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Abstract: It is well known that the microbiome data are ridden with outliers and have heavy
distribution tails, but the impact of outliers and heavy-tailedness has yet to be examined systematically.
This paper investigates the impact of outliers and heavy-tailedness on differential abundance analysis
(DAA) using the linear models for the differential abundance analysis (LinDA) method and proposes
effective strategies to mitigate their influence. The presence of outliers and heavy-tailedness can
significantly decrease the power of LinDA. We investigate various techniques to address outliers and
heavy-tailedness, including generalizing LinDA into a more flexible framework that allows for the
use of robust regression and winsorizing the data before applying LinDA. Our extensive numerical
experiments and real-data analyses demonstrate that robust Huber regression has overall the best
performance in addressing outliers and heavy-tailedness.

Keywords: compositional data; differential abundance analysis; Huber regression; robustness;
winsorization

1. Introduction

The human microbiome is a complex and multifaceted ecosystem comprising diverse
microorganisms, including bacteria, viruses, and fungi. These microorganisms inhabit
different parts of the human body and play a crucial role in various biological functions
essential for human health and disease prevention [1,2]. Understanding the diversity and
abundance of microorganisms in the microbiome, such as the gut microbiome, is crucial
for identifying potential pathogens that can cause harm or probiotics that promote good
health [3,4].

Metagenomic sequencing is the primary method used to study the microbiome. It
provides a comprehensive snapshot of the microbiome’s composition by sequencing the
genetic material of all microorganisms in a sample [5,6]. However, this technique only
provides relative abundance data, with the abundance of each microorganism expressed as
a proportion of the total number of microorganisms in the sample [7]. Absolute abundance
measurement can be achieved through various experimental techniques like qPCR, spike-in,
and flow cytometry. However, these techniques have yet to be widely adopted due to their
severe limitations [8]. Therefore, the prevailing sequencing protocol is still only capable
of measuring the relative abundances. Nevertheless, when combined with appropriate
statistical methods, relative abundance data can still provide valuable insights into the com-
position and function of the microbiome and its impact on health and disease. Following
the processing of sequence reads using a bioinformatic pipeline, such as DADA2 [9] for
16S-targeted sequencing and MetaPhlAn2 [6] for shotgun metagenomic data, an abundance
table that records the frequencies of the detected microbial taxa is generated. This table is
used for downstream statistical analyses along with metadata that captures sample-level
characteristics.

Differential abundance analysis (DAA) is a central downstream task that seeks to
identify microbial taxa whose abundance correlates with a variable of interest. However,
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classical statistical tools, such as ANOVA and rank-based tests, are unsuitable for DAA
as they do not account for the compositional nature of microbiome data and can lead to
significant false discoveries. This is due to changes in one microorganism’s abundance that
can influence others’ relative abundance. Several differential analysis methods have been
developed that consider compositional effects [10] to address this issue. These methods
use either robust normalization techniques, such as TMM, RLE, CSS, and GMPR [11–14] or
(log) ratio-based approaches, including ALDEx2 [15], ANCOM-BC [16], MaAsLin2 [17],
and LinDA [18].

Identifying differentially abundant taxa in real-world data can be challenging due to
the presence of outliers (overly abundant taxa) that may negatively impact the effectiveness
of existing DAA methods [19–21], where outliers mean an extremely high abundance
of a particular taxon in a few samples. Despite their widespread use, there has been a
need for more systematic investigations into the influence of outliers on DAA methods.
Additionally, log-ratio-based approaches (e.g., LinDA, ANCOM-BC, MaAsLin2) rely on
normality assumption for random errors, which may not be valid for real-world data. Our
observations suggest that this assumption can be violated in real-world data, leading to
a phenomenon we term heavy-tailedness, which can impair the performance of existing
DAA methods. Here, heavy-tailedness means that the tail of the distribution of random
errors is heavier than the normal distribution.

This study aims to investigate the impact of outliers and heavy-tailedness on differen-
tial abundance analysis (DAA) methods and identify effective strategies to mitigate these
challenges. LinDA was used as the benchmark DAA method, and the primary aim was
to identify the most effective strategy to address outliers and heavy-tailedness in DAA.
The study revealed that the presence of outliers or heavy-tailedness significantly reduces
the power of detecting differential taxa. To address these challenges, we proposed a gen-
eral M-estimation framework for DAA, which encompasses differential analysis based on
Huber regression as a special case. Huber regression is a widely used statistical method
that guards against outliers and heavy-tailedness in regression problems [22]. Additionally,
this study explored the effectiveness of the winsorization method, a statistical data pre-
processing technique in combination with LinDA, for handling noisy data. Winsorization
replaces extreme values with less extreme ones and has been shown to effectively handle
outliers and heavy-tailedness in data analysis [23]. This study’s simulations demonstrated
that Huber regression exhibits superior robustness against outliers and heavy-tailedness
compared to the LinDA and LinDA methods with winsorization. Therefore, this study
recommends using the Huber method in instances wherein the dataset is subject to noise.

We summarize our main contributions as follows:

1. This study conducted comprehensive simulations to investigate the impact of outliers
and different types of heavy-tailedness on the various DAA methods.

2. This study introduced a general M-estimation framework for DAA, which includes
several methods that are robust to outliers and heavy-tailedness.

