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Abstract: A true discrepancy between the effect of systolic blood pressure (SBP) and diastolic blood
pressure (DBP) on cardiovascular (CV) outcomes remains unclear. This study performed two-sample
Mendelian randomization (MR) using genetic instruments that exclusively predict SBP, DBP or both to
dissect the independent effect of SBP and DBP on a range of CV outcomes. Genetic predisposition to
higher SBP and DBP was associated with increased risk of coronary artery disease (CAD), myocardial
infarction (MI), stroke, heart failure (HF), atrial fibrillation (AF), chronic kidney disease (CKD) and
type 2 diabetes mellitus (T2DM). Genetically proxied SBP exclusively was associated with CAD (OR
1.18, 95% CI: 1.03–1.36, per 10 mmHg), stroke (1.44[1.28–1.62]), ischemic stroke (1.49[1.30–1.69]), HF
(1.41[1.20–1.65]), AF (1.28[1.15–1.43]), and T2DM (1.2[1.13–1.46]). Genetically proxied DBP exclusively
was associated with stroke (1.21[1.06–1.37], per 5 mmHg), ischemic stroke (1.24[1.09–1.41]), stroke
small-vessel (1.35[1.10–1.65]) and CAD (1.19[1.00–1.41]). Multivariable MR using exclusive SBP and
DBP instruments showed the predominant effect of SBP on CAD (1.23[1.05–1.44], per 10 mmHg),
stroke (1.39[1.20–1.60]), ischemic stroke (1.44[1.25–1.67]), HF (1.42[1.18–1.71]), AF (1.26[1.10–1.43])
and T2DM (1.31[1.14–1.52]). The discrepancy between effects of SBP and DBP on outcomes warrants
further studies on underpinning mechanisms which may be amenable to therapeutic targeting.

Keywords: blood pressure; systolic; diastolic; Mendelian randomization

1. Introduction

High blood pressure (BP) is recognized as the most common modifiable risk factor for
cardiovascular diseases (CVDs) and related disability. More than 1 billion people world-
wide experience high blood pressure [1], which accounts for more than 20% of CVD [2]. A
10 mmHg decrease in systolic blood pressure (SBP) was found to be associated with a 5% to
20% reduction in risk of coronary artery disease (CAD) and a 25% to 30% reduction in the
risk of stroke [3], indicating BP lowering is one of the most effective strategies to reduce the
burden of CVD. Blood pressure is represented by systolic and diastolic components, both of
which are considered for a diagnosis of hypertension. Whilst both show direct associations
with incident cardiovascular disease [4,5], SBP alone is included in CVD risk prediction
tools. This reflects the current parsimonious notion that SBP alone is sufficient to capture
hypertension-related CVD risk, especially given the global ageing population demograph-
ics [6]. Traditionally, systolic blood pressure (SBP) and diastolic blood pressure (DBP)
represent cardiac output and peripheral vascular resistance, respectively. SBP rises with age
linearly, while DBP increases until around age 50 years and falls thereafter accompanied by
wider pulse pressure. The rise in BP with age transitions from a primarily vasoconstrictive
mechanism in resistance arteries and arterioles affects both SBP and DBP in the young to
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large artery stiffening and loss of vascular compliance in older individuals that increases
SBP but decreases DBP. Epidemiologically, DBP is more closely associated with coronary
heart disease (CHD) development in the young, whereas in those over 60 years SBP is more
predictive [7]. A DBP J-curve relationship has been observed where low DBP is associated
with increased CV risk in the presence of coronary artery disease and attributed to limited
coronary flow reserve [5,8,9], though not consistently [4], and refuted in recent Mendelian
randomization studies [10,11]. Compared with DBP, raised SBP had a greater effect on
angina, myocardial infarction and peripheral arterial disease, whereas raised DBP had a
greater effect on abdominal aortic aneurysm [4]. There is considerable epidemiological
evidence associating hypertension with heart failure but evidence for a causal role is less
clear; although fibrosis, ventricular noncompliance, hypertrophy and ischemia are common
features of HF which can all be impacted by hypertension. Genome-wide association
studies (GWAS) have uncovered >1500 single nucleotide polymorphisms associated with
SBP and DBP (with a minority of SNPs exclusively associated with either SBP or DBP) and
have transformed our understanding of blood pressure genetics. This has paved the way
for Mendelian randomisation (MR) studies which leverage the independent assortment of
genotypes to minimise confounding and reverse causation [12] to show a causal relation-
ship between SBP and coronary artery disease [13,14], stroke (ischemic stroke and deep
intracerebral hemorrhage) [14,15] and valvular heart disease [16]. Applying non-linear
MR, two studies ruled out a J-shaped relationship between DBP and CAD [10,14] and
stroke [14]. It is unclear if a true dichotomy between SBP and DBP exists where separate
pathophysiological pathways affect outcomes independently. However, if such a dichotomy
exists, then understanding its basis may lead to precision hypertension management. To
address this question, we performed MR studies using genetic instruments that exclusively
predict SBP, DBP or both to dissect the independent effect of SBP and DBP on a range of
cardiovascular outcomes.

