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Abstract: Intramuscular fat (IMF) is an essential trait closely related to meat quality. The IMF trait
is a complex quantitative trait that is regulated by multiple genes. In order to better understand
the process of IMF and explore the key factors affecting IMF deposition, we identified differentially
expressed mRNA, miRNA, and lncRNA in the longissimus dorsi muscle (LD) between Songliao Black
(SL) pigs and Landrace pigs. We obtained 606 differentially expressed genes (DEGs), 55 differentially
expressed miRNAs (DEMs), and 30 differentially expressed lncRNAs (DELs) between the SL pig and
Landrace pig. Enrichment results from GO and KEGG indicate that DEGs are involved in fatty acid
metabolism and some pathways related to glycogen synthesis. We constructed an lncRNA–miRNA–
mRNA interaction network with 18 DELs, 11 DEMs, and 42 DEGs. Finally, the research suggests that
ARID5B, CPT1B, ACSL1, LPIN1, HSP90AA1, IRS1, IRS2, PIK3CA, PIK3CB, and PLIN2 may be the key
genes affecting IMF deposition. The LncRNAs MSTRG.19948.1, MSTRG.13120.1, MSTRG.20210.1,
and MSTRG.10023.1, and the miRNAs ssc-miRNA-429 and ssc-miRNA-7-1, may play a regulatory
role in IMF deposition through their respective target genes. Our research provides a reference for
further understanding the regulatory mechanism of IMF.

Keywords: intramuscular fat; fatty acid; regulatory network

1. Introduction

Pork is the main source of human protein intake. In recent decades, the intramuscular
fat (IMF) content of modern pig breeds has decreased due to the progress of breeding [1].
The content of IMF is closely related to the quality of pork, which can affect the tenderness
and water-holding capacity of meat [2–4]. The flavor of pork is improved when the
intramuscular fat content ranges between 2.5% and 3.5% [2]. To better meet the needs of
consumers and the market, research on the factors affecting IMF deposition has become a
popular area.

IMF is composed of phospholipids, triglycerides, and cholesterol. At the metabolic
level, the IMF content depends on the balance between the uptake, synthesis, and degra-
dation of triacylglycerol. At the species level, IMF deposition is the result of the balance
between fat intake, liver de novo synthesis, and lipoprotein lipase (LPL) [5]. The IMF depo-
sition process is complex and regulated by multiple genes, including mRNAs, miRNAs, and
lncRNAs. Previous studies have shown that lncRNA participates in the regulatory network
of adipogenesis in various ways and affects the fat deposition content. For example, the
knockdown of lncimf4 can promote the proliferation of intramuscular adipocytes [6], and
lnc_000414 can inhibit the proliferation of porcine intramuscular adipocytes [7]. Similarly,
miRNA also plays a significant role in adipogenesis. Studies have shown that miR-17,
miR-21, and miR-143 can promote preadipocyte differentiation in pigs, while miR-145 and
miR-429 can inhibit preadipocyte differentiation [8–10]. MiRNA can play a role as the target
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gene of lncRNA and miRNA, and lncRNA can also regulate miRNA [11]. However, there
have been few studies on the joint analysis of lncRNA, miRNA, and mRNA to explore the
impact on IMF deposition.

Landrace pigs are typical lean pigs, while Songliao black (SL) pigs have greater fat
deposition ability, so it is an ideal to study fat deposition [12]. To better understand the
factors affecting IMF deposition, we performed a comprehensive analysis of the lncRNA–
miRNA–mRNA regulatory network in the intramuscular fat of SL and Landrace pigs.

2. Materials and Methods
2.1. Experimental Animals and Sample Collection

In this study, gilt SL (n = 6, IMF, 3.60 ± 1.23%) and Landrace pigs (n = 6, IMF,
1.36 ± 0.16%) were selected, and both came from the Tianjin Ninghe original pig farm.
The pigs used in this study were all raised indoors, and the hog houses were cleaned
and disinfected weekly, with no additional environmental controls. All pigs in the study
were provided ad libitum access to water and feed (feed composition: corn 63%, soybean
meal 8.82%, wheat bran 23.5%, soybean oil 1.11%, calcium bicarbonate 1.22%, calcium
carbonate 0.95%, salt 0.2%, premix 1.2%), and in good health. The pigs of both breeds were
slaughtered when raised to approximately 100 kg under the same feeding conditions, and
pain was minimized during slaughter. The average slaughter age of Landrace was 176 and
that of SL was 190. After slaughter, the longissimus dorsi muscle (LD) tissue from the third
to fourth ribs was quickly collected and placed in liquid nitrogen for subsequent use.