3. This study conducted extensive simulations to examine the performance of various
DAA methods to address outliers and heavy-tailedness, including multiple levels
of the winsorization technique and different M-estimation-based methods. The ex-
periments demonstrated that the proposed Huber regression method based on the
M-estimation framework is more stable for outliers and heavy-tailedness.

The remainder of this paper is organized as follows. In Section 2.1, we introduce the
regression-based framework for DAA, which includes LinDA and the Huber regression-
based method as special cases. Section 2.2 provides an overview of the winsorization
method and its implementation details. Our simulation studies are presented in Section 3.
Lastly, Section 4 presents some real data analyses. Additional numerical results can be
found in the Appendixes A–C.
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2. Materials and Methods
2.1. A Regression-Based Framework for Differential Analysis

In this section, we present a generalization of the LinDA method, utilizing a M-
estimation framework for DAA based on the central log ratio (CLR) transformation. By
replacing the l2 loss with a robust loss function, we propose a more robust approach
for DAA.

2.1.1. CLR-Based Log-Linear Models

Let Xis and Yis denote the absolute abundance and observed read count of the i-th
taxon in the s-th sample, respectively. For the s-th sample, the total read count of all taxon,
Ns = ∑m

i=1 Yis, is determined by the sequencing depth and DNA materials. Given Ns, it is
natural to model the stratified count data over m taxon using a multinomial distribution as

P(Y1s = y1s, . . . , Yms = yms) =
Ns!

∏m
i=1 yis!

m

∏
j=1

( Xjs

∑m
i=1 Xis

)yjs

. (1)

Under (1), we have

log

(
Yis

∑m
j=1 Yjs

)
= log

(
Xis

∑m
j=1 Xjs

)
+ eis, (2)

where the ratio on the left side represents the sample proportion, while the ratio on the right
side represents the population proportion, and eis denotes the estimation error. The sample
proportion is the maximum likelihood estimator (MLE) of the population proportion based
on the multinomial model (1). By the consistency of the MLE, eis is expected to diminish as
Ns increases. We consider the log linear model on the absolute abundance

log(Xis) = usα0i + c>s β0i + εis, (3)

where cs = (1, cs1, . . . , csd)
> includes intercept and the d-dimensional covariates to be

adjusted, us is the variable of interest, and εis is the error term. Here, we assume a log-linear
model on the absolute abundance, which is a reasonable and widely adopted approach in
abundance data analysis [24,25]. The objective here is to identify taxa that show differential
abundance relative to us. To this end, we simultaneously test the following m hypotheses:

H0,i : α0i = 0 versus Ha,i : α0i 6= 0, 1 ≤ i ≤ m.

Set εis = εis + eis. Under (2) and (3), the CLR data satisfy the following linear model:

Wis := log

{
Yis

(∏m
j=1 Yjs)1/m

}
= log

(
Yis

∑m
k=1 Yks

)
− 1

m

m

∑
j=1

log
( Yjs

∑m
k=1 Yks

)

= log(Xis)−
1
m

m

∑
j=1

log(Xjs) + eis −
1
m

m

∑
j=1

ejs

=us(α0i − ᾱ) + c>s (β0i − β̄) + εis − ε̄s,

where ᾱ = m−1 ∑m
i=1 α0i, β̄ = m−1 ∑m

i=1 β0i, and ε̄s = m−1 ∑m
i=1 εis.

2.1.2. M-Estimation Framework for Differential Analysis

Define ᾱi = α0i − ᾱ and β̄i = β0i − β̄. We propose to estimate ᾱi and β̄i by solving the
following M-estimation problem:

(α̃i, β̃i) = arg min
αi ,βi

1
n

n

∑
s=1
L
(

Wis − usαi − c>s βi

)
, (4)
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where L is a loss function chosen by the practitioners and the resulting estimators are
referred to as M-estimators. When L is the l2 loss, i.e., L(r) = r2, (α̃i, β̃i) become the
ordinary least squares (OLS) estimators, which has been considered in [18].

Example 1. To handle heavy-tailedness and outliers in datasets, we can employ the robust loss
function in (4), which is commonly used in robust regression. Robust regression is designed to
estimate the parameters of a regression model in the presence of influential observations that can
distort the results. Unlike ordinary least squares regression, which assumes normally distributed
errors with constant variance, robust regression offers more flexible assumptions about the error
distribution and is less sensitive to outliers. It becomes particularly advantageous when data
contain outliers that cannot be readily removed or explained, or when ensuring that the regression
coefficients are not overly influenced by a few observations. Below are some popular robust regression
loss functions.

1. Huber’s loss is defined as

lHuber(r) =
{ 1

2 r2 if |r| ≤ c
c|r| − 1

2 c2 if |r| > c
,

where c is the hyperparameter and the default value is 1.345, which is widely used in robust
regression studies. Notice that the Huber estimator down-weights the influence of observa-
tions with large residuals, resulting in less impact on the estimated regression coefficients.
Additionally, Huber [22] argued that if the true distribution was normal, this loss function is
asymptotically 95% as efficient as least squares.

2. Tukey’s bisquare loss is defined as

lbi(r) =


c2

0
6

(
1−

(
1−

(
r
c0

)2
)3
)

if |r| ≤ c0

c2
0
6 if |r| > c0

,

where c0 = 4.685 is the standard constant for this loss function. It is worth noting that this
function has been shown to possess an asymptotic efficiency of 95% with respect to linear
regression for the normal distribution.