2. Methods
2.1. Two-Sample MR Analysis

We performed two-sample MR using GWAS summary data. Data used in this study
are available from public repositories and are summarised in Table 1. Genetic associations
of single-nucleotide polymorphisms (SNPs) with SBP and DBP were obtained from a GWAS
meta-analysis for BP traits [17]. Genetic associations with outcomes were obtained from
publicly available genetic consortia. The β-coefficients obtained from these published
GWAS studies had been corrected for population stratification by inclusion of principal
components into their analysis [17–24]. This MR analysis was reported as per the STROBE-
MR guidelines [25] (Supplementary checklist in the Data Supplement).

Table 1. Genome-wide association studies included in this MR study.

Traits Consortium/Cohort Sample Size (Cases) Population Reference

Systolic blood pressure Evangelou E (2018) 757,601 European [17]
Systolic blood pressure Neale Lab (2017) 317,756 European [18]
Diastolic blood pressure Evangelou E (2018) 757,601 European [17]
Diastolic blood pressure Neale Lab (2017) 317,756 European [18]
Coronary artery disease CARDIoGRAMplusC4D 184,305 (60,801) 77% European [19]
Myocardial infarction CARDIoGRAMplusC4D 171,875 (43,676) 77% European [19]

Stroke MEGASTROKE 446,696 (40,585) European [20]
Heart failure FinnGen 208,178 (13,087) European [21]

Atrial fibrillation Nielsen JB (2018) 1,030,836 (60,620) European [22]
Chronic kidney disease CKDGen 117,165 (12,385) European [23]

Type 2 diabetes Xue A (2018) 655,666 (61,714) European [24]
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2.2. Genetic Instruments for Blood Pressure

All the data for instrumental variable selection were obtained from the GWAS cata-
logue [26] and PhenoScanner [27]. Genetic instruments were selected for the MR analysis
based on two-stage inclusion criteria. In stage 1, we selected SNPs that were associated
with any BP trait (SBP, DBP, pulse pressure (PP), hypertension (HTN)) at p-value < 5× 10−8

in GWAS studies on European participants with a sample size > 100,000 through a review of
the GWAS catalog and PhenoScanner. We excluded SNPs pleiotropic for other phenotypes
except cardiovascular outcomes (defined by associations at p-value < 5 × 10−8) through
review of all GWAS studies available in the GWAS catalog and PhenoScanner [26,27]. Then
we prioritized SNPs for inclusion which satisfied at least one of the following criteria:
(i) SNPs were associated with cis- or trans-gene expression in one or multiple tissues at
p-value < 5 × 10−5 (i.e., expression quantitative trait loci, eQTL); (ii) SNPs were associated
with BP traits in more than one GWAS. In stage 2, we grouped the SNPs into three mutually
exclusive sets using GWAS results from Evangelou et al. [17], the largest GWAS of blood
pressure traits with publicly accessible summary data, where we focused on SBP and DBP
association results and removed SNPs that had a p-value > 5 × 10−4 in this study. This
resulted in a set of SNPs that attained a p-value < 5 × 10−8 for any BP trait in a large
GWAS study and had an SBP or DBP p-value < 5 × 10−4 in Evangelou et al. and were
grouped in SBP-exclusive, DBP-exclusive and SBP +DBP groups. Each SBP-exclusive SNP
had p-value < 5 × 10−4 for SBP and p-value > 5 × 10−4 for DBP in Evangelou et al. and a
similar principle applied to DBP-exclusive SNPs. We further used a more stringent p-value
< 5 × 10−8 instead of 5 × 10−4 to select SNPs for sensitivity analysis. The selection criteria
for genetic instruments in this MR study are illustrated in Figure 1. Palindromic SNPs with
effect allele frequency close to 0.5 (>0.42 and <0.58) were removed from the analysis and to
ensure that genetic instruments were independent, we performed clumping at r2 < 0.001.
This resulted in 242 independent SNPs associated with both SBP and DBP (Set 1); 120
SBP-exclusive SNPs (Set 2); and 80 DBP-exclusive SNPs (Set 3). For sensitivity analysis,
we obtained 63 SBP-exclusive SNPs (SBP p < 5 × 10−8, DBP p > 5 × 10−4) (Set 2′), and 54
DBP-exclusive SNPs (DBP p < 5 × 10−8, SBP p > 5 × 10−4) (Set 3′) (Tables S1–S6).