2.2. RNA Extraction and Sequencing

Total RNA was isolated from the LD of 12 pigs using a Trizol reagent. The concen-
tration and quality of RNA were verified by measuring ratio of absorbance at 260 nm
and 280 nm (A260/A280) using Smart Spec Plus (bio rad, Hercules, CA, USA). A total of
1% agarose gel electrophoresis was used to detect the quality and integrity of RNA [13].
Concerning the instructions of the reverse transcription kit (Invitrogen, Carlsbad, CA, USA),
the cDNA library was prepared for the extracted RNA. After purification and enrichment,
all libraries were sequenced by Illumina HiSeq 2000 (Illumina, San Diego, CA, USA). The
length of the sequence for mRNA and lncRNA was 150 bp and the depth of the sequence
was 3X. The miRNA sequence length was 80 bp.

2.3. Mapping and Assembly of Sequenced RNA Data

Raw data were filtered using fastp (v0.12.4) [14] to remove reads with N and base
mass value (Q) below 20. The quality of sequencing data was evaluated using FastQC
(v0.11.9) [15]. The porcine reference genome sequence (version: Sus scrofa v. 11.1)
and genome annotation file (version: Sus_scrofa.Sscrofa11.1.108) were downloaded from
the Ensembl database (https://asia.ensembl.org/Sus_scrofa/Info/Index (accessed on
15 March 2021)). The index was constructed using Hisat2 (v2.2.1) [16], and the clean
reads were aligned with the reference genome. Samtools (v1.15) [17] was used to sort Sam
files and convert them to BAM files. Then, the mRNA was quantified by HTseq (v2.0.1) [18]
software, and the transcripts of each sample were assembled using StringTie (v2.2.1) [19]
to obtain 12 gene transfer format (GTF) files. Finally, the GTF files of 12 samples were
combined into a non-redundant GTF file by using the merge function of the StringTie
software package [20]. MiRNA precursors and mature files were downloaded from the
miRBase (v22.1) [21] database, and then mirdeep2 (v0.1.3) [22] was used for mapping and
expression calculation.

2.4. Pipeline for lncRNA Identification

We used the following steps to identify lncRNAs from non-redundant GTF files,
mainly including (Figure 1a): (1) Transcripts with class codes = “i, u, x” were retained.
(2) Transcripts with exon number ≥2 and sequence length >200 were retained.(3) Five tools
were used to identify lncRNAs, four of which were coding ability prediction tools, including
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Coding Potential Calculator 2 (CPC2) [23], Coding-Non-Coding-Index (CNCI) [24], Coding
Potential Assessing Tool (CPAT) [25] and predictor of long non-coding RNAs and messenger
RNAs based on an improved k-mer scheme (PLEK) [26]. We used the Hmmer3 [27] tool
to determine whether the transcripts retained by the four tools had a significant hit rate
in the Pfam database (E-value < 1 × 10−5), and finally discarded the transcript containing
any known protein-coding domain. (4) We used fragments per kilobase of transcript per
million mapped reads (FPKM) ≥ 0.1 as the standard to ensure expression, and lncRNAs
meeting this condition were retained in at least one sample.
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Figure 1. Identification and characterization of lncRNA. (a) Process of identifying lncRNA; (b) Venn
plots of lncRNAs identified from Coding-Non-Coding-Index (CNCI), Coding Potential Calculator
2 (CPC2), predictor of long non-coding RNAs and messenger RNAs based on an improved k-mer
scheme (PLEK), Coding Potential Assessing Tool (CPAT), and Pfam databases; (c) length distribution
of lncRNAs; (d) exon number distribution of lncRNAs.

2.5. Screening of Differentially Expressed RNA

After obtaining the expression amounts of the three RNAs, we further screened
the differentially expressed RNAs in the SL and Landrace pigs’ LD by using the edgeR
(v3.34.1) [28] software package. We used the false discovery rate (FDR) < 0.05 and
|fold change| ≥ 2 as criteria to identify differentially expressed RNA. The R software pack-
age pheatmap was used to draw the cluster heat map of three differentially expressed RNAs.