3. Quantile regression loss is defined as

lτ(r) =
{

τr if r ≥ 0
(τ − 1)r if r < 0

,

where τ represents the quantile level of interest. Notably, when τ = 1
2 , the loss function is

equivalent to the l1 loss, expressed as l1(r) = |r|. The l1 loss corresponds to the loss function
utilized in the least absolute deviations (LAD) regression method.

Let zs = (us, c>s )> and θi = (αi,β>i )>. We define θ̃i (and θ̄i) in the same way as θi by
replacing αi with α̃i (and ᾱi), and βi with β̃i (and β̄i), respectively. Denote ris = Wis − z>s θi,
and define r̄is and r̃is analogously by replacing θi with θ̄i and θ̃i, respectively. We can
then rewrite each summand of the objective function in (4) as L(ris) := L(Wis − z>s θi).
Observe that

∂

∂θi
L(ris) = zsψ(ris),

where ψ is referred to as the influence curve [26]. Under certain regularity conditions
(see, for example, Theorem 5.21 in Van der Vaart [27]), the asymptotic normality of the
M-estimator is given as follows [26]:

√
n(θ̃i − θ̄i)→d N (0, Σi), (5)
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where

Σi =

(
1
n

n

∑
s=1

zsz>s

)−1
E[ψ2(r̄is)]

E[ψ′(r̄is)]2
. (6)

In practice, we will not know the true distribution of the error term and the true regression
parameters θ̄i. Therefore, we propose using the plug-in method to estimate the asymptotic
variance of θ̃i (rather than

√
nθ̃i), which is given by

Σ̂i =

(
n

∑
s=1

zsz>s

)−1 1
n ∑n

s=1 ψ2(r̃is)(
1
n ∑n

s=1 ψ′(r̃is)
)2 . (7)

When L is the l2 loss, the estimators used in LinDA and (7) are asymptotically equivalent.
From the above discussions, α̃i obtained by minimizing (4) is an asymptotically unbi-

ased estimator for αi − ᾱ. To estimate αi, it remains to find an estimator for ᾱ. To this end,
we adopt the mode correction method proposed by Zhou et al. [18]. Specifically, assuming
that only a small portion of taxa exhibit differential abundance, meaning that most values
of αi are equal to 0. Under this assumption, the mode of α̃i is expected to be close to −ᾱ.
Hence, we can estimate ᾱ through estimating the mode of {α̃i : 1 ≤ i ≤ m}. Specifically, we
use the kernel smoothing approach to estimate the mode and let

α̃ := −
m̂ode({

√
nα̃i}m

i=1)√
n

be the estimate for ᾱ. Here,

m̂ode({
√

nα̃i}m
i=1) = arg max

a∈R

1
mh

m

∑
i=1
K
(

a−
√

nα̃i)

h

)
,

where K is a kernel function satisfying
∫ ∞
−∞ K(x) dx = 1 and h is the bandwidth. Then, the

resulting bias-corrected estimator of αi is given by α̂i = α̃i + α̃. In our implementation, we
use mlv function in R package modeest to estimate the mode.

Once the bias-corrected estimator is obtained, we implement the t-test by defining
the test statistic as Ti = α̂i/σ̂i, where σ̂2

i is the variance estimator of α̃i in the regression
problem, corresponding to the (1, 1)th entry of Σ̂i defined in (7). Although we have the
asymptotic normality of the M-estimator, our simulations revealed that the t-distribution
provides a better approximation for the sampling distribution of Ti and offers better FDR
control for small samples. Consequently, we propose using the t-test in our method. The
p-value is then calculated as 2P(T ≥ |Ti|), where T follows a t-distribution with n− d− 2
degrees of freedom. To control the FDR, we recommend using the Benjamini–Hochberg
(BH) procedure to adjust the p-values obtained for each taxon. The taxa with an adjusted
p-value less than a certain threshold are referred to as differential taxa.

We summarize our procedure as follows:

1. For each taxon, solve the optimization problem defined in (4) to obtain the estimator
α̃i and its variance estimator σ̂2

i .
2. Calculate the mode based on {α̃i : 1 ≤ i ≤ m}, and perform mode correction to obtain

the bias-corrected estimator α̂i.
3. Compute the test statistics Ti and the p-value for each taxon.
4. Apply the BH procedure to adjust the p-values.

Remark 1. Given the practical challenge of determining the optimal hyperparameter to use in the
loss function (e.g., c in the Huber loss function), we propose utilizing the Cauchy combination
rule [28] for aggregating the p-values obtained from different hyperparameters. This approach
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addresses the difficulty of selecting the most suitable hyperparameter by combining the results from
multiple options.

Remark 2. Based on the regression-based framework, our method can be readily extended to apply
to the mixed-effect model. Please refer to Appendix B for more details.

2.2. Winsorization

Winsorization is a statistical data preprocessing technique utilized for handling outliers
and heavy-tailed data. This method involves sorting the dataset in either ascending or
descending order based on the analytical requirements. Next, the extreme values, namely
outliers or values in the tails of the distribution, are substituted with the smallest or largest
non-outlier value, correspondingly. Moreover, winsorization can be complemented with
DAA techniques to enhance the precision and robustness of statistical analysis, particularly
when confronted with datasets containing outliers or heavy-tailed distributions.

In microbiome data analysis, winsorization typically entails replacing the top 1− τ
largest values with the value at the τ quantile [20]. Specifically, for a given taxon i, Yis was
arranged in increasing order, and the τ quantile of {Yis}n

s=1 was computed and denoted as
qi(τ). We replace the observed count Yis by its winsorized value defined as

Ỹis =

{
Yis if Yis ≤ qi(τ),
qi(τ) if Yis > qi(τ).