The summary statistics for selected SNPs were obtained from a GWAS meta-analysis
for BP traits, Evangelou et al. [17], on 757,601 individuals of European ancestry. This
study comprises a fixed-effects inverse variance weighted meta-analysis of genotyped and
imputed SNPs from the International Consortium for Blood Pressure (ICBP) and the UK
Biobank. The ICBP GWAS data consists of 77 cohorts for 299,024 individuals of European
ancestry genotyped with various arrays and imputed to either the 1000 Genomes Reference
Panel or the Haplotype Reference Consortium (HRC) panel. UK Biobank is a cohort study
of 502,519 people aged 40–69 years who are mainly of British ancestry. The participants were
genotyped by a customized array and imputed to the HRC panel. Both ICBP and UKBB
GWAS were adjusted for age, age2, sex and body mass index (BMI), and included study-
level genomic control to account for population structure. These studies also corrected
for observed BP based on hypertension medication status. The pooled mean (standard
deviation) of SBP and DBP were 138.4 (20.1) and 82.8 (11.2) mmHg, respectively [17].
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Figure 1. Flowchart illustrating the selection criteria for genetic instruments in this study. BP indi-
cates blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; SNP, single nu-
cleotide polymorphism; GWAS, Genome-wide association study; CVD, cardiovascular disease; 
eQTL, expression quantitative trait loci; LD, linkage disequilibrium; MR, Mendelian randomiza-
tion; BMI, body mass index. * 242 SNPs associated with both SBP and DBP (p < 5 × 10−4), identified 
in a BP GWAS meta-analysis study [17]. ** 120 SNPs associated with SBP but not associated with 
DBP (p < 5 × 10−4). *** 80 SNPs associated with DBP but not associated with SBP (p < 5 × 10−4). † 63 
SNPs associated with SBP (p < 5 × 10−8) but not associated with DBP (p > 5 × 10−4). ‡ 54 SNPs associ-
ated with DBP (p < 5 × 10−8) but not with SBP (p > 5 × 10−4). § MR analysis unadjusted for body mass 
index, using summary statistics from UK BioBank data. 

The summary statistics for selected SNPs were obtained from a GWAS me-
ta-analysis for BP traits, Evangelou et al. [17], on 757,601 individuals of European ances-
try. This study comprises a fixed-effects inverse variance weighted meta-analysis of 
genotyped and imputed SNPs from the International Consortium for Blood Pressure 
(ICBP) and the UK Biobank. The ICBP GWAS data consists of 77 cohorts for 299,024 in-
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1000 Genomes Reference Panel or the Haplotype Reference Consortium (HRC) panel. UK 
Biobank is a cohort study of 502,519 people aged 40–69 years who are mainly of British 
ancestry. The participants were genotyped by a customized array and imputed to the 
HRC panel. Both ICBP and UKBB GWAS were adjusted for age, age2, sex and body mass 

Figure 1. Flowchart illustrating the selection criteria for genetic instruments in this study. BP
indicates blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; SNP, single
nucleotide polymorphism; GWAS, Genome-wide association study; CVD, cardiovascular disease;
eQTL, expression quantitative trait loci; LD, linkage disequilibrium; MR, Mendelian randomization;
BMI, body mass index. * 242 SNPs associated with both SBP and DBP (p < 5 × 10−4), identified
in a BP GWAS meta-analysis study [17]. ** 120 SNPs associated with SBP but not associated with
DBP (p < 5 × 10−4). *** 80 SNPs associated with DBP but not associated with SBP (p < 5 × 10−4).
† 63 SNPs associated with SBP (p < 5 × 10−8) but not associated with DBP (p > 5 × 10−4). ‡ 54 SNPs
associated with DBP (p < 5 × 10−8) but not with SBP (p > 5 × 10−4). § MR analysis unadjusted for
body mass index, using summary statistics from UK BioBank data.

2.3. Outcomes

Outcomes selected were a range of CVD outcomes related to hypertension, including
coronary artery disease (CAD), myocardial infarction (MI), stroke, heart failure (HF), atrial
fibrillation (AF), chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM) [4,28–34].
Genetic associations with these outcomes were obtained from the most appropriate disease
GWAS from publicly available genetic consortia, which consist of the most similar popu-
lations with the GWAS for the exposure while minimizing sample overlap. Details of the
GWAS consortium are listed in Table 1.
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2.4. Ethical Approval

This study only used publicly available data. Ethical approval for each of the studies
can be found in the original publications.

2.5. Statistical Analysis

MR analysis relies on three assumptions, including that the genetic instruments were
robustly associated with the exposure of interest, were independent of potential con-
founders and were associated with the outcomes only via their association with the ex-
posure. In this MR study, we assessed the strength of genetic instruments by calculating
the F statistics [35]. We used the GWAS catalogue [26] and PhenoScanner [27], which pro-
vide a curated database of publicly available large-scale GWAS, to investigate pleiotropic
associations of BP SNPs.