2.6. Gene Ontology and Pathway Enrichment Analysis

To explore the function of differentially expressed genes (DEGs), we used DAVID [29]
to analyze the gene ontology of DEGs and used KOBAS 3.0 [30] to analyze the enrichment
of the KEGG pathway. It was considered that GO and KEGG pathways with p-values < 0.05
were significantly enriched pathways.

2.7. Target Gene Prediction and Functional Analysis

We used miRDB [31], TargetScan [32], and Starbase [33], three target gene prediction
websites, to predict the differentially expressed miRNA (DEMs) target genes, and inter-
sections with DEGs. We used BEDTools (v2.30.0) [34] to search for 100 kb adjacent genes
upstream and downstream of differentially expressed lncRNAs (DELs) and considered
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it as the target gene of cis-regulation of DELs. At the same time, if the absolute value of
the Spearman correlation coefficient between the expression levels of lncRNA and mRNA
exceeded 0.8 and p < 0.05, it was considered that there was a targeted relationship between
them. Then, the target genes of DELs and DEGs were intersected. In addition, we also used
miRDB to predict the targeted miRNA of DELs and intersected with DEMs.

We combined the target genes of DELs and DEMs, analyzed the KEGG pathway
enrichment, and then imported it into the string [35] database to construct the protein–
protein interaction (PPI) network, and analyzed the genes with the top 10 connectivity using
Cytoscape [36]. After that, we extracted the intersection between the potential differentially
expressed target genes (DEPTGs) of each DEL and DEM and removed another mRNA.
Finally, we brought the three target relationships of DEL to DEM, DEL to intersection
DEPTG, and DEM to intersection DEPTG into the cytoscape tool to build an lncRNA–
miRNA–mRNA interaction network, which was convenient for us to better understand the
regulatory relationship between the three.

3. Results
3.1. Overview of RNA Sequencing Data

The raw mRNA and lncRNA sequencing data totaled 96 GB, and 256 million raw
reads were obtained. The raw miRNA sequencing data totaled 20.1 GB, and 144 million
raw reads were obtained. After mapping the clean reads to the pig genome, we found that
the mapping rate of all samples was more than 85% (Table S1).

3.2. Identification and Characterization of lncRNA

After using StringTie and StringTie merge, we obtained a GTF file with 1,254,032 transcripts.
After that, we identified lncRNA in strict accordance with the process in Figure 1a, and finally
predicted 4190 lncRNAs (Figure 1a). Most lncRNAs had lengths between 201 and 400 nt. The
number of lncRNAs with two exons was also the largest.

3.3. Differential Expression RNA Analysis

By analyzing the differential expression of three RNAs between Landrace pigs and
SL pigs, we found 606 differentially expressed mRNAs, of which 384 were significantly
up-regulated and 222 were significantly down-regulated in the LD of SL pigs (Figure 2a,
Table S2). We also found 55 DEMs and 30 DELs in both pig breeds. A total of 19 miRNAs
and 21 lncRNAs were significantly up-regulated in SL pigs, and 36 miRNAs and 9 lncRNAs
were significantly down-regulated (Figure 2b,c, Tables S3 and S4). Next, we performed
a cluster analysis on the three differentially expressed RNAs, and the heatmaps showed
that the expression patterns of mRNA and lncRNA were consistent across groups, but not
within groups, and the expression patterns of miRNA were not consistent across groups.
(Figure 2d–f).
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3.4. GO and KEGG Functional Enrichment Analysis of DEGs

We carried out GO and KEGG enrichment analysis on 606 DEGs, and the results are
shown in Figure 3. In the enrichment results of GO, we found that there was significant
enrichment in the biological processes related to fat metabolism and the deposition pro-
cesses, such as the fatty acid metabolic process, and long-chain fatty acid transport in
Figure 3a, and some pathways related to glycogen syntheses, such as the positive regula-
tion of glycogen biological process. Meanwhile, the AMPK signaling pathway, fatty acid
metabolism, and insulin resistance in KEGG enrichment results were considered to be
important pathways related to fat deposition (Figure 3b).

Genes 2023, 14, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. Functional enrichment analysis of differentially expressed genes (DEGs). (a) GO annota-
tion of DEGs; (b) KEGG pathway analysis of DEGs. 