While winsorization is known to reduce the influence of outliers, it remains unclear
whether this method leads to the loss of essential data information. Furthermore, despite
its widespread use, the impact of winsorization on DAA methods has not been thoroughly
investigated. Consequently, this study seeks to comprehensively examine the impact of
multiple levels of winsorization on DAA methods in various scenarios, both with and
without outliers/heavy-tailedness, through several numerical examples.

3. Results

To comprehensively evaluate the performance of different M-estimation-based meth-
ods and winsorization at different levels, we conducted extensive simulations under vari-
ous scenarios. Before describing the simulation settings, we provide a list of the methods
we compared.

We evaluated six methods in our comparative analysis, namely LinDA [18] with-
out winsorization (referred to as LinDA), LinDA with winsorization at the 97% quantile
(referred to as LinDA97), LinDA with winsorization at the 90% quantile (referred to as
LinDA90), M-estimation method with Huber’s loss (referred to as Huber), M-estimation
method with Tukey’s bisquare loss (referred to as Bi_square), and quantile regression
method (referred to as QR). To implement the Huber and bisquare methods, we used
the rlm function in the MASS package (version: 7.3-60) in R to perform the regression
estimation. For the selection of hyperparameters, we considered 10 values of c equally
spaced within the interval [1.345, 5] on a log scale for the Huber method. For the Bi_square
method, we took 10 values of c0 equally spaced within the interval [4.685, 20] on a log
scale. We used the rq function in the quantreg package (version: 5.95) in R to implement
quantile regression. Similar to the Huber method, we took into account the quantile level τ
that is evenly distributed across the interval [0.25, 0.75] with an adjacent difference of 0.05
(resulting in a total of 11 values).

Remark 3. We also compared with other differential abundance analysis methods, including
ALDEx2 [15], ANCOM-BC [16], and MaAsLin2 [17], and the results are deferred to Appendix C.
Based on our simulation, we found that LinDA outperforms other methods that do not consider
outliers and heavy-tailedness. Hence, we used LinDA as the benchmark method in the following and
focus on comparing various log-linear model-based approaches used for addressing outliers.
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To handle zero values, we employed the hybrid method proposed by Zhou et al. [18],
which combines two different approaches. The first approach involves adding a pseudo-
count of 0.5 to all counts, which is a commonly used technique in microbiome data analysis
on the log scale. The second approach is the imputation-based method, which involves
replacing the zeros with fractions equal to Ns/ max{Nk : Yik = 0} for the i-th taxon in
the s-th sample, where larger fractions are used for samples with larger library sizes.
Zhou et al. [18] used a statistical test to determine which method to apply. Specifically, they
tested the association between the covariate of interest and the library size based on the log-
linear model. If the p-value was less than 0.1, they used the imputation approach; otherwise,
they used the pseudo-count approach. More details can be found in Zhou et al. [18].

3.1. Simulations Based on Log-Linear Models

In this section, we simulated datasets from log-linear models. We adopted the data-
generating process proposed by Zhou et al. [18], while using different methods to generate
error terms. We assumed that the baseline absolute abundance X∗is is generated from

log
(
X∗is
)
∼i.i.d. N (β∗i , σ2

i∗),

and the true proportion is obtained as

π∗is =
X∗is

∑m
j=1 X∗js

.

Letting π̄∗i = ∑n
s=1 π∗is/n. We denote the signal strength as µ. In order to construct a

power curve, we included six signal strengths in the figures, which are evenly spaced
within the interval [1.05, 2]. Given that low-abundance taxa exhibit lower statistical power,
we assigned greater weight to their effects to prevent dominance by the abundant ones.
Specifically, for the i-th taxon, we set

µi = log(2µ)1(π̄∗i > 5× 10−3) + log
(

2µ
(
5× 10−3/π̄∗i

)1/3
)
1(π̄∗i ≤ 5× 10−3)

for n = 50 and

µi = log(µ)1(π̄∗i > 5× 10−3) + log
(

µ(5× 10−3/π̄∗i )
1/3
)
1(π̄∗i ≤ 5× 10−3)

for n = 200.
We randomly selected the differential taxon from the entire set and denoted γi as an

indicator of whether the taxon is differentially abundant (γi = 1) or not (γi = 0). The
underlying truth of γi was generated from a Bernoulli distribution with parameter pγ,
where we set pγ = 0.05 or pγ = 0.2 to correspond to sparse and dense signal settings,
respectively. We then denoted the true signal strength for the differentially abundant taxon
by αi = µiγi.

To generate the absolute abundance Xis, we considered two cases: with or without
confounders, and three types of error terms. We defined εis as the error term corresponding
to the s-th sample of the i-th taxon, which we will define later. The absolute abundance Xis
was then obtained by

log(Xis) =

{
βi0 + usαi + εis without confounders,
βi0 + usαi + c>s βi + εis with confounders,

where βi0 is the intercept term and

us ∼ Bernoulli(0.5)
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if there is no confounder and

us ∼ Bernoulli
(
1/
(
1 + exp(−0.5cs1 − 0.5cs2)

))
if there are confounders. Here, the confounders cs = (cs1, cs2) ∈ Rn×2, with cs1 ∼
Bernoulli(0.5) and cs2 ∼ N (0, 1). The taxon-specific coefficients βi1 and βi2 are inde-
pendently generated from the normal distributions with means of 1 and 2 and variances
of 1, respectively. Then, the observed operational taxonomic unit (OTU) data were gener-
ated from

(Y1s, · · · , Yms) ∼ Multinomial(Ns, π1s, · · · , πms),

where πis = Xis/ ∑m
j=1 Xjs. Moreover, the parameters β∗i , σ2

i∗, and Ns used in our study
are identical to those used in Zhou et al. [18]. Specifically, Zhou et al. [18] estimated
the aforementioned parameters based on a real dataset (COMBO) that studied the gut
microbiota in a general population.