To estimate the causal effects of BP traits on the odds of the outcomes we performed
two-sample MR analysis using inverse variance weighted (IVW) with multiplicate random
effects. Three sets of genetic instruments—SBP-and-DBP-associated SNPs (set 1), SBP-
exclusive SNPs (set 2) and DBP-exclusive SNPs (set 3)—were used for the two-sample
MR analysis to differentiate the causal effects of SBP and DBP on CV outcomes. The
proportion of variance (R2) in the exposure trait explained by each genetic variant was
calculated [36]. Estimates of the effects of each BP trait on outcomes are odds ratios
per 10 mmHg increase in genetically predicted SBP and are odds ratios per 5 mmHg
increase in genetically predicted DBP. With consideration of multiple testing and the similar
aetiology of several outcomes included in this study, a Bonferroni-corrected p-value of 0.004
(0.05/(2 BP traits × 6 outcomes)) was considered strong evidence, whereas p-value < 0.05
but > 0.004 was considered suggestive evidence. To assess the heterogeneity of the effects
we used the Cochran Q test [37] and scatterplots of the SNP effects on the exposure against
SNP effects on the outcome. To detect horizontal pleiotropy effects of the instruments, we
evaluated the Egger intercept in MR Egger regression; a significant deviation of the intercept
from zero indicates possible horizontal pleiotropy [38]. The MR Egger method relaxes the
MR assumptions, allowing for directional pleiotropy but requiring the Instrument Strength
Independent of Direct Effect (InSIDE) assumption [38]. The InSIDE assumption is satisfied
when the pleiotropic effects of genetic variants on the outcome are not correlated with
their associations with the exposure [38]. A funnel plot of the MR estimate against its
precision was conducted to detect directional pleiotropy. To identify if a single SNP is
driving the association, we performed leave-one-out analysis by leaving each SNP out
of the MR analysis in turn [39]. Moreover, to explore the independent effects of SBP
and DBP on outcomes, we conducted multivariable Mendelian randomization (MVMR)
analyses in SBP-exclusive + DBP-exclusive SNP set. We used the Sanderson–Windmeijer
multivariate F-statistic to assess the conditional instrument strength and the modified
Cochran’s Q-statistics to measure the heterogeneity [40]. A conditional F-statistic greater
than 10 is conventionally used as a threshold for sufficient instrument strength. The IVW
MVMR method was performed to estimate the independent causal effects of SBP and DBP
on outcomes. Robust causal estimates were obtained through Q-statistic minimization,
accounting for potential violation in the MVMR assumptions [40].

As the IVW method assumes that all variants satisfy the assumptions of MR analysis
or that the average pleiotropic effect across genetic variants is zero [41], we conducted
sensitivity analysis using weighted median [42], and Mendelian Randomization-Pleiotropy
Residual Sum and Outlier (MR-PRESSO) [43] to assess the robustness of the results. These
methods can provide reliable inferences when some genetic variants do not satisfy the
assumptions. The MR-PRESSO method allows for the detection of variants with heteroge-
neous estimates which can be horizontal pleiotropic outliers. The detected variants were
removed from the analysis and the IVW method was subsequently conducted without such
variants [43]. The weighted median method, which takes a median of the variant-specific
estimates, is robust to directional pleiotropy when at least half of the SNPs are valid in-
struments and was also performed [42]. Additionally, we performed the IVW MR method
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using subsets of SBP-exclusive and DBP-exclusive SNPs (set 2′ and 3′), in which we only
selected SNPs that had significant associations with the traits at p-value < 5 × 10−8. As
the GWAS study by Evangelou et al. [17] adjusted for the effect of the body-mass index
(BMI) which could introduce collider bias, we conducted the MR analysis using genetic
associations with BP in UK Biobank that did not include adjustment for BMI [18] available
through MR-Base (MR-base id: ukb-a-360, ukb-a-359) [44].

MR analyses by IVW, weighted median and MR Egger were performed using R
package TwoSampleMR [44]; MR-PRESSO was performed using R package MR-PRESSO;
MVMR analyses were performed using R package MVMR [45]. All analyses were per-
formed in R software version 4.1.2.

3. Results

All the selected SNPs as genetic instruments had F statistics > 10, suggesting that bias
due to weak instruments was unlikely to be influencing our conclusions. The total variance
explained for the selected instruments is 2.82% and 2.54% for SBP and DBP, respectively.

