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Abstract: GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse
regulatory processes in plants, including the development processes and responses to environmental
stresses. However, a comprehensive analysis of the GATA gene family has not been performed
in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes iden-
tified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L.,
Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be
categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and
whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection
was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed
the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses.
Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling
under salt stress. Nine candidate genes were then selected for further verification using quantitative
real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19,
LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this
study contributes significantly to our understanding of the evolution and function of GATA genes
among the Solanaceae species, including wolfberry.

Keywords: wolfberry; GATA gene family; Solanaceae; salt stress; gene expression

1. Introduction

There are several adaptive mechanisms that plants have developed to cope with these
abiotic stresses, including drought, salinity, and extreme temperatures during their growth
and development [1]. To adapt to these extreme environmental stresses, complex and
efficient regulatory networks, including changes in gene expression and transcription
factors (TFs), are critical regulators of the plant’s adaptation to abiotic stresses [2]. Several
families of TFs have been identified and reported in response to abiotic stresses, such as
GATA-binding factor (GATA), V-myb avian myeloblastosis viral oncogene homolog (MYB),
WRKY, Basic region leucine zipper (bZIP), GRAS (GAI, RGA, and SCR), NAC (NAM,
ATAF1/ATAF2, and CUC2), Dehydration-responsive element-binding protein (DREB), and
Basic helix–loop–helix (bHLH) [3–10]. However, only a few TFs have been identified and
analyzed in Lycium barbarum L. and Lycium ruthenicum M., including R2R3-MYB, BBX, and
WRKY [11–13]. Thus, the role of other crucial TFs, such as GATA, and the function of these
proteins in L. barbarum are unclear.

GATA TFs are DNA-binding proteins widely distributed in eukaryotes, including
fungi, metazoans, and plants [14]. They are a type IV zinc finger TF family member, with
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the conserved motif sequence C-X2C-X17–20-C-X2−C followed by a basic region. The
GATA TFs recognize and bind the WGATAR (W = T or A; R = G or A) sequences regulating
the transcription levels of their downstream genes [15]. In plants, most GATA proteins
contain a single zinc-finger domain, C-X2-C-X18-C-X2-C, with a few proteins containing
two zinc-finger domains, C-X2-C-X20-C-X2-C [16]. Based on the phylogenetic analysis,
DNA-binding domains, and gene structures of Arabidopsis thaliana, the GATA family was
divided into subfamilies I, II, III, and IV.

The GATA TFs have been found to play a critical role in regulating plant growth, de-
velopment, and response to abiotic stresses in previous studies. For instance, in Arabidopsis
thaliana, ectopic overexpression of either AtGNC or AtCGA1 promotes chloroplast biogene-
sis in the hypocotyl cortex and root pericycle cells [17]. In soybean, the overexpression of
the GmGATA58 increases the chlorophyll content in the leaves but suppresses plant growth
and yield in transgenic Arabidopsis [17]. In Brachypodium distachyon, the overexpression of
the BdGATA13 in Arabidopsis results in darker green leaves, late flowering, and increased
drought tolerance compared to the wild type [18]. In tomato, the overexpression of the
SlGATA17 improves drought resistance by regulating the activity of the phenylpropanoid
biosynthesis pathway [19]. Additionally, under salt stress, rice OsGATA8-overexpressing
lines have higher light efficiency and biomass than wild-type and mutant plants [20]. More
importantly, OsGATA16 is responsive to cold stress [21]. In sweet potato, the overexpres-
sion of the IbGATA24, a member of the subfamily III, significantly increases resistance to
drought and salt stresses by interacting with the COP9-5a protein [22]. Additionally, the
overexpression of TaGATA1 significantly enhances wheat resistance to Rhizoctonia cerealis,
whereas silencing TaGATA1 suppresses the resistance [23]. The GATA transcription factors
play an important role in nitrogen metabolism as well. For example, the overexpression of
PdGNC, an ortholog of AtGNC in Arabidopsis, increases starch accumulation and promotes
plant growth under nitrogen deficiency [24]. In general, GATA genes play an important
role in many biological processes.

The GATA gene has been identified in several plant species, including 29 in Arabidop-
sis [3], 79 in wheat [25], 49 in potato [26], 28 in foxtail millet [27], 28 in buckwheat [28], 26 in
cucumber [29], and 32 in Chinese pear [30]. To date, five species from the Solanaceae family
have their whole genome sequenced and deposited in the Sol Genomics Network (SGN)
database [31] and Spud DB [32]. Recently, the genome sequencing of wolfberry (Lycium
barbarum cv. ‘Ningqi 1′) has been completed [33]. These genomic resources are informative
for comparative analyses of the GATA gene family among the Solanaceae family.