We begin by examining the performance of the methods in the absence of heavy-
tailedness and outliers. We aim to assess how much power is lost when using robust
regression/winsorization. For this purpose, we sampled errors from a normal distribution
with a mean of 0 and a variance of σ2

i∗. The results are presented in Appendix A.1. We
consider sample sizes of n ∈ {50, 200}, referred to as the small sample case and the large
sample case, respectively. We set the number of taxa as m = 500. In the small sample size
scenario, LinDA97 shows the best performance in the sparse-signal setting, whereas LinDA
outperforms other methods in the dense-signal setting. For larger sample sizes, LinDA,
LinDA97, Huber, and Bi_square methods all perform similarly and outperform LinDA90.
The QR method has the lowest power in all scenarios and this method has FDR inflation
when n = 200 in the sparse-signal setting.

3.1.1. Heavy-Tailedness Setting

To demonstrate the advantages of our method in handling heavy-tailedness, instead
of assuming a standard normal distribution for εis, we generate error terms using three
different ways:

• Case 1: Student’s t-distribution with degrees of freedom 3.
• Case 2: Log-normal distribution with log mean parameter of 0 and log standard

deviation parameter of 0.8. We recentered the samples so that it has a zero mean.
• Case 3: Weibull distribution with shape parameter of 0.5 and scale parameter of 0.3.

We recentered the samples so that it has a zero mean.

These three are all heavy-tailed distributions, also discussed in Fan et al. [29]. It is
important to underscore the significance of choosing appropriate parameters for generating
error terms. For example, when the shape parameter of the Weibull distribution is small
(e.g., 0.25), the resulting data can become excessively noisy, causing all methods to have
no power to detect differential taxa. On the other hand, when the shape parameter of the
Weibull distribution exceeds 1 (meaning the Weibull distribution is no longer heavy-tailed),
the noise level diminishes significantly. As a result, all methods tend to achieve a power
nearing 1.

We consider two sample size scenarios: n ∈ {50, 200}, denoted as the small and
large sample cases, respectively. Additionally, we fix the number of taxa at m = 500.
We conducted 100 simulation runs for each setting, calculated the mean power to detect
differential taxa, and computed the empirical FDR. The results are presented in plots.
This section showcases results for settings without confounders in the sparse scenario
(pγ = 0.05). Similar phenomena were observed in both the dense scenario and the case
with confounders. These are detailed in Appendices A.2 and A.3, respectively.

Figure 1 presents the results obtained when error terms are generated from a t-
distribution (Case 1). All methods show an increased power to detect differential taxa as
the sample size grows. The Huber, Bi_square, and LinDA90 methods perform comparably
for small sample sizes, each showing higher power than the LinDA97 and LinDA methods.
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However, as the sample size grows, the performances of the LinDA90, LinDA97, Huber,
and Bi_square methods converge, all surpassing the power of the LinDA method. No-
tably, the QR method consistently exhibits the lowest power and suffers from significant
FDR inflation.
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Figure 1. The log-linear model yielded results in the absence of confounding variables in the sparse-
signal setting (pγ = 0.05), where errors were generated from a t-distribution. The left panel represents
a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.

The results for error terms generated from a Log-normal distribution (Case 2) are
presented in Figure 2. Like the previous case, all methods exhibit an increased power to
detect differential taxa with a larger sample size. In both small and large sample size sce-
narios, the Huber and Bi_square methods lead in power. LinDA90 follows, outperforming
LinDA97. Notably, when the sample size is small, LinDA90 has an FDR inflation. Upon
closer inspection, the Huber method outperforms the Bi_square method regarding power
and FDR control. Although the QR method has higher power than LinDA when n = 200, it
comes at the cost of considerable FDR inflation.
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Figure 2. The log-linear model yielded results in the absence of confounding variables in the sparse-
signal setting (pγ = 0.05), where errors were generated from a Log-normal distribution. The left
panel represents a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.
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The outcomes for the setting in which error terms are sampled from a Weibull distri-
bution (Case 3) are shown in Figure 3. As the sample size increases, all methods exhibit
enhanced power in detecting differential taxa. When the sample size is small, all methods
display limited power for detecting differential taxa, with a power of approximately 0.1.
In contrast, with larger sample sizes, the Huber method outperforms all other methods,
followed by the Bi_square and LinDA97 methods. Notably, Bi_square shows FDR inflation
when the sample size is small, whereas the LinDA90 method exhibits significant FDR infla-
tion with large sample sizes. Since the FDR of the QR method exceeds 0.3 when n = 200, it
was excluded from the plot.
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Figure 3. The log-linear model yielded results in the absence of confounding variables in the sparse-
signal setting (pγ = 0.05), where errors were generated from a Weibull distribution. The left panel
represents a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.