Using SNPs associated with both SBP and DBP (set 1) as genetic instruments, we
found that both SBP and DBP were positively associated with all CVD outcomes included
in this study. In decreasing order of the IVW estimates, each genetically predicted 10 mmHg
increase in SBP was associated with an odds ratio (OR) of 1.36 in CAD (95% CI, 1.26–1.47),
1.35 in MI (95% CI, 1.25–1.46), 1.34 in stroke (95% CI, 1.26–1.43), 1.30 in CKD (95% CI,
1.16–1.47), 1.28 in HF (95% CI, 1.17–1.41), 1.17 in T2DM (95% CI, 1.09–1.26) and 1.16 in AF
(95% CI, 1.09–1.24) (Figure 2). A similar trend was observed in the associations of DBP with
the outcomes, with the strongest associations being with CAD and MI, and the least strong
associations being with AF and T2DM (Figure 3). The MR-Egger intercept test did not detect
significant directional pleiotropy (Tables S7 and S8). Estimates from the weighted median
and MR-PRESSO methods were consistent in direction and magnitude with the results from
the main analysis for all outcomes (Tables S7 and S8). The results of Cochran Q test indicated
evidence of heterogeneity (Tables S9 and S10). The scatter plots of SNP-exposure and SNP-
outcome associations showed the balance at around zero of the heterogeneity of genetic
instruments, and the intercept from MR Egger passing through zero (Figures S1 and S3).
The funnel plots appeared generally symmetrical, which suggested minimal deviation from
pleiotropy (Figures S2 and S4). No outlying variants were identified from leave-one-out
analysis (Figures S5 and S6). In the sensitivity analysis using genetic associations with BP
unadjusted for BMI, the estimates were generally consistent in direction with the results
from the main analysis (Tables S11 and S12).
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Figure 2. Mendelian randomization estimates (odds ratio with 95% CI per 10 mmHg increase in
genetically predicted systolic blood pressure) from the inverse variance weighted method. SNP
indicates single nucleotide polymorphism; OR, odd ratios; SBP, systolic blood pressure; DBP, diastolic
blood pressure. * 242 SNPs associated with both SBP and DBP (p < 5 × 10−4), identified in a BP
GWAS meta-analysis study [17]. † 120 SNPs associated with SBP (p < 5 × 10−4) but not associated
with DBP. ‡ 63 SNPs associated with SBP (p < 5 × 10−8) but not associated with DBP (p > 5 × 10−4).
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Figure 3. Mendelian randomization estimates (odds ratio with 95% CI per 5 mmHg increase in
genetically predicted diastolic blood pressure) from the inverse variance weighted method. SNP
indicates single nucleotide polymorphism; OR, odd ratios; SBP, systolic blood pressure; DBP, diastolic
blood pressure. * 242 SNPs associated with both SBP and DBP (p < 5 × 10−4), identified in a BP
GWAS meta-analysis study [17]. † 80 SNPs associated with DBP (p < 5 × 10−4) but not associated
with SBP. ‡ 54 SNPs associated with DBP (p < 5 × 10−8) but not with SBP (p > 5 × 10−4).

Using SBP-exclusive SNPs as genetic instruments, MR analyses identified statistically
significant associations of genetically proxied SBP with AF, T2DM, stroke, ischemic stroke
and HF (p < 0.004), and a potential causal association with CAD (p = 0.01) (Figure 2). For
a 10 mmHg increase in genetically proxied SBP, the odds ratio of AF was 1.28 (95% CI,
1.15–1.43), stroke was 1.44 (95% CI, 1.28–1.62), ischemic stroke was 1.49 (95% CI, 1.30–1.69),
HF was 1.41 (95% CI, 1.20–1.65), CAD was 1.18 (95% CI, 1.03–1.36) and T2DM was 1.29 (95%
CI, 1.13–1.46) (Figure 2). The MR-Egger intercepts did not detect significant directional
pleiotropy (Table S13). The results from the IVW method were generally concordant in
direction and magnitude with the estimates obtained using the weighted median and
MR-PRESSO (Table S13, Figure S7). The sensitivity analysis after excluding SNPs that were
not associated with SBP at p-value of 5 × 10−8 in the GWAS meta-analysis also gave similar
MR estimates (Figure 2). MR estimates using genetic associations with BP unadjusted
for BMI were generally consistent in direction with the results from the main analysis
(Table S14).

Using DBP-exclusive SNPs as genetic instruments, MR analyses identified a statis-
tically significant association of genetically proxied DBP with ischemic stroke, ischemic
stroke small-vessel (p < 0.004) and a potential association with stroke (p = 0.005), CAD
(p = 0.045) and MI (p = 0.05). Each genetically predicted 5 mmHg increase in DBP was
associated with an OR of 1.24 in ischemic stroke (95% CI, 1.09–1.41), 1.35 in ischemic stroke
small vessel (95% CI, 1.10–1.65), 1.21 in stroke (95% CI, 1.06–1.37), 1.19 in CAD (95% CI,
1.0–1.41) and 1.19 in MI (95% CI, 1.0–1.41) (Figure 3). Estimates obtained using the weighted
median and MR-PRESSO were generally concordant in direction and magnitude with the
results from the IVW method (Table S15, Figure S8). The MR-Egger intercepts did not
detect significant directional pleiotropy (Table S15). The sensitivity analysis after excluding
SNPs that were not associated with DBP at p-value of 5 × 10−8 in the GWAS meta-analysis
also gave similar MR estimates (Figure 2). MR estimates using genetic associations with BP
unadjusted for BMI were generally consistent in direction with the results from the main
analysis (Table S16).