Therefore, this study aimed to explore the potential regulatory roles of LbaGATA genes
in response to salt stress. A genome-wide identification and comparative analysis of the
GATA gene family was performed in five species, including wolfberry (Lycium barbarum L.),
tomato (Solanum lycopersicum L.), pepper (Capsicum annuum L.), potato (Solanum tuberosum
L.), and eggplant (Solanum melongena L.) from the Solanaceae family. In addition, a compre-
hensive phylogenetic analysis, exon–intron structure, motif composition, gene duplication,
and cis-acting element analysis were performed. Moreover, the responses of GATA family
members to salt stress in wolfberry were determined by combining transcriptome and
qRT-PCR analyses. Based on these analyses, 156 GATA genes were identified. As a result of
this study, we will gain a better understanding of the evolutionary relationship among the
GATA genes in the family Solanaceae. Moreover, they will be useful to further characterize
the functions of GATA genes in wolfberry and other Solanaceae plants.

2. Materials and Methods
2.1. Plant Materials and Salt Stress

Wolfberry (L. barbarum cv Ningqi 1) seeds were sown on moist filter papers on Petri
plates for germination. Next, the seedlings were transplanted into a plastic box containing
1/2 Hoagland solution and maintained for four weeks. Subsequently, the seedlings were
subjected to salt treatments. Briefly, the seedlings were transferred into a hydroponic
culture consisting of a Hoagland solution under a 300 mM NaCl treatment and incubated
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at 22/18 ◦C (day/night), 65% relative humidity, and a 16 h photoperiod. Subsequently, the
leaves’ tissues were collected at 0 h (samples without treatment, CK), 1 h, 3 h, 6 h, 12 h,
and 24 h after salt application, grounded, frozen in liquid nitrogen, and stored at −80 ◦C
awaiting RNA-seq and qRT-PCR analyses. There were at least six seedlings and three
biological replicates in each treatment.

2.2. Identification and Characterization of the GATA Genes in Five Solanaceae Family Members

Annotations and genome sequences of Arabidopsis and five members of the Solanaceae
family, including L. barbarum, S. lycopersicum, C. annuum, S. tuberosum, and S. melongena,
were obtained from online databases. Precisely, the wolfberry genome data (accession
number PRJNA640228) were downloaded from the NCBI [33]. The genome sequences
of the other four species were downloaded from the SGN (https://solgenomics.net/,
accessed on 10 October 2022) and Spud DB (http://spuddb.uga.edu/index.shtml, accessed
on 10 October 2022). The A. thaliana genome data were retrieved from the Arabidopsis
Information Resource (https://www.arabidopsis.org/, accessed on 10 October 2022).

The GATA genes in the five Solanaceae family members were identified using two
methods as previously described [12]. First, the 29 Arabidopsis AtGATA protein sequences
were used as queries for the genome data of the five species in the Solanaceae family using
the BLASTP Program (E-value < 10−5). Second, the Pfam database (http://pfam.xfam.org/,
accessed on 10 October 2022) was used to retrieve the genome data of the five species using
the Hidden Markov Model (HMM) of the GATA zinc finger (PF00032). Subsequently, the
potential GATA genes in the five species genomes were further screened for the GATA
domain against the Pfam (http://pfam.xfam.org/, accessed on 10 October 2022), SMART
(http://smart.embl.de/, accessed on 10 October 2022), and batch Conserved Domain Search
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 10 October 2022)
databases [34–36]. In addition, the ExPASy server (https://web.expasy.org/protparam/,
accessed on 10 October 2022) predicted the physical and chemical parameters of the GATA
proteins in the five species [37], including molecular weights (MW), isoelectric point (pI),
and grand average of hydropathicity (GRAVY). Finally, GATA protein subcellular locations
were predicted using WOLF-PSORT (https://wolfpsort.hgc.jp/, accessed on 12 October
2022) [38].

2.3. Phylogenetic Analysis of GATA Proteins in Five Species of Solanaceae Family and Arabidopsis

Multiple sequence alignment of the full-length GATA proteins was performed using
Muscle v5 software with default parameters [39]. Next, the Maximum Likelihood (ML) tree
was constructed using the IQ-TREE v2 software with the JTT + G substitution model [40].
The bootstrap test was carried out with 1000 iterations, using pairwise deletion of gaps.
Finally, we visualized the phylogenetic tree using iTOL v5 (https://itol.embl.de/, accessed
on 12 November 2022) [41].