3.5. Target Gene Prediction of Differentially Expressed miRNA and lncRNA 
We used TargetScan, Starbase, and miRDB to predict the target genes of 54 DEMs, 

and obtained 17,786, 10,978, and 13,398 target genes, respectively (Table S5). Then, we 
compared the three targeting results with DEGs and found 363 coincident genes (Figure 
4a). Thirty DELs targeted 104 miRNAs, but only 16 were DEMs (Table S6). 

 
Figure 4. Venn diagram of target genes of differentially expressed miRNA and lncRNA. (a) Venn 
diagram of target gene prediction results of differentially expressed genes (DEGs) and three web-
sites; (b) Venn diagram of target genes of differentially expressed miRNA (DEMs) and differentially 
expressed lncRNAs (DELs). 

LncRNA can regulate genes through cis and trans actions. In our study, two methods 
were used to predict the target genes of lncRNA. Firstly, we used BEDTools to search the 
adjacent coding protein genes of DELs (within 100 kb upstream and downstream) and 
obtained 157 coding protein genes, but only 10 coincided with DEGs. Then, we predicted 
the target genes of lncRNA trans-regulation and found that 445 DEPTGs corresponded to 
28 DELs, including 7 cis DEPTGs (Table 1). Additionally, the number of DEPTGs corre-
sponding to different lncRNAs was very different. For example, lncRNA MSTRG.10885.1 
has 196 DEPTGs, MSTRG.4262.2 has 108 DEPTGs, MSTRG.15373.1 has 57 DEPTGs, and 
MSTRG.7556.1 has only one DEPTG (Table S7). Nine of the ten cis target genes of lncRNA 
coincided with the trans target genes. In addition, there were 285 coincident PTGs be-
tween lncRNA and miRNA (Figure 4b). We combined the target genes of lncRNA and 
miRNA to obtain 523 DEPTGs, which were then analyzed for KEGG pathway enrichment. 

Figure 3. Functional enrichment analysis of differentially expressed genes (DEGs). (a) GO annotation
of DEGs; (b) KEGG pathway analysis of DEGs.



Genes 2023, 14, 168 6 of 14

3.5. Target Gene Prediction of Differentially Expressed miRNA and lncRNA

We used TargetScan, Starbase, and miRDB to predict the target genes of 54 DEMs,
and obtained 17,786, 10,978, and 13,398 target genes, respectively (Table S5). Then, we
compared the three targeting results with DEGs and found 363 coincident genes (Figure 4a).
Thirty DELs targeted 104 miRNAs, but only 16 were DEMs (Table S6).
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LncRNA can regulate genes through cis and trans actions. In our study, two methods
were used to predict the target genes of lncRNA. Firstly, we used BEDTools to search the
adjacent coding protein genes of DELs (within 100 kb upstream and downstream) and
obtained 157 coding protein genes, but only 10 coincided with DEGs. Then, we predicted
the target genes of lncRNA trans-regulation and found that 445 DEPTGs corresponded to
28 DELs, including 7 cis DEPTGs (Table 1). Additionally, the number of DEPTGs corre-
sponding to different lncRNAs was very different. For example, lncRNA MSTRG.10885.1
has 196 DEPTGs, MSTRG.4262.2 has 108 DEPTGs, MSTRG.15373.1 has 57 DEPTGs, and
MSTRG.7556.1 has only one DEPTG (Table S7). Nine of the ten cis target genes of lncRNA
coincided with the trans target genes. In addition, there were 285 coincident PTGs between
lncRNA and miRNA (Figure 4b). We combined the target genes of lncRNA and miRNA to
obtain 523 DEPTGs, which were then analyzed for KEGG pathway enrichment. The results
indicate that DEPTGs were mainly enriched in insulin-related pathways, adipocyte-related
pathways, and fatty-acid-related pathways (Table 2).

Table 1. The correlation between differentially expressed lncRNAs (DELs) and adjacent coding
protein genes in differentially expressed genes (DEGs).

DEL DEGs of Adjacent
Protein Coding Genes Distance (kb) Spearman Correlation

Coefficient p-Value

MSTRG.10885.1 DAPK3 Coincide 0.812767 0.001311
MSTRG.13115.1 LPIN1 55 0.603267 0.037831
MSTRG.13120.1 LPIN1 33.2 0.802451 0.001683

MSTRG.17466.1
DNAJB4 41.8 0.777584 0.00291
FUBP1 4.5 0.679511 0.01507
NEXN Coincide 0.735553 0.006402

MSTRG.21882.1
CNKSR2 Coincide 0.532917 0.074422
KLHL34 45.7 0.691861 0.012674

MSTRG.383.1 SYNCRIP 29.2 0.313079 0.321749
MSTRG.6525.3 HERC4 13.8 0.751009 0.004874
MSTRG.8414.1 DUSP1 92.5 0.552691 0.062372
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Table 2. KEGG pathway enrichment analysis of potential differentially expressed target genes (DEPTGs).