MVMR analyses were conducted using the independent SBP-exclusive SNPs and
DBP-exclusive SNPs as genetic instruments. The conditional F-statistics for the genetic in-
struments were 39.3 for SBP and 22.8 for DBP, indicating strong instruments for MVMR. SBP
was significantly associated with the increased risks of stroke, ischemic stroke, HF, AF and
T2DM (p < 0.004), and was nominally associated with the increased risk of CAD (p = 0.01).
After controlling for genetically predicted DBP, each genetically predicted 10 mmHg in-
crease in SBP was associated with an OR of 1.26 in AF (95% CI, 1.10–1.43), 1.42 in HF
(95% CI, 1.18–1.71), 1.39 in stroke (95% CI: 1.20–1.60), 1.44 in ischemic stroke (95% CI:
1.25–1.67), 1.31 in T2DM (95% CI, 1.14–1.52) and 1.23 in CAD (95% CI, 1.05–1.44). The effect
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of DBP attenuated to zero for the outcomes (Figure 4). Table 2 summarises the results from
two-sample MR and MVMR analyses.
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Figure 4. Multivariable Mendelian randomization estimates (odds ratio with 95% confidence interval
per 10 mmHg increase in genetically predicted systolic blood pressure, and per 5 mmHg increase in
genetically predicted diastolic blood pressure) using systolic-blood-pressure-exclusive and diastolic-
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p-value in this study.

Table 2. Two-sample and multivariable Mendelian randomization estimates of the effects of systolic
and diastolic blood pressure on the outcomes. MR, Mendelian randomization; SBP, systolic blood
pressure; DBP, diastolic blood pressure; AF, atrial fibrillation; HF, heart failure; T2DM, type 2
diabetes; CAD, coronary artery disease; MI, myocardial infarction; CKD, chronic kidney disease.
* SBP-exclusive SNPs. ** DBP-exclusive SNPs. § SBP-excusive SNPs and DBP-exclusive SNPs.

Two-Sample MR Multivariable MR
SBP_Excl (SBP) * DBP_Excl (DBP) ** SBPexc+DBPexc (SBP) § SBPexc+DBPexc (DBP) §

Estimates p-Value Estimates p-Value Estimate p-Value Estimate p-Value

AF 0.0247 8.11 × 10−6 0.0104 0.3872 0.0244 0.0007 −0.0347 0.8853
HF 0.0341 2.17 × 10−5 −0.003 0.8529 0.0516 0.0003 −0.1297 0.3470

T2DM 0.0252 0.0001 0.0162 0.3297 0.0260 0.0003 −0.0151 0.7266
CAD 0.0172 0.0148 0.0347 0.0453 0.0238 0.0116 −0.0162 0.5542

Stroke 0.0365 3.03 × 10−9 0.0375 0.0047 0.0398 1.17 × 10−5 0.0195 0.3034
Ischemic

stroke 0.0396 4.07 × 10−9 0.0431 0.0009 0.0418 1.85 × 10−6 0.0250 0.2854

Ischemic
stroke
small-
vessel

0.0181 0.0553 0.06 0.0034 0.0108 0.1585 0.0484 0.1559

MI 0.0079 0.2816 0.0341 0.0520 0.0117 0.3364 0.0096 0.1249
CKD 0.0111 0.2045 0.0118 0.6163 0.0219 0.2598 −0.0226 0.9621

4. Discussion

In this study we find that genetic predisposition to higher SBP and DBP is associated
with CAD, MI, stroke, HF, AF, CKD and T2DM in concordance with previous MR [15,46–50]
and epidemiology studies [28,31]. Our novel finding is the evidence of a dichotomy between
SBP and DBP on outcomes. We find CAD, stroke, ischaemic stroke and small-vessel stroke
are associated with both SBP and DBP, but causal association is driven by SBP for CAD,
stroke and ischaemic stroke, while it is DBP for small-vessel stroke. Furthermore, we show
SBP is exclusively associated with HF, AF and T2DM. There was suggestive signals for DBP
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being exclusively associated with MI, but this was not statistically significant. A recent
multivariable MR study using rare BP variants showed for most cardiovascular outcomes
the effect of DBP was attenuated once SBP was adjusted for, but interestingly they found a
putative inverse relationship between SBP and DBP on large artery stroke [51]. Our study
used common GWAS SNPs for SBP and DBP and further classified these SNPs into subsets
that were SBP- or DBP-exclusive or associated with both to demonstrate that SBP and DBP
may be predominant causal drivers of specific cardiovascular outcomes.

The reasons why SBP or DBP preferentially affect particular outcomes are unclear.
Differences in how SBP and DBP change with age (SBP increases linearly, while DBP de-
clines after the age of 50 years) [52] may be an explanation for any observed differential
associations and indeed this has been evoked in clinical justifications for focusing on SBP
in hypertension management [6]. It is also important to note that though SBP and DBP are
correlated phenotypes, clinical hypertension in general tends to transition from isolated
diastolic hypertension in the young through systolic-diastolic hypertension in middle-age
and finally to isolated systolic hypertension in the elderly [52,53]. Several epidemiological
studies indicate isolated diastolic hypertension is generally not associated with atheroscle-
rotic cardiovascular disease, HF or CKD, independent of baseline SBP [52–55]. The J-shaped
relationship between DBP and CV outcomes, specifically coronary artery disease, has been
an epidemiological conundrum, but recent MR studies have refuted any non-linear re-
lationship between DBP and CV outcomes [10,11]. Although each individual carries a
preponderance of GWAS SNPs associated with both SBP and DBP, one may speculate
whether the remaining SNPs that show exclusive association to either SBP or DBP may
determine an individual’s predisposition to a specific CV outcome. Previous MR studies
combined all BP SNPs in the construction of genetic instruments [14,49] and this may miss
specific SBP or DBP effects. Previous MR studies for a causal effect of elevated BP on an
increased risk of T2DM have yielded inconsistent results. In line with our study, a two-
sample MR approach reported that 1 mmHg genetic increase in SBP was associated with a
2% increased risk of T2DM, by integrating summary-level GWAS data from 37,293 T2DM
cases and 125,686 controls [50]. In contrast, another MR study using UKBB individual data
(n = 318 664) showed that there was no clear evidence showing a causal relation from BP to
T2DM risk [56].