2.4. Gene Features and Conserved Motifs of the GATA Gene Family

The GATA exons and introns were identified using the five Solanaceae genome anno-
tation files. First, the Gene Structure Display Server (http://gsds.gao-lab.org/index.php,
on 18 November 2022) [42] was used to visualize the exon–intron. Second, the full-length
sequence of GATA proteins was submitted to the MEME suite (https://meme-suite.org/
meme/, on 18 November 2022), and the conserved motifs were analyzed with a maximum
of 20 different motifs and an optimal width of 6–50 bp [43].

2.5. Analysis of GATA Chromosomal Location, Gene Duplication Events, and Gene Synteny

The information on the chromosomal locations of the GATA genes in L. barbarum, S. ly-
copersicum, S. melongena, S. tuberosum, and C. annuum was obtained from their genome an-
notation files. Next, their chromosomal locations were mapped using the TBtools v1.12 [44].
Subsequently, the gene duplication events in genes derived from dispersed duplicates
(DSD), proximal duplicates (PD), whole-genome duplicates (WGD), transposed duplicates
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(TRD), and tandem duplicates (TD) were investigated using the DupGen_finder pipeline,
with Arabidopsis as the outgroup. [45]. Finally, the TBtools v1.12 [44] performed syntenic
analysis to reveal the syntenic relationships between LbaGATA and GATA proteins from
S. lycopersicum, C. annuum, S. tuberosum, S. melongena, and A. thaliana.

2.6. Nonsynonymous (Ka) and Synonymous (Ks) Calculation

Ka, Ks, and Ka/Ks substitution rates were calculated using the Nei–Gojobori (NG)
method in TBtools v1.12, using the coding sequences, protein sequences, and syntenic gene
pairs [44,46].

2.7. Promoter Sequence Analysis of LbaGATA Genes

Based on the wolfberry genome database, the upstream sequences (2.0 kb) from the
initiation codon (ATG) of LbaGATAs were extracted using TBtools v1.12 [44] to examine
their cis-regulatory elements. PlantCARE was used to predict the cis-acting elements in the
promoter sequences [47].

2.8. RNA-seq Analysis

The ground-above tissues at 0, 1, 3, 6, 12, and 24 after salt stress treatments were
collected and applied to RNA-seq analysis. Total RNA was extracted from treatment
samples using the Trizol method as described previously [12], and mRNA libraries were
sequenced on the Illumina HiSeq4000 platform. The raw data were filtered to obtain clean
reads. Subsequently, the cleaned reads were mapped to the wolfberry reference genome
using HISAT2 v2.05 [48]. Next, the differentially expressed genes (DEGs) between the
mapped sequences and the reference genome were identified using the DESeq2 v1.18 [49]
with |log2(fold change)| ≥ 1 and false discovery rate < 0.05 parameters. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways enriched with the DEGs were
detected with KOBAS v3.0 [50]. There was a significant enrichment of KEGG pathways
with a q_value of 0.05. Subsequently, RNA-seq data were used to extract the transcript
profiling data of LbaGATA genes, and the heatmap was generated with the corresponding
fragments per kilobase of transcript per million mapped reads (FPKM) using TBtools
v1.12 [44].

2.9. Quantitative Real-Time PCR Analysis

The qRT-PCR was used to analyze the expression patterns of the LbaGATA genes.
Total RNA was extracted from leaves (the sample same as transcriptome analysis) using
Trizol reagent (TIANGEN, Beijing, China) following the manufacturer’s instructions. The
first-strand cDNA was synthesized using EasyScript One-Step gDNA Removal and cDNA
Synthesis SuperMix (TransGen, Beijing, China) according to the manufacturer’s instructions.
Next, qRT-PCR was performed on the Bio-Rad CFX96 TouchTM Real-Time PCR detection
system (Bio-Rad, Foster City, California, USA). qRT-PCR was performed in a total volume
of 15 µL, including 2 µL of cDNA template, 0.6 µL of 10 µM primer mixture, 7.5 µL Mix
(TransGen, Beijing, China), and 4.9 µL RNase-free water. The amplification conditions were
as follows: 95 ◦C for 3 min, 40 cycles of 95 ◦C for 10 s, and 58 ◦C for 30 s. Actin was used
as the reference gene [51]. As shown in Table S1, Primer Premier 5.0 software was used to
design gene-specific primers for each LbaGATA gene. Finally, the relative gene expression
was calculated using the 2−∆∆Ct method [52]. An independent sample t-test was used to
analyze the statistical significance of the data.