3.1.2. With Outliers Setting

We employ the following procedure to generate the data to demonstrate the impact
of the number of outliers on the power of the DAA method. The number of taxa is
fixed at m = 500, and the number of samples is set to n = 100. Following the data-
generation process discussed in Section 3.1, we begin by sampling error terms from a
normal distribution with a mean of 0 and a variance of σ2

i∗ for the i-th taxon. The outliers
are generated by randomly selecting a subset of nonzero counts and multiplying them by a
fold change of 20. More specifically, we randomly choose 250, 500, 1000, and 2000 nonzero
counts, corresponding to an average of 0.5, 1, 2, and 4 outliers per taxon, respectively.

Let ρ denote the average number of outliers per taxon. The results for the case
when outliers exist without confounders are presented in Figure 4. As the number of
outliers increases, the power of all methods will decrease. When the number of outliers
is small (ρ = 0.05), LinDA97 exhibits slightly better performance across all methods.
However, as the number of outliers increases, the performance of Huber and LinDA90
improves. Specifically, when ρ = 4, LinDA90 demonstrates the highest power for small
signal strengths, while Huber exhibits the highest power for large signal strengths.
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Figure 4. The log-linear model yielded results in the absence of confounding variables in the sparse-
signal setting (pγ = 0.05) with outliers. ρ is the average number of outliers per taxon.

4. Real Data Analysis

We utilized three real datasets, including independent samples from studies on C.
difficile infection (CDI) [30], inflammatory bowel disease (IBD) [31], and rheumatoid arthritis
(RA) [12]. The CDI and RA datasets were downloaded from the links provided in the
original paper, while the IBD dataset was obtained from the Qiita database [32] using study
IDs 1460 and 524. To ensure data quality, we excluded samples with less than 1000 read
counts and taxa that appeared in less than 10% of the samples for each dataset. The variable
that we are interested in is binary phenotypes across all datasets. In the case of the IBD
dataset, the confounding factor is the usage of antibiotics.

First, we compared the detection power of all methods discussed in Section 3 across
the three datasets. Figure 5 presents the number of discoveries at various FDR levels
(0.01–0.25). For the CDI dataset, the LinDA97, LinDA, and Huber methods exhibited the
highest number of discoveries at an FDR level of 0.1. As the FDR level increased, the
Bi_square method identified the most discoveries. For the IBD dataset, all methods except
QR had a similar number of discoveries at an FDR level of 0.1. However, the Bi_square
and Huber methods outperformed others regarding discoveries at different FDR levels in
the overall analysis. Conversely, the LinDA and Huber methods consistently identified
the most discoveries across all FDR levels in the RA dataset. Therefore, the Huber method
displayed superior discovery capability overall. It is worth mentioning that the QR method
consistently yielded the fewest discoveries in all three datasets, which is consistent with
our simulation results.

5

10

15

20

0.00 0.05 0.10 0.15 0.20 0.25

Target FDR level

N
um

be
r 

of
 d

is
co

ve
rie

s

CDI

25

50

75

0.00 0.05 0.10 0.15 0.20 0.25

Target FDR level

N
um

be
r 

of
 d

is
co

ve
rie

s

IBD

0

30

60

90

120

0.00 0.05 0.10 0.15 0.20 0.25

Target FDR level

N
um

be
r 

of
 d

is
co

ve
rie

s

RA

method LinDA
LinDA97

LinDA90
Huber

Bi_square
QR

Figure 5. Number of discoveries with respect to different FDR levels (0.01–0.25) for three real datasets.
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Subsequently, to illustrate the overlapping discoveries among different methods, we
employed the UpSet plot [33] to depict the overlap at the target FDR level of 0.1. Figure 6
presents the overlap of differentially abundant taxa across the three real datasets at this
FDR level. It is evident that, in most cases, the taxa identified by the Huber method
are consistently identified by other methods as well. This consistency implies that the
taxa identified by the Huber method are more likely to be “truly” differentially abundant.
Conversely, the remaining methods exhibit independent findings, lacking support from
other methods, suggesting a higher likelihood of false discoveries. Consequently, the Huber
method demonstrates greater robustness in practical applications.
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Figure 6. The overlap of differentially abundant taxa detected by various DAA methods across three
real datasets at an FDR level of 0.1.

As an illustration, we present a boxplot of the taxa expression after applying the CLR
transformation, focusing solely on taxa identified only by the LinDA method. Figure 7
displays an example of a taxa expression after CLR, identified only by the LinDA method in
the RA dataset. The left panel shows the original data, while the right panel represents the
data with potential outliers removed. In this case, we remove samples whose taxa expres-
sion after CLR exceeds 1.5. After removing these samples that significantly deviate from
the rest, we observe similar means between the two groups. However, LinDA identifies
this taxon as differentially abundant due to outliers, which may be a false discovery.
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Figure 7. An example of a taxa expression after CLR. The taxa are only identified by the LinDA
method in the RA dataset. The left panel shows the original data. The right panel represents the data
with potential outliers removed.
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5. Conclusions and Discussion

This study investigates the influence of heavy-tailedness and outliers on differential
abundance analysis using different methods and proposes effective strategies to address
them. The presence of heavy-tailedness and outliers can substantially reduce the power of
existing DAA methods. To resolve this issue, we propose two techniques to enhance the
robustness of DAA methods. First, we introduce a general regression framework for DAA
by extending the LinDA method. This framework includes differential analysis based on
Huber regression as a special case, which is more stable in handling outliers. Second, we
propose the winsorization method, which involves winsorizing the data before applying
DAA methods.