The validity of MR relies on three major instrumental variable assumptions, including
that the genetic instrument was robustly associated with the exposure of interest, was
independent of potential confounders and was associated with the outcomes only via their
association with the exposure. This study used SNPs that were strongly associated with
BP traits in large GWAS studies, and the F-statistic was calculated to assess the strength
of genetic instruments. All selected instruments in this MR study had F statistics > 10,
suggesting that marked bias due to weak instruments is unlikely. In order to minimize the
confounding bias and the pleiotropy bias, this study applied the selection criteria to select
SNPs that were less likely to be pleiotropic. We also used the MR Egger intercept in MR
Egger regression to detect horizontal pleiotropy effects of the instrumental variables; the
evidence of horizontal pleiotropy was not detected in the analyses. Multiple sensitivity
analyses using methods with different underlying assumptions (weighted median, MR
Egger and MR-PRESSO) were conducted to assess the robustness of the results. The
concordance in direction and magnitude of estimates across all methods indicate the
credibility of the causal claim in the MR study [57].

Our study selected SNPs that were strongly associated with BP traits (p-value < 5 × 10−8)
in large GWAS studies, using a curated database of publicly available large-scale GWAS [26,27].
We then assessed the associations of these SNPs with SBP and DBP using the summary
statistics obtained from one of the largest GWAS meta-analyses for BP traits [17]. A p-value
threshold of 5 × 10−4 was used to select the subsets of genetic instruments for the main
analysis, and a p-value threshold of 5 × 10−8 was used for selecting instruments in the
sensitivity analysis. This strategy enables the selection of some genetic variants which
were significantly associated with BP traits in the large GWAS studies but did not reach
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the significant threshold in the GWAS meta-analyses by Evangelou et al. [17]. In total, we
obtained 442 SNPs for SBP and DBP, with 25% of these SNPs being selected as genetic
instruments in a recent two-sample MR study for BP traits on CVD outcomes [14]. The
results in our study are generally consistent with their findings for some mutual outcomes,
including MI, stroke and HF. Moreover, most of the genetic instruments (approximately
84% of the genetic instruments) in our study were associated with gene expression in at
least one tissue, offering an opportunity for further functional investigations to explore
causal pathways of SBP and DBP on outcomes.

Although most of the individuals in outcome GWAS were of European descent, the
CARDIOGRAMplusC4D consortium included participants from multiple ancestral groups.
Therefore, the confounding by population structure constitutes a possible limitation of this
study. However, most of the CARDIOGRAMplusC4D consortium participants were still
of European descent (77%). The other non-European studies in the consortium had been
adjusted for genetic principal components to correct for population structure [19]. Another
limitation of the study is the lack of correlation between the magnitude of the associations
through genetic effects and the magnitude of the effect of clinical interventions, which
consequently results in a difference in effect sizes between MR studies and RCTs. For this
reason, MR studies are primarily utilized to assess the causal relationship of exposure on
outcome [13].