3. Results
3.1. Identification and Characterization of the GATA Genes in the Five Solanaceae Species

A total of 159 candidate GATA genes were retrieved from the genomes of the five
species. Among them, three sequences lacking the GATA-type zinc-finger motifs were
removed. Finally, a total of 156 GATA genes were found in wolfberry (31), tomato (32),
pepper (28), potato (36), and eggplant (29) (Table 1). The length of the encoded GATA
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proteins was 103–955 aa with an average of 309 amino acids across the five species
(Table S2 and Figure 1). The GATA protein molecular weight and pI were between 11.434
and 102.734 kDa with an average of 34.232 kDa and between 4.41 and 10.13 with an average
of 7.62, respectively (Table S2). All proteins had negative GRAVY values, implying that
they were hydrophilic proteins, only differing in their degree of hydrophilicity. Most GATA
genes were found in the nucleus, with a few in the cytoplasm and chloroplast, suggesting
that GATAs are nuclear-localized transcription factors.

Table 1. Information on the genomes of five Solanaceae species and GATA gene numbers identified.

Common
Name

Scientific
Name

Chromosome
Number (2n) Genome Size Genome Gene

Number GATA Genes Gene Name
Prefix

Wolfberry L. barbarum 24 1.67 Gb 3,3581 31 Lba
Tomato S. lycopersicum 24 785 Mb 3,4075 32 Sl
Pepper C. annuum 24 3.3 Gb 3,5336 28 Ca
Potato S. tuberosum 24 741.6 Mb 4,4851 36 St

Eggplant S. melongena 24 1.07 Gb 3,6568 29 Sm
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Figure 1. A phylogenetic analysis of GATA proteins in five Solanaceae species and Arabidopsis. The
phylogenetic tree was constructed based on protein matrix using IQ-TREE v2 and grouped into four
subfamilies (I–IV) with different colors. The bootstrap values are shown at each node. Green triangles,
red rectangles, blue dots, gray triangles, yellow dots, and purple rectangles indicated the GATA
proteins of Arabidopsis (AtGATA), wolfberry (LbaGATA), tomato (SlGATA), pepper (CaGATA),
potato (StGATA), and eggplant (SmGATA), respectively.

3.2. Phylogenetic Analysis of GATA Proteins in the Five Species from the Solanaceae Family
and Arabidopsis

All the 186 GATA proteins, including 31 in wolfberry, 32 in tomato, 28 in pepper,
36 in potato, 29 in eggplant, and 30 in Arabidopsis, were grouped into four subfamilies
(Figure 1). Subfamily I was the largest, comprising 101 GATA proteins, followed by 55,
23, and 7 GATA proteins in subfamily II, III, and IV, respectively. The phylogenetic tree
had an obvious topology, with proteins in each subfamily clustered in a single branch.
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The findings demonstrate evolutionarily conserved GATA genes and stronger homology
between them when evaluated synchronously.

3.3. Gene Features and Conserved Motifs of the GATA Gene Family

The intron–exon structure and conserved motifs of GATA proteins in five Solanaceae
species were analyzed. The Maximum Likelihood phylogenetic tree was constructed using
the full-length GATA proteins (Figure 2a and Figures S1–S4). LbaGATA genes contained
2–19 exons, indicating a wide range of variation (Figure 2b). Among the 31 LbaGATA genes
in wolfberry, 14 had two exons. Furthermore, the structure of LbaGATA genes was relatively
conserved with the same subfamily but varied across different subfamilies. The number
of exons was higher for genes belonging to subfamily III and IV and lower for genes in
subfamily I and II, except for LbaGATA28 (19).
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Figure 2. Phylogenetic relationship, conserved protein motifs, and gene structure in LbaGATA genes.
(a) The Maximum Likelihood (ML) phylogeny includes 31 GATA proteins from wolfberry, grouped
into 4 subfamilies, sequentially designated as Subfamily I to Subfamily IV. (b) Exon/intron structures
of LbaGATA genes. Green boxes indicate exons, and introns are represented with black lines. A scale at
the bottom can indicate the length of exons. (c) The motif composition of LbaGATA proteins. Twenty
conserved motifs were performed using MEME, displayed in different colored boxes. The sequence
information is shown in Table S2. Protein length can be estimated with the scale at the bottom.

The conserved LbaGATA protein motifs highlighting their evolutionary relationship
and classification are presented in Figure 2c. Among these LbaGATA proteins, there were
20 motifs with 11–50 amino acids in each motif (Table S3). Additionally, nearly all the
LbaGATA proteins in the same subfamily had relatively conserved motif composition
and arrangement. However, there was a substantial degree of variation in the different
subfamilies.