Our findings from both simulation and real data indicate that, among the M-estimation-
based approaches, the Huber method, in particular, demonstrates more robust performance
in handling heavy-tailedness and the presence of outliers in the dataset. Specifically,
compared to LinDA with winsorization, the Huber method exhibits higher power while
maintaining FDR control. Furthermore, the Huber method demonstrates better FDR control
than the Bi_square method. Consequently, we recommend utilizing the Huber method as
an effective approach to address outliers and heavy-tailedness. Additionally, the optimal
quantile level for winsorization remains unclear. Therefore, another advantage of the Huber
method is that it does not require the selection of such hyperparameters.
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Appendix A. Additional Numerical Results for Log-Linear Model

Appendix A.1. Errors Generated Form Normal Distribution

To ensure the completeness of our study, we conducted tests on all methods by
sampling errors from a normal distribution in the absence of outliers. The results for
scenarios without confounders are presented in Figure A1.

https://github.com/guanxunli/robustDAA
https://github.com/guanxunli/robustDAA
https://github.com/guanxunli/robust_daa


Genes 2023, 14, 2000 14 of 23

0.2

0.4

0.6

0.8

1.00 1.25 1.50 1.75 2.00
Signal strength

P
ow

er

n = 50

0.2

0.4

0.6

0.8

1.00 1.25 1.50 1.75 2.00
Signal strength

P
ow

er

n = 200

0.02

0.04

0.06

1.00 1.25 1.50 1.75 2.00
Signal strength

F
D

R

0.02

0.04

0.06

1.00 1.25 1.50 1.75 2.00
Signal strength

F
D

R

method LinDA
LinDA97

LinDA90
Huber

Bi_square
QR

0.2

0.4

0.6

0.8

1.00 1.25 1.50 1.75 2.00
Signal strength

P
ow

er

n = 50

0.2

0.4

0.6

0.8

1.00 1.25 1.50 1.75 2.00
Signal strength

P
ow

er

n = 200

0.02

0.04

0.06

0.08

1.00 1.25 1.50 1.75 2.00
Signal strength

F
D

R

0.02

0.04

0.06

0.08

1.00 1.25 1.50 1.75 2.00
Signal strength

F
D

R

method LinDA
LinDA97

LinDA90
Huber

Bi_square
QR

Figure A1. Results for the log-linear model with errors generated from a normal distribution without
confounders. The left column corresponds to a sample size of n = 50 and the right column corre-
sponds to a sample size of n = 200. The first group of figures shows results in the sparse-signal
setting and the second group of figures shows results in the dense-signal setting.

Appendix A.2. Numerical Results for Dense-Signal Setting

Figure A2 shows the results for error terms generated from t-distribution; Figure A3
shows the results for error terms generated from Weibull distribution; Figure A4 shows the
results for the case with outliers.
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Figure A2. The log-linear model yielded results in the absence of confounding variables in the
dense-signal setting (pγ = 0.2), where errors were generated from a t-distribution. The left panel
represents a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.
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Figure A3. The log-linear model yielded results in the absence of confounding variables in the
dense-signal setting (pγ = 0.2), where errors were generated from a Weibull distribution. The left
panel represents a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.
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Figure A4. The log-linear model yielded results in the absence of confounding variables in the
dense-signal setting (pγ = 0.2) with outliers. ρ is the average number of outliers per taxon.

Appendix A.3. Numerical Results with Confounders

Figure A5 shows the results for error terms generated from t-distribution; Figure A6
shows the results for error terms generated from Weibull distribution; Figure A7 shows the
results for the case with outliers.
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Figure A5. The log-linear model yielded results with confounding variables in the sparse-signal
setting (pγ = 0.05), where errors were generated from a t-distribution. The left panel represents a
sample size of n = 50 and the right panel corresponds to a sample size of n = 200.
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Figure A6. The log-linear model yielded results with confounding variables in the sparse-signal
setting (pγ = 0.05), where errors were generated from a Weibull distribution. The left panel represents
a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.
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Figure A7. The log-linear model yielded results with confounding variables in the sparse-signal
setting (pγ = 0.05) with outliers. ρ is the average number of outliers per taxon.

Appendix B. Mixed-Effects Models

Based on the regression-based framework, our method can be readily extended to
apply to the mixed-effect model. Consider the linear mixed-effect model:

log(Xis) = usai + c>s βi + v>s γi + εis,

where γi represents the random effect and vs represents the corresponding design matrix.
Mixed-effects analysis can be used to analyze correlated microbiome data from studies in-
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volving replicates or spatial sampling, as well as family-based and longitudinal microbiome
studies. Similarly, we need to address the regression problem:

Wis = us(ai − ā) + c>s (βi − β̄) + v>s (γi − γ̄) + εis − ε̄s,

where any method for dealing with linear mixed effects can be applied to obtain the
estimate here.

For robustly fitting the linear mixed-effects models, we utilize the rlmer function pro-
vided by the R package robustlmm (version: 3.2-0) [34], which is a Huber loss-based method.
Furthermore, we use the get_Lb_ddf function available in the R package pbkrtest (version:
0.5.2) to compute the degrees of freedom using the Kenward–Roger approximation [35].
Due to the considerable computational time required for fitting a robust linear mixed-effects
model, we opted to select specific hyperparameters. Following the recommendation by
Koller [34], we chose c = 1.345 and c = 2.28. Subsequently, we employed the Cauchy
method to combine the p-values.