Term ID p-Value Gene

Insulin resistance ssc04931 4.43 × 10−7

RPS6KA1, CPT1B, PPP1R3C,
IRS2, PIK3CA, PIK3CB,
PRKAG2, PPARGC1A,

PRKAA1, IRS1, SREBF1,
PPARGC1B, G6PC3

Insulin signaling pathway ssc04910 1.96 × 10−5

PPP1R3C, IRS2, PIK3CA,
PIK3CB, PRKAG2, PPARGC1A,

PRKAA1, IRS1, SORBS1,
SREBF1, G6PC3, EIF4E

Adipocytokine
signaling pathway ssc04920 0.000106564

CPT1B, IRS2, ACSL1,
PRKAG2, PPARGC1A,
PRKAA1, IRS1, G6PC3

mTOR signaling pathway ssc04150 0.000821208

RPS6KA1, DDIT4, PIK3CA,
PIK3CB, IRS1, PRKAA1,

CLIP1, EIF4E,
WNT5B, RICTOR

PI3K-Akt signaling pathway ssc04151 0.000919504

ERBB2, PDGFA, DDIT4, IL4R,
PPP2R3C, PIK3CB, IRS1,

PRKAA1, PIK3CA, VEGFA,
ITGAV, COL1A1, EIF4E,

HSP90AA1, MYC, G6PC3

Non-alcoholic fatty liver
disease (NAFLD) ssc04932 0.002901411

DDIT3, PIK3CA, EIF2AK3,
PRKAG2, IRS1, PRKAA1,

SREBF1, IRS2, PIK3CB
Regulation of lipolysis in

adipocytes ssc04923 0.005012828 PIK3CA, PIK3CB, IRS1,
IRS2, ABHD5

Glycerolipid metabolism ssc00561 0.006591252 GPAM, LPIN1, LCLAT1,
DGKD, DGKE

PPAR signaling pathway ssc03320 0.016374973 SORBS1, ACSL1, PLIN2,
ACADM, CPT1B

Fatty acid metabolism ssc01212 0.026319948 FADS1, ACSL1,
ACADM, CPT1B

3.6. Analysis of PPI Network and lncRNA-miRNA-mRNA Regulatory Network

We imported 523 DEPTGs into the string database, constructed the PPI network, and
then calculated the top ten genes with connectivity by using Cytoscape software, mainly
including phosphatidylinositol-4,5-bisphosphonate 3-kinase catalytic subunit α (PIK3CA),
phosphatidylinositol-4,5-bisphosphonate 3-kinase catalytic subunit β (PIK3CB), heat shock
protein 90 α family class a member 1 (HSP90AA1), Erb-B2 receptor tyrosine kinase 2 (ERBB2)
and other genes (Figure 5a). After that, we used Cytoscape software to construct the
targeted regulatory network between lncRNA, miRNA, and mRNA (Figure 5b). According
to the ranking results of PPI interaction networks and KEGG pathway enrichment results
of DEPTGs, we selected six genes that may be related to IMF deposition: HSP90AA1,
PIK3CB, insulin receptor subset 1 (IRS1), insulin receptor subset 2 (IRS2), lipin 1 (LPIN1),
and perilipin 2 (PLIN2) (Figure 5c). These DEPTGs and some untargeted key genes regulate
fat deposition through the mechanism shown in Figure 6.
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4. Discussion

The quality of pork is an important economic characteristic that is significantly affected
by IMF content. There are significant differences in meat quality among different breeds of
pigs [37]. Compared with Western lean pigs, Chinese local pigs have higher fat deposition
capacity. We compared mRNA, miRNA, and lncRNA in the LD of SL and Landrace pigs
with different IMF contents to find the key factors affecting IMF deposition.