It was found that all LbaGATA proteins contained conserved motifs 1 and 3, except
LbaGATA2, which lacked the conserved Motif 3. Precisely, subfamily I contained Motifs
2, 4, 8, and 9, while Motifs 10, 12, and 19 were found only in subfamily II. However,
the LbaGATA protein motif composition and arrangement in subfamily III were highly
conserved, with only LbaGATA16 lacking Motifs 11 and 3 and LbaGATA18 lacking motif
11. Additionally, the LbaGATA proteins in subfamily IV generally contained more unique
Motifs, including Motifs 5, 11, 15, 16, and 17. LbaGATA8 lacked Motif 8 (special to
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subfamily I and IV) compared to LbaGATA13 and LbaGATA23, which have identical Motif
arrangements.

3.4. Gene Duplication Events, Chromosomal Location, and Synteny Analysis of GATA Genes

Further comprehensive analysis of gene duplication events in five Solanaceae species,
was conducted, including various types such as whole-genome duplication (WGD), prox-
imal duplication (PD), tandem duplication (TD), transposed duplication (TRD), and dis-
persed duplication (DSD). The software DupGen_finder v1.10 [45] was used to identify
duplicate GATA family gene pairs within five genomes of Solanaceae. The WGD, TD, TRD,
and DSD duplication events were present in all the five species from the Solanaceae family,
while PD duplication event was traced only in tomato, pepper, and potato. There were
249 duplicate genes in the five species, with DSDs having the largest number of gene pairs
(132), followed by WGDs with 73, and TRDs with 28. In contrast, only 24 TD and 3 PD pairs
were identified (Figure 3). These results imply that the expansion of the GATA gene family
was mainly associated with DSD and WGD events. The WGD pairs in wolfberry (17),
tomato (18), potato (16), and eggplant (14) were greater than those in pepper (7), suggesting
that WGDs play important roles in the GATA family expansion in wolfberry, tomato, potato,
and eggplant (Table S4).
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Figure 3. Gene duplications (TD, tandem duplicates; DSD, dispersed duplicates; WGD, whole-
genome duplicates; PD, proximal duplicates; and TRD, transposed duplicates) of the GATA gene
family in the five Solanaceae species. Different colored bars indicate different gene duplications.

Additionally, most GATA genes were unevenly distributed at both ends of the chromo-
somes (Figure 4). For wolfberries, 31 GATA genes were located on 11 of the 12 chromosomes.
There were seven genes distributed on Chr6, which contained most genes compared to
other chromosomes, while Chr7 and Chr10 contained only one GATA gene (Figure 4a). In
tomato, there were two clusters of homologous GATA genes on Chr1 and Chr5 (Figure 4b).
In pepper, there were three clusters of homologous GATA genes on Chr2, Chr5, and Chr8,
with three to four genes per cluster (Figure 4c). In potato, there were two clusters of GATA
genes on Chr1 and Chr5, each with three to twelve genes (Figure 4d). In eggplant, two
GATA gene clusters were identified on Chr1 and Chr5, with three to five genes per cluster
(Figure 4e).
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the GATA genes in the five Solanaceae species in different colors. Red line indicates the presence of
duplicate gene pairs.

Further intra-genomic collinearity revealed 17 gene pairs in wolfberry, 18 in tomato, 6
in pepper, 18 in potato, and 14 in eggplant (Figure 5 and Table S5). As a result, 270 ortholo-
gous gene pairs were identified among the five species based on collinearity analyses of
the GATA genes (Figure 5 and Table S6), including 80, 26, 60, 87, and 17 collinear gene pairs
between wolfberry and tomato, pepper, potato, eggplant, and Arabidopsis, respectively.
These results imply that wolfberry and the other four species in the Solanaceae species
have a good collinearity relationship, which suggests a possible evolutionary mechanism
between them.