5. Conclusions

Whilst SBP and DBP are highly correlated phenotypes and a majority of SNPs associ-
ated with BP influence both SBP and DBP, the evidence that certain SNPs influence only
one of the two traits would help direct efforts using pathway and colocalisation analyses to
establish SBP- and DBP-specific mechanisms. These will help expand our understanding of
hypertension and its consequences and identification of druggable or actionable pathways
will facilitate the transformation of hypertension management towards precision medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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to address in reports of Mendelian randomization studies; Figure S1: Scatter plots for MR analyses
of the causal effect of systolic blood pressure on (a) atrial fibrillation, (b) coronary artery disease,
(c) myocardial infarction, (d) stroke, (e) ischemic stroke, (f) ischemic stroke (small-vessel), (g) heart
failure, (h) chronic kidney disease, (i) type 2 diabetes, using inverse-variance weighted, weighted
median, and MR Egger methods; Figure S2: MR-Egger regression funnel plots for systolic blood
pressure on (a) atrial fibrillation, (b) coronary artery disease, (c) myocardial infarction, (d) stroke,
(e) ischemic stroke, (f) ischemic stroke (small-vessel), (g) heart failure, (h) chronic kidney disease,
(i) type 2 diabetes; Figure S3. Scatter plots for MR analyses of the causal effect of diastolic blood
pressure on (a) atrial fibrillation, (b) coronary artery disease, (c) myocardial infarction, (d) stroke,
(e) ischemic stroke, (f) ischemic stroke (small-vessel), (g) heart failure, (h) chronic kidney disease,
(i) type 2 diabetes, using inverse-variance weighted, weighted median, and MR Egger methods;
Figure S4: MR-Egger regression funnel plots for diastolic blood pressure on (a) atrial fibrillation,
(b) coronary artery disease, (c) myocardial infarction, (d) stroke, (e) ischemic stroke, (f) ischemic
stroke (small-vessel), (g) heart failure, (h) chronic kidney disease, (i) type 2 diabetes; Figure S5:
Leave-one-out plots for MR analyses of the causal effect of systolic blood pressure on (a) atrial
fibrillation, (b) coronary artery disease, (c) myocardial infarction, (d) stroke, (e) ischemic stroke, (f)
ischemic stroke (small-vessel), (g) heart failure, (h) chronic kidney disease, (i) type 2 diabetes, using
inverse-variance weighted, weighted median, and MR Egger methods; Figure S6: Leave-one-out
plots for MR analyses of the causal effect of diastolic blood pressure on (a) atrial fibrillation, (b)
coronary artery disease, (c) myocardial infarction, (d) stroke, (e) ischemic stroke, (f) ischemic stroke
(small-vessel), (g) heart failure, (h) chronic kidney disease, (i) type 2 diabetes, using inverse-variance
weighted, weighted median, and MR Egger methods; Figure S7: Scatter plots for MR analyses of
the independent causal effect of systolic blood pressure on (a) atrial fibrillation, (b) coronary artery
disease, (c) heart failure, (d) stroke, (e) ischemic stroke, (f) ischemic stroke (small-vessel), (g) type
2 diabetes, using inverse-variance weighted, weighted median, and MR Egger methods; Figure S8:
Scatter plots for MR analyses of the independent causal effect of diastolic blood pressure on (a)
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myocardial infarction, (b) stroke, (c) ischemic stroke, (d) ischemic stroke (small-vessel) using inverse-
variance weighted, weighted median, and MR Egger methods; Figure S9: MR-Egger regression funnel
plots for systolic blood pressure on (a) atrial fibrillation, (b) coronary artery disease, (c) heart failure,
(d) stroke, (e) ischemic stroke, (f) ischemic stroke (small-vessel), (g) type 2 diabetes, using systolic
blood pressure-exclusive SNPs; Figure S10: MR-Egger regression funnel plots for diastolic blood
pressure on (a) myocardial infarction, (b) stroke, (c) ischemic stroke, (d) ischemic stroke (small-vessel),
using diastolic blood pressure-exclusive SNPs; Table S1: SBP-and-DBP-associated SNPs included in
the Mendelian randomisation analysis for SBP; Table S2: SBP-and-DBP-associated SNPs included
in the Mendelian randomisation analysis for DBP; Table S3: SBP-exclusive SNPs included in the
Mendelian randomization analysis for SBP; Table S4: DBP-exclusive SNPs included in the Mendelian
randomization analysis for DBP; Table S5. SBP-exclusive SNPs included in the sensitivity analysis for
SBP; Table S6. DBP-exclusive SNPs included in the sensitivity analysis for DBP; Table S7: Mendelian
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SBP-and-DBP-associated SNPs; Table S8: Mendelian randomization estimates of diastolic blood
pressure (per 5 mmHg) on cardiovascular outcomes using SBP-and-DBP-associated SNPs; Table S9:
Cochran’s Q test results in 2-sample Mendelian randomisation analyses of systolic blood pressure
on outcomes using SNPs associated with both systolic blood pressure and diastolic blood pressure
as genetic instruments; Table S10: Cochran’s Q test results in 2-sample Mendelian randomisation
analyses of diastolic blood pressure on outcomes using SNPs associated with both systolic blood
pressure and diastolic blood pressure as genetic instruments; Table S11: Mendelian randomization
estimates of systolic blood pressure (per SD increment) on cardiovascular outcomes using genetic
associations with blood pressure unadjusted for body mass index (using SBP+DBP SNPs as genetic
instruments); Table S12: Mendelian randomization estimates of diastolic blood pressure (per SD
increment) on cardiovascular outcomes using genetic associations with blood pressure unadjusted for
body mass index (using SBP+DBP SNPs as genetic instruments); Table S13: Mendelian randomization
estimates of systolic blood pressure (per 10 mmHg) on cardiovascular outcomes using SBP-exclusive
SNPs; Table S14: Mendelian randomization estimates of systolic blood pressure (per SD increment)
on cardiovascular outcomes using genetic associations with blood pressure unadjusted for body
mass index (using SBP-exclusive SNPs as genetic instruments); Table S15: Mendelian randomization
estimates of diastolic blood pressure (per 5 mmHg) on cardiovascular outcomes using DBP-exclusive
SNPs; Table S16: Mendelian randomization estimates of diastolic blood pressure (per SD increment)
on cardiovascular outcomes using genetic associations with blood pressure unadjusted for body mass
index (using DBP-exclusive SNPs as genetic instruments).
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