Previous studies have found many DEGs in the LD of obese and lean pigs through
transcriptome sequencing technology [38–40]. In our study, 606 DEGs were found in the
LD of both pig breeds, some of which are involved in glycogen synthesis and fatty acid
metabolism, which may be responsible for the difference in IMF content between SL and
Landrace pigs. AT-rich interaction domain 5B (ARID5B, also known as MRF2) is a member
of the AT-rich interaction domain (ARID) family. The results showed that when ARID5B
was knocked down in mouse embryonic fibroblasts and 3T3-L1 cells, adipogenesis was
significantly inhibited [41]. Mice lacking ARID5B had reduced white fat mass and were re-
sistant to obesity induced by a high-fat diet [42]. Carnitine palmitoyltransferase 1B (CPT1B)
is the rate-limiting enzyme for β oxidation of long-chain fatty acids in the mitochondria
of muscle cells. Increased expression of CPT1B in bovine fetal fibroblasts significantly in-
creased triglyceride content [43]. Acyl CoA synthetase long-chain family member 1 (ACSL1)
can participate in the initial step of fatty acid activation [44]. The overexpression of ACSL1
will increase the triglyceride content in the liver [45]. In addition, the expression of ACSL1
is significantly increased during the differentiation of preadipocytes under the pig skin [46].
The above three genes are highly expressed in the LD of SL pigs, so they may be the key
genes affecting IMF deposition. In our study, PLIN2 was considered to be another key
gene affecting IMF deposition. It is highly expressed in the LD of SL pigs. PLIN2 is a lipid
droplet protein, which can be regarded as a protein marker of lipid droplets [47]. Lipids in
lipid droplets can be catabolized by autophagy [48], but the overexpression of PLIN2 will
weaken autophagy and make lipid droplets accumulate. [49,50]. PLIN2, CPT1B, and ACSL1
can participate in the PPAR signaling pathway. The peroxisome-proliferator-activated
receptor (PPAR) is involved in regulating lipid metabolism. The up-regulation of the PPAR
signaling pathway will be accompanied by the increase in lipid accumulation [51].

LncRNA is a key factor controlling gene expression [52]. LncRNA can regulate gene
expression through cis and trans actions [53]. In addition, lncRNA can also be used as ceRNA
to compete with mRNA to bind miRNA and then affect the expression of mRNA [54–56].
Our study showed that LPIN1 is cis-regulated by MSTRG.13115.1 and MSTRG.13120.1,
and trans-regulated by MSTRG.20210.1, MSTRG.10885.1, and MSTRG.19948.1. In addition,
MSTRG.19948.1 can also act as a ceRNA and affect the expression of LPIN1 by binding to
ssc-mir-429. LPIN1 is involved in the synthesis of triglycerides and phospholipids. The
expression of LPIN1 plays a key role in adipocyte differentiation, and it can also act as a
nuclear transcriptional coactivator of some peroxisome-proliferator-activated receptors to
regulate the expression of other genes related to lipid metabolism [57]. LPIN1 was first
found in fatty liver dystrophy mice, and the mutation of LPIN1 can lead to fat malnutrition
in fatty liver dystrophy mice, while overexpression of LPIN1 can lead to obesity in mice [58].
The lack of LPIN1 will lead to a significant reduction of adipose tissue quality and the
abnormal expression of adipogenesis-related genes [59]. Wang et al. [60] showed that the
expression of LPIN1 in the LD of Rongchang pigs was higher than that of lean PIC pigs (PIC
Swine Improvement Group, England, UK), and the expression of LPIN1 in the longissimus
dorsi muscle of Rongchang pigs with high IMF content was significantly higher than that
of Rongchang pigs with low IMF content. Previous studies have shown that mir-429 can
target the inhibition of LPIN1, affecting the PPAR signaling pathway [61]. Therefore, PLIN1
may play an important positive regulatory role in the IMF sedimentation process. The
LncRNAs MSTRG.19948.1, MSTRG.13120.1, MSTRG.20210.1, and miRNA ssc-mir-429 play
an important role in regulating the expression of LPIN1.