3.5. GATA Genes Evolved under Strong Purifying Selection

In Figure 6 and Table S7, paralogous GATA gene pairs are shown as non-synonymous
(Ka), synonymous (Ks), and Ka/Ks. The Ka/Ks ratios of duplicated gene pairs in wolfberry,
tomato, pepper, and eggplant were <1, implying that GATA genes evolved under strong
purifying selection. However, in potatoes, one DSD gene pairs Soltu.DM.01G043530.1
and Soltu.DM.01G047500.2 (Ka/Ks~1.06) had higher Ka/Ks ratios, implying that this
family has a complicated evolutionary history. In wolfberry, the calculated mean Ka/Ks
values for WGD, DSD, TD, and TRD gene pairs were 0.22, 0.23, 0.25, and 0.14, respectively
(Figure 6 and Table S7). In comparison with the other duplicated gene pairs, the DSD gene
pairs had a higher Ka/Ks ratio, indicating a higher rate of evolution (Figure 6a).
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Figure 6. Analysis of the Ka/Ks values of GATA genes in five species of Solanaceae. Comparison of
Ka/Ks values for different models of gene duplications. The x-axis represents five different duplica-
tion types. The y-axis indicates the Ka/Ks ratio. WGD, whole-genome duplicates; DSD, dispersed
duplicates; TD, tandem duplicates; PD, proximal duplicates; and TRD, transposed duplicates. (a):
wolfberry; (b): tomato; (c): pepper; (d): potato; (e): eggplant.



Genes 2023, 14, 1943 10 of 19

3.6. Analysis of LbaGATA Promoter Element Cis-Acting Elements

The LbaGATA gene expression regulation mechanism in the 2000 bp upstream se-
quences in the promoter regions of the 31 LbaGATA genes is shown in Figure 7a. In total,
14 cis-regulatory elements were identified and grouped into three basic physiological sub-
groups, including abiotic/biotic stress responsiveness, phytohormones responsiveness,
and plant growth and development (Figure 7b). For plant growth and development,
the 31 GATA box promoter sequences contained MYB, which was involved in various
developmental processes/stresses. In addition, most of the LbaGATA family contained
ARE cis-acting elements for anaerobic induction. The subgroup included TGACG-motif,
CGTCA-motif, and ABRE, which regulate MeJA response and drought inducibility in
phytohormones responsiveness. The members belonged to Subfamily I with high levels of
various cis-acting elements, especially LbaGATA13, with most phytohormones related to
elements like ABRE and plant growth related to elements like G-box (light responsiveness).
However, only LbaGATA19 had AuxRR-core (auxin responsiveness). Meanwhile, LbaGATA4,
LbaGATA18, and LbaGATA28 had the GARE motif related to gibberellin responsiveness.

3.7. Role of LbaGATA Family in Response to Salt Stress

To conduct transcript profiling under salt stress, we harvested leaves’ tissues from
wolfberry plants after salt treatment for 0 h (control, CK), 1 h, 3 h, 6 h, 12 h, and 72 h. These
tissues were subsequently used for RNA-seq analysis. Transcriptome characteristics of
biological replicates from the same treatment (Figure S5) were highly correlated (r2 > 0.8),
suggesting the reproducibility of transcriptome data. Therefore, these transcriptome data
could be used for further analysis. A total of 1437, 3258, 4582, 4518, and 2903 genes
were transcriptionally up-regulated or down-regulated at 1, 3, 6, 12, and 24 h after salt
treatment, respectively (Figures 8a and 8b). K-means clustering analysis revealed that all
the genes were divided into 12 different clusters, which indicated that there were a lot of
gene expression differences in different samples (Figure S6). KEGG analysis revealed that
the altered genes, 1 h after salt treatment, were enriched in a plant–pathogen interaction,
MAPK signaling pathway–plant, and plant hormone signal transduction (Figure 8c). After
3, 6, and 12 h of salt treatment, the enriched genes were involved in the MAPK signaling
pathway, ribosomes, photosynthesis, antenna proteins, porphyrin metabolism, carbon
fixation in photosynthetic organisms, and circadian rhythm (Figure 8d–f). After 24 h of salt
treatment, the altered genes were mainly enriched in ribosomes (Figure 8g).

