.93 | −4.33 ** | −0.04 | −0.10 | −0.40 | 0.52 | 0.59 * | 0.13 | 7.03 ** | 7.38 ** | −0.17 |
L1 × T8 | −0.39 * | −0.98 ** | −0.07 | −3.21 * | −0.26 | −1.65 | 0.37 | 0.43 | 0.23 | −1.18 ** | −1.06 ** | −0.58 * | 6.04 ** | 5.72 ** | 3.98 ** |
L2 × T8 | 0.39 * | 0.98 ** | 0.07 | 3.21 * | 0.26 | 1.65 | −0.37 | −0.43 | −0.23 | 1.18 ** | 1.06 ** | 0.58 * | −6.04 ** | −5.72 ** | −3.98 ** |
L1 × T9 | 0.83 ** | 0.93 ** | 1.04 ** | −3.98 ** | −0.93 | 2.02 * | 0.34 | 0.76 * | −0.75 ** | 1.68 ** | 1.18 ** | −3.12 ** | 5.89 ** | 5.57 ** | −9.49 ** |
L2 × T9 | −0.83 ** | −0.93 ** | −1.04 ** | 3.98 ** | 0.93 | −2.02 * | −0.34 | −0.76 * | 0.75 ** | −1.68 ** | −1.18 ** | 3.12 ** | −5.89 ** | −5.57 ** | 9.49 ** |
L1 × T10 | 0.49 ** | 0.73 ** | 0.63 ** | −15.57 ** | −10.61 ** | −6.48 ** | −0.66 * | −0.74 * | −0.68 * | 1.09 ** | 1.46 ** | 1.85 ** | −3.62 ** | −3.77 ** | −2.75 ** |
L2 × T10 | −0.49 ** | −0.73 ** | −0.63 ** | 15.57 ** | 10.61 ** | 6.48 ** | 0.66 * | 0.74 * | 0.68 * | −1.09 ** | −1.47 ** | −1.85 ** | 3.62 ** | 3.77 ** | 2.75 ** |
L1 × T11 | −0.48 ** | −0.19 | −0.27 | −1.13 | −2.55 * | −0.39 | 0.27 | 0.31 | 0.38 | −0.26 | −0.29 | 0.21 | 0.87 * | 0.56 | 0.76 |
L2 × T11 | 0.48 ** | 0.19 | 0.27 | 1.13 | 2.55 * | 0.39 | −0.27 | −0.31 | −0.38 | 0.26 | 0.28 | −0.21 | −0.87 * | −0.56 | −0.76 |
L1 × T12 | 0.11 | 0.96 ** | 0.83 ** | 4.43 ** | 4.31 ** | 2.27 * | −0.09 | −0.64 * | −0.58 * | −1.71 ** | −1.77 ** | −1.31 ** | −3.17 ** | −1.28 | −1.47 |
L2 × T12 ‡ | −0.11 | −0.96 ** | −0.83 ** | −4.43 ** | −4.31 ** | −2.27 * | 0.09 | 0.64 * | 0.58 * | 1.71 ** | 1.76 ** | 1.31 ** | 3.17 ** | 1.28 | 1.47 |
L.S.D. 5% | 0.3 | 0.3 | 0.3 | 2.7 | 2.5 | 2.0 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | 0.5 | 0.8 | 1.8 | 1.5 |
L.S.D. 1% | 0.5 | 0.5 | 0.4 | 3.9 | 3.5 | 2.8 | 0.8 | 0.8 | 0.7 | 0.8 | 0.7 | 0.7 | 1.1 | 2.6 | 2.1 |
Characters | Contribution of Line | Contribution of Tester | Contribution of Line × Tester | ||||||
---|---|---|---|---|---|---|---|---|---|
6 D | 9 D | 12 D | 6 D | 9 D | 12 D | 6 D | 9 D | 12 D | |
Days to 50% heading | 4.87 | 5.40 | 2.47 | 91.58 | 91.03 | 95.11 | 3.56 | 3.58 | 2.42 |
Plant height (cm) | 23.76 | 47.33 | 27.23 | 65.52 | 36.29 | 65.92 | 10.73 | 16.38 | 6.86 |
No. of panicles/plant | 0.38 | 0.98 | 2.75 | 28.71 | 23.47 | 36.07 | 70.91 | 75.55 | 61.18 |
Panicle length (cm) | 6.10 | 5.42 | 0.22 | 85.39 | 84.88 | 94.36 | 8.51 | 9.70 | 5.42 |
No. of spikelets/ panicle | 31.96 | 34.18 | 27.65 | 41.22 | 37.75 | 51.54 | 26.82 | 28.06 | 20.81 |
