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A Visualization Example

HPAA dendrogram (unconstrained) HPAA dendrogram with weak taxonomic herarchy HPAA dendrogram with strong taxonoric hierarchy.
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Figure S1: The NICU data: HPAA dendrograms with SDI and different constraints on
taxonomic hierarchy.

HPAA dendrogram (unconstrained) HPAA dendrogram with weak taxonomic herarchy HPAA dendrogram with strong taxonoric hierarchy.
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Figure S2: The NICU data: HPAA dendrograms with Bray-Curtis and different constraints
on taxonomic hierarchy.



Bray—Curtis Index, Number of PCs: 40 Bray—Curtis Index, Number of PCs: 20 Bray-Curtis Index, Number of PCs: 10
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Figure S3: The NICU data: 2D NMDS ordination plots for comparing original data and
different numbers of principal compositions from HPAA with Bray-Curtis and weak taxo-
nomic hierarchy.



B Simulation

We first compare the computation efficiency of HPAA and amalgam, and ACLUST. To
explore the effect of the dimensionality and the the sample size, we generate compositional
data with n = 100,p € {25,50,100,200,400,800} and n € {25,50,100,200,400},p =
400, respectively, using the amalgam package. The package uses Poisson distribution with
A = 100 to generate raw count at each matrix entry and then converts the counts into
compositional data. For amalgam, the number of amalgamations is fixed at k = 3 as
the computation time of amalgam greatly increases with the number of amalgamations,
while we use the unconstrained HPAA methods with different loss functions to generate
entire paths of amalgamations. We remark that the unconstrained HPAA is more time
consuming than its constrained counterpart, as at each step the former always needs to
solve the amalgamation problem over a larger active set. Each setting is repeated 10 times
and the average running time of each method is reported in Figure S4. We have omitted
ACLUST since it cannot even handle moderate dimension comparable to the real data
example with p = 60. The results show that HPAA is computationally efficient and scales
well with the increase of the dimension or the sample size. In contrast, amalgam and
ACLUST are very computationally intensive even for moderately large p or n, making them
unsuitable for large-scale microbiome studies.

We also compare different dimension reduction methods on how well they preserve the
between-sample distance pattern, which is very importance in many biological applications.
Here we simulate data to mimic the HIV infection dataset, presented in Section 4.2 of the
main paper. Specifically, each raw count vector is generated from the multinomial
distribution with the total count being 10,000 and the probabilities being the average
proportions of the top p = 20 taxon in the HIV dataset; the count vector is then normalized
to be compositional. The same taxonomic tree structure as in the HIV dataset is used. Three
sample sizes are considered, i.e., n € {50, 100, 200}. We use HPAA with weak taxonomic
hierarchy, amalgam, and ACLUST to reduce the simulated data to kK = 10 dimensions. The
taxonomic guidance is one of the essential components in our proposed methods, without
which the computational cost becomes much higher and the results of amalgamation are not
interpretable.. The prevalence-based filtering method is also included as the baseline, which
simply keeps the top 10 most prevalent taxa. In each simulation, the mean squared error
(MSE) of the two between-sample distance matrices, computed from either the original data
or the reduced data based on Bray-Curtis dissimilarity, is computed for each method. The
procedure is repeated 100 times under each setting. The results are shown in Figure S5, in
which the boxplots are constructed from the relative mean squared errors (RMSE) using the
prevalence-based filtering method as the baseline, i.e., each RMSE is computed as the MSE
divided by the median of the prevalence-based method (so that the boxplots of the
prevalence-based method are with the median equal to 1). It is clear that all three HPAA
methods with different loss functions outperform the baseline, amalgam, and ACLUST. PAA
with the Bray-Curtis loss performs the best, as



it directly aims at preserving the Bray-Curtis dissimilarity. To our surprise, the amalgam
method performs worse than the baseline, which may be due to its requirement of zero-
replacement and log-ratio transformation and the slow convergence of its genetic algorithm.
Moreover, ACLUST performs even worse than amalgam.
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Figure S4: Simulation: Average running time (in second) of HPA A methods with Simpson’s
index (SDI), Shannon’s index (SWI) and Bray-Curtis dissimilarity (BC), and the amalgam
method by Quinn and Erb (2020).
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Figure S5: Simulation: Accuracy in preserving between-sample Bray-Curtis dissimilar-
ity after dimension reduction. Five dimension reduction methods are considered: simple
prevalence-based filtering method (Simple), HPAA methods with Simpson’s index (SDI),
Shannon’s index (SWI) and Bray-Curtis dissimilarity (BC), the amalgam method by Quinn
and Erb (2020), and ACLUST by Greenacre (2020). For each of compression, boxplots are
constructed for the relative mean squared errors, i.e., mean squared error divided by the
median of the Simple approach.
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