In order to conduct transcript profiling under salt stress, we extracted the tran-
scriptomic data for the 31 LbaGATA genes. Consequently, 31 LbaGATA genes showed
different transcript profiles under salt stress (Figure 9). These genes were divided into
three main groups based on their expression profiles. Group I contained 12 genes (Lba-
GATA4/8/10/11/12/14//15/17/19/20/21/22/24) (Figure 9 and Table S7), of which 11 were in-
creased with an increase in stress duration, especially LbaGATA8, LbaGATA12, LbaGATA17,
LbaGATA19, and LbaGATA24, which increased by 2.34, 3.68, 2.07, 2.64, and 3.1-fold, respec-
tively. In group II, the LbaGATAs were transcriptionally decreased at the early stress stages
and increased after, such as LbaGATA2/6/22/30. In group III, after salt treatment, there was
no significant change in gene expression (Figure 9 and Table S8).
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Figure 8. Transcriptomic analysis of wolfberry seedlings under salt stress. (a) Numbers and Venn
diagram (b) of differentially expressed genes under salt treatment for 0 h (CK), 1 h, 3 h, 6 h, 12 h, and
24 h as compared to the transcript level at 0 h after salt treatment. (c–g) Analysis of KEGG enrichment
pathways for DEGs under salt treatment for 1 h (c), 3 h (d), 6 h (e), 12 h (f), and 24 h (g). Rich factor is
represented by the horizontal axis, and pathway name is indicated by the vertical axis. The size of
the dots represents the number of genes in the pathway, and the color indicates q-value. Wolfberry
seedings were exposed to the salt stress of 300 mM of NaCl for 0 h (CK), 1 h, 3 h, 12 h, and 24 h.
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LbaGATA17, LbaGATA19, LbaGATA20, and LbaGATA24 were induced with salt stress at one 
or more time point/s, which was consistent with the RNA-seq analysis. LbaGATA8 had the 
highest expression at 6 h, while LbaGATA17, LbaGATA19, LbaGATA20, and LbaGATA24 had 
the highest expression pattern at 12 h compared to the control (0 h). The results suggest 
that these LbaGATAs may play an important role in the salt stress response of wolfberries. 

Figure 9. The heatmap of the 31 LbaGATA genes under salt stress using the TBtools v1.12. Wolfberry
seedlings were exposed to the salt stress of 300 mM of NaCl for 0 (control, CK), 1, 3, 6, 12, and 24 h.
Heatmaps were generated using the FPKM values of the 31 salt-stress-responsive LbaGATAs using
the TBtools v1.12. The color scale beside the heatmap indicates gene expression levels, blue color
indicates low transcript abundance, and red color indicates high transcript abundance.

3.8. qRT-PCR-Based Analyses of Gene Expression

In order to verify the results of RNA-seq, nine LbaGATA genes were selected at random,
and their expression levels were determined using qRT-PCR to analyze their expression
levels after salt treatment for 0 (CK), 1, 3, 6, 12, and 24 h. All nine LbaGATA genes were
up-regulated under salt stress (Figure 10). The expression levels of LbaGATA8, LbaGATA17,
LbaGATA19, LbaGATA20, and LbaGATA24 were induced with salt stress at one or more
time point/s, which was consistent with the RNA-seq analysis. LbaGATA8 had the highest
expression at 6 h, while LbaGATA17, LbaGATA19, LbaGATA20, and LbaGATA24 had the
highest expression pattern at 12 h compared to the control (0 h). The results suggest that
these LbaGATAs may play an important role in the salt stress response of wolfberries.
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Figure 10. Gene expression patterns of nine GATA genes verified using qRT-PCR analysis under
salt stress treatment. The left-hand y-axis represents the relative expression levels obtained using
qRT-PCR analysis, and the right-hand y-axis represents the FPKM values ascertained using RNA-seq
analysis. Wolfberry seedlings were exposed to the salt stress of 300 mM of NaCl for 0 h (CK), 1 h, 3 h,
6 h, 12 h, and 24 h. The qRT-PCR data were normalized against LbaActin, and the expression level at
the first timepoint (0 h, CK) was set as 1. Three biological replicates are depicted with error bars.

4. Discussion

GATA TFs are a member of the zinc-finger proteins, widely identified and function-
ally characterized in a wide range of plant species [53]. Studies have shown that GATA
genes are involved in regulating growth, chlorophyll synthesis, and environmental re-
sponse. [17,19,54]. However, there is little information about this gene family in wolfberry,
and there has not been a systematic study of GATA genes in Solanaceae.

GATA genes exist broadly in plants, with 5335 GATA genes from 165 plant species
deposited in the PlantTFDB [55], including 40 GATA genes in kiwifruit, 54 in maize, 92 in
soybean, and 6 in sugarcane. However, the sizes of GATA families vary across the different
plant species. In this study, the composition of the GATA gene families was also diverse
among the five Solanaceae species. Considering the numbers of GATA genes in wolfberry
(31), tomato (32), pepper (28), potato (36), and eggplant (29). Generally, the number of
GATA genes in potato exceeded the other four Solanaceae species. Additionally, the genome
size across the five Solanaceae species varied from 0.785 (tomato) to 3.30 Gb (pepper). This
implies that the number of GATA genes in a plant is independent of the genome size. A
recent study revealed that wolfberry and other hitherto sequenced Solanaceous plants
experienced a whole-genome triplication event [33]. However, GATA genes were identified
in four Solanaceae species, except wolfberry. Hence, WGD may not be the major factor
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driving the expansion of the GATA family in wolfberry and the four other Solanaceae
species. Additionally, the GATA genes from all five Solanaceae species were classified
into four clades according to their phylogenetic tree, consistent with those of other plant
species [56].