No. of filled grains/panicle | 24.73 | 22.75 | 13.63 | 50.00 | 51.08 | 63.16 | 25.27 | 26.16 | 23.21 |
Panicle weight (g) | 6.63 | 6.51 | 10.16 | 62.02 | 57.33 | 60.21 | 31.35 | 36.16 | 29.63 |
Spikelet fertility (%) | 0.82 | 1.82 | 7.92 | 78.91 | 74.75 | 62.19 | 20.28 | 23.43 | 29.88 |
1000 grain weight (g) | 23.19 | 2.98 | 4.43 | 59.41 | 60.60 | 63.05 | 17.41 | 36.41 | 32.52 |
Grain yield/plant (g) | 0.23 | 0.01 | 0.25 | 41.79 | 47.56 | 72.08 | 57.98 | 52.43 | 27.67 |
Hulling (%) | 1.62 | 0.58 | 0.01 | 55.57 | 40.13 | 71.02 | 42.81 | 59.29 | 28.97 |
Milling (%) | 50.07 | 46.76 | 26.76 | 30.16 | 35.96 | 47.02 | 19.76 | 17.27 | 26.22 |
Head rice (%) | 29.75 | 32.46 | 24.09 | 39.27 | 38.11 | 50.68 | 30.98 | 29.43 | 25.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad-Allah, M.M.A.; Attia, K.A.; Omar, A.A.; Mohamed, A.H.; Habiba, R.M.; Alzuaibr, F.M.; Alshehri, M.A.; Alqurashi, M.; Aloufi, S.; Dessoky, E.S.; et al. Combining Ability and Gene Action Controlling Agronomic Traits for Cytoplasmic Male Sterile Line, Restorer Lines, and New Hybrids for Developing of New Drought-Tolerant Rice Hybrids. Genes 2022, 13, 906. https://doi.org/10.3390/genes13050906
Awad-Allah MMA, Attia KA, Omar AA, Mohamed AH, Habiba RM, Alzuaibr FM, Alshehri MA, Alqurashi M, Aloufi S, Dessoky ES, et al. Combining Ability and Gene Action Controlling Agronomic Traits for Cytoplasmic Male Sterile Line, Restorer Lines, and New Hybrids for Developing of New Drought-Tolerant Rice Hybrids. Genes. 2022; 13(5):906. https://doi.org/10.3390/genes13050906
Chicago/Turabian StyleAwad-Allah, Mamdouh M. A., Kotb A. Attia, Ahmad Alsayed Omar, Azza H. Mohamed, Rehab M. Habiba, Fahad Mohammed Alzuaibr, Mohammed Ali Alshehri, Mohammed Alqurashi, Salman Aloufi, Eldessoky S. Dessoky, and et al. 2022. "Combining Ability and Gene Action Controlling Agronomic Traits for Cytoplasmic Male Sterile Line, Restorer Lines, and New Hybrids for Developing of New Drought-Tolerant Rice Hybrids" Genes 13, no. 5: 906. https://doi.org/10.3390/genes13050906
APA StyleAwad-Allah, M. M. A., Attia, K. A., Omar, A. A., Mohamed, A. H., Habiba, R. M., Alzuaibr, F. M., Alshehri, M. A., Alqurashi, M., Aloufi, S., Dessoky, E. S., & Abdein, M. A. (2022). Combining Ability and Gene Action Controlling Agronomic Traits for Cytoplasmic Male Sterile Line, Restorer Lines, and New Hybrids for Developing of New Drought-Tolerant Rice Hybrids. Genes, 13(5), 906. https://doi.org/10.3390/genes13050906