To evaluate the performance of our proposed method, we employed the data genera-
tion process proposed by Zhou et al. [18] but used different methods to generate the random
effect terms and the error terms. Consider the scenario involved in replicate sampling,
where we generated 50 subjects with 4 replicates, for n = 200. The absolute abundance Xis
was generated by

log(Xis) = βi0 + usαi + ωis + εis,

where ωis is the random effect and εis is the error term.

Appendix B.1. Heavy-Tailedness Setting

In the heavy-tailedness setting, the random effect terms and error terms of the mixed-
effects model were evaluated in two different settings, corresponding to Case 2 and 3, as
described in Section 3.1.

1. Case1: We sampled ωis and εis from Log-normal distribution with log mean parameter
of 0 for both terms and log standard deviation parameter of 0.5 and 0.8, respectively.
We recentered the samples so that it has a zero mean.

2. Case2: We sampled ωis and εis from a Weibull distribution with scale parameter of 0.3
for both terms and shape parameter of 0.8 and 0.5, respectively. We recentered the
samples so that it has a zero mean.

For all three cases, the observed OTUs were generated following the same method
as the log-linear model described in Section 3.1. Both sparse-signal (pγ = 0.05) and
dense-signal (pγ = 0.2) settings were considered.

Figure A8 illustrates the outcomes of the mixed-effects model, with random effects
and errors generated from a Log-normal distribution. In both the sparse and dense-signal
settings, the Huber method displays the highest power, while maintaining absence of FDR
inflation. In the sparse-signal setting, the power of LinDA90 outperforms that of LinDA97,
while both methods exhibit comparable performance in the dense-signal setting.



Genes 2023, 14, 2000 19 of 23

0.2

0.4

0.6

0.8

1.00 1.25 1.50 1.75 2.00
Signal strength

P
ow

er

Sparse setting

0.3

0.4

0.5

0.6

0.7

0.8

1.00 1.25 1.50 1.75 2.00
Signal strength

P
ow

er

Dense setting

0.03

0.04

0.05

1.00 1.25 1.50 1.75 2.00
Signal strength

F
D

R

0.03

0.04

0.05

0.06

1.00 1.25 1.50 1.75 2.00
Signal strength

F
D

R

method LinDA LinDA97 LinDA90 Huber

Figure A8. Results for the mixed-effects model where random effects and errors were generated from
a Log-normal distribution. The left panel represents the sparse-signal setting and the right panel
corresponds to dense-signal setting.

Figure A9 gives the results of the mixed-effects model, where the random effects and
errors were generated from a Weibull distribution. In scenarios with low signal strength,
LinDA97 demonstrates the best performance, while Huber surpasses all methods as the
signal strength increases. Notably, LinDA90 is the only method exhibiting FDR inflation in
this particular setting.
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Figure A9. Results for the mixed-effects model where random effects and errors were generated
from a Weibull distribution. The left panel represents the sparse-signal setting and the right panel
corresponds to dense-signal setting.
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Appendix B.2. With Outliers Setting

In the setting with outliers, ωis was generated from a normal distribution with a mean
of 0 and a variance of τi, where τi = aiσ

2
i∗ and ai follows a uniform distribution in the range

of [0, 1]. The error terms εis were sampled from a normal distribution with a mean of 0
and a variance of σ2

i∗. The outliers are generated by the same way described in Section 3.1,
corresponding to an average of 1, 2, 4, and 8 outliers per taxon, respectively.

Let ρ denote the average number of outliers per taxon. The results for the sparse
case and dense case are presented in Figures A10 and A11, respectively. As the number of
outliers increase, the power of all methods will decrease. When the number of outliers is
small (ρ = 1), LinDA97 exhibits slightly better performance across all methods. However, as
the number of outliers increases, the performance of Huber method improves. Specifically,
when ρ = 4, Huber exhibits the highest power over all methods.
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Figure A10. Results for the mixed-effects model with outliers in the sparse setting. ρ is the average
number of outliers per taxon.
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Figure A11. Results for the mixed-effects model with outliers in the dense setting. ρ is the average
number of outliers per taxon.
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Appendix C. Additional Numerical Results for Comparison with Other Methods

In this section, we compared our method with other differential abundance analysis
methods, including ALDEx2 [15], ANCOM-BC [16], and MaAsLin2 [17]. We focus on the
simulation settings based on log-linear models we present in Section 3.1.
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Figure A12. The log-linear model yielded results in the absence of confounding variables in the
sparse-signal setting (pγ = 0.05), where errors were generated from a t-distribution. The left panel
represents a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.
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Figure A13. The log-linear model yielded results in the absence of confounding variables in the
sparse-signal setting (pγ = 0.05), where errors were generated from a Log-normal distribution. The
left panel represents a sample size of n = 50 and the right panel corresponds to a sample size of
n = 200.
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Figure A14. The log-linear model yielded results in the absence of confounding variables in the
sparse-signal setting (pγ = 0.05), where errors were generated from a Weibull distribution. The left
panel represents a sample size of n = 50 and the right panel corresponds to a sample size of n = 200.
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Figure A15. The log-linear model yielded results in the absence of confounding variables in the
sparse-signal setting (pγ = 0.05) with outliers. ρ is the average number of outliers per taxon.
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