Gene duplication contributes to the increase in new functional genetic materials and
the development of new species [57]. As a common phenomenon, there are multiple
pathways for gene duplication events, and the accumulation of beneficial mutations is
preserved through selective evolution [58,59]. Generally, gene duplications are categorized
as WGD, PD, TD, DSD, and TRD, which are the primary driving forces behind gene
family evolution [45]. Gene duplication patterns contribute differently to gene family
expansion. For example, large gene families are commonly affected by DSD and WGD, such
as pyrabactin resistance 1-like (PYR/PYL) [60] and BAHD acyltransferase [61]. Similarly,
the duplication of the GATA gene has been widely reported [30]. In this study, there were
five duplication events identified in five Solanaceae species, including a large number of
DSD (50.98%), WGD (33.33%), TRD (11.76%), and TD (3.92%) events in wolfberry, while PD
events were not detected. Additionally, the DSD events accounted for 54, 52.78, 53.96, and
53.06% of all the duplication events in tomato, pepper, potato, and eggplant, respectively.
Therefore, DSD and WGD are identified as the primary models of GATA gene family
expansion in the five Solanaceae species, similar to the GATA family in Arabidopsis [45].
However, the occurrence time of WGD and DSD events in homologous GATA pairs across
the five Solanaceae species differed, implying that the evolutionary histories of GATAs
are specific. Further, the Ka/Ks ratios of paralogous GATA gene pairs in wolfberry are
generally less than 1, which indicates that they have undergone purifying selection. One
pair of GATA paralogous genes in potato had undergone positive selection, suggesting that
novel functions may have evolved.

Salt stress affects plant growth, resulting in a significant reduction in crop productiv-
ity [62]. Increasing evidence has revealed that GATA genes are involved in plant response
to salt stress [22]. For example, the analysis of the cis-elements in the promoter regions of
CaGATA genes revealed their potential regulation during salinity, heat, cold, and drought
stresses in pepper [63]. Herein, several stress-related cis-elements were found in wolfberry,
including those for ARE (cis-acting regulatory element essential for anaerobic induction),
LTR (low-temperature responsiveness), MBS (MYB binding Site), and AuXRR-core (auxin
responsiveness), suggesting that GATA genes potentially regulate drought and salt stress
responses in wolfberry. In addition, the RNA-seq data revealed that 12 LbaGATA genes
were transcriptionally altered with more than two-fold changes via salt stress, consistent
with previous studies that identified four GATA genes in Fagopyrum tataricum and three
GATA genes in Brassica napus [28,64]. Another four GATA genes, SiGATA16, SiGATA18,
SiGATA22, and SiGATA25, were induced by NaCl in Setaria italica [27]. The altered ex-
pression patterns of LbaGATA genes suggest they have functional roles in response to salt
stress. Further verification of whether LbaGATAs are involved in response to salt stress
revealed that LbaGATA14, LbaGATA15, and LbaGATA24 were highly expressed at 6, 3, and
12 h, respectively. In contrast, the expression levels of LbaGATA8, LbaGATA17, LbaGATA19,
LbaGATA20, and LbaGATA25 were always up-regulated under salt stress. Therefore, it is
possible that LbaGATA genes contribute to salt stress resistance in wolfberries.

5. Conclusions

In this study, genome-wide identification and bioinformatic analysis of GATA genes
were conducted in wolfberry (L. barbarum) and four other Solanaceae species (S. lycopersicum,
C. annuum, S. tuberosum, and S. melongena). In total, 156 members of the GATA gene family
were identified in the five Solanaceae genomes, of which 31 were found in wolfberry. There
are four subfamilies in the GATA family (groups I-IV) based on phylogenetic analyses,
conserved domain analyses, and gene structure analyses. DSD and WGD largely contribute
to expanding the GATA gene family in the Solanaceae species. In addition, the purifying
selection is the main evolutionary force imposed on GATA genes, except for a few gene
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pairs with Ka/Ks values greater than one. Overall, LbaGATA8, LbaGATA17, LbaGATA19,
LbaGATA20, and LbaGATA24 are involved in salt stress responses. The findings in this study
will provide a foundation to understand better the molecular evolution of GATA genes in
Solanaceae species and their molecular functions in wolfberry and other Solanaceae species.
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