Glucose and lipid metabolism is an important biological process for the body and cells
to obtain energy and substances. Insulin and its signaling pathway are among the most
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important links in regulating glucose and lipid metabolism [62]. In our study, we also found
that many DEPTGs can participate in the insulin signaling pathway, insulin resistance,
PI3K-Akt-signaling pathway, and other related pathways. Insulin can promote glucose
uptake and protein synthesis in muscle, and can promote fatty acid synthesis in adipose
tissue and inhibit lipolysis [63]. The binding of insulin and insulin receptors will cause
the aggregation of insulin substrate receptors. The latter can activate phosphatidylinositol
3-kinase (PI3K), and activate ser/thr kinases phosphoinositide dependent protein kinase-1
(PDK1) and protein kinase B (also known as Akt), thereby stimulating fatty acid synthesis
and inhibiting gluconeogenesis [63,64]. IRS1 and IRS2 are similar in structure and function,
but show tissue-specific differences. IRS1 plays a leading role in skeletal muscle, while IRS2
in skeletal muscle is negligible [65]. Studies have shown that the overexpression of PGC1A
in primary hepatocytes can increase the expression of IRS2 and decrease the expression of
IRS1, and the high expression of IRS2 may inhibit insulin-mediated gluconeogenesis [64].
IRS1 can inhibit obesity induced by a high-fat diet through miR-503 [66]. Kovacs et al. [67]
showed that the expression of IRS1 in obese Indians was significantly lower than that in
lean Indians. In our study, the expression of IRS1 was also significantly lower in SL pigs
than in Landrace. Studies have shown that miRNA-7 can effectively inhibit the expression
of IRS1 and IRS2 [68]. PIK3CA and PIK3CB encode the catalytic subunit p110alpha and
p110beta of PI3K, respectively [69,70]. PIK3CA and PIK3CB participate in the PI3K-Akt
signaling pathway and mTOR signaling pathway, and the regulation of the PI3K-Akt-
mTOR signaling pathway on lipid metabolism has been mentioned by many studies [71].
When the PI3K-Akt-mTOR pathway is inhibited, the intracellular lipid accumulation will
be reduced, and the mRNA expression and protein content of genes related to de novo
fatty acid synthesis will also be reduced [72]. Therefore, the high expression of PIK3CA
and PIK3CB is conducive to the deposition of IMF. In addition, IRS1, IRS2, and PIK3CB are
target genes for lncRNA MSTRG.10023.1, so MSTRG.10023.1 may play an important role in
regulating the expression of the above three genes.

Heat shock protein (HSP) is a molecular chaperone which can reverse or inhibit
the denaturation or unfolding of cellular proteins and play a protective role in cells [73].
HSPs are usually classified according to molecular weight and can be divided into HSP27,
HSP40, HSP60, HSP70, HSP90, and large HSPs. In our study, heat shock protein family A
(Hsp70) member 4 (HSPA4), heat shock protein family H (Hsp110) member (HSPH1), and
HSP90AA1 were at the core of the PPI network. Additionally, HSP90AA1 is also affected
by MSTRG.10023.1, MSTRG.10885.1, MSTRG.13120.1, MSTRG.19948.1, MSTRG.20210.1,
MSTRG.4262.2, and ssc-mir-7-1. Studies have shown that overexpression of HSPA4 leads
to the activation of the Wnt signaling pathway [74]. The Wnt signaling pathway plays an
important role in adipogenesis [75–77]. In addition, studies have shown that knocking
down HSPH1 and HSP90AA1 can reduce cholesterol efflux [78]. The enrichment results of
the KEGG pathway showed that HSP90AA1 could participate in the PI3K-Akt signaling
pathway. The PI3K-Akt signaling pathway is closely related to insulin resistance, and in-
sulin resistance often leads to obesity [79,80]. Therefore, HSP90AA1 regulates adipogenesis
by participating in the PI3K-Akt signaling pathway.

5. Conclusions

We constructed an interaction network of lncRNA, miRNA, and mRNA related to IMF,
and through bioinformatics analysis, ARID5B, CPT1B, ACSL1, LPIN1, HSP90AA1, IRS1,
IRS2, PIK3CA, PIK3CB, and PLIN2 may be key genes related to IMF deposition. We found
that several pairs of potential targeting relationships, MSTRG.19948.1 to LPIN1, HSP90AA1,
PIK3CB, and MSTRG.19948.1 to ssc-miRNA-429 to LPIN1, MSTRG.13120.1 to LPIN1,
HSP90AA1, PIK3CB, MSTRG.20210.1 to LPIN1, HSP90AA1, PLIN2, IRS1, MSTRG.10023.1 to
HSP90AA1, PIK3CB, IRS1, IRS2, and ssc-miRNA-7-1 to IRS1, IRS2, may have an impact
on IMF deposition. Our research can provide a reference for further understanding the
regulatory mechanisms of IMF in the future.
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