Effects of Remimazolam on Intracellular Calcium Dynamics in Myotubes Derived from Patients with Malignant Hyperthermia and Functional Analysis of Type 1 Ryanodine Receptor Gene Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Patient Selection
2.3. CICR Rate Test
2.4. Gene Testing
2.5. Culture of Myotubes
2.6. Ca2+ Fluorescence Measurements
2.7. Stimulant Loading Protocol
2.8. Statistical Analyses
3. Results
3.1. Patient Background
3.2. Details of Variants Found by Genetic Testing
3.3. Morphological Change of Myotube
3.4. Typical Intracellular Calcium Concentration Change
3.5. Remimazolam Has Similar Effects on EC50 to Caffeine and 4CmC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treves, S.; Anderson, A.A.; Ducreux, S.; Divet, A.; Bleunven, C.; Grasso, C.; Paesante, S.; Zorzato, F. Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders. Neuromuscul. Disord. 2005, 15, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.M. Malignant hyperthermia: Pharmacology of triggering. Br. J. Anaesth. 2011, 107, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.E.; Sun, L.S.; Rosenberg, H.; Li, G. Prevalence of malignant hyperthermia due to anesthesia in New York State, 2001–2005. Anesth. Analg. 2009, 109, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, S.; Miyoshi, H.; Mukaida, K.; Yasuda, T.; Nakamura, R.; Tsutsumi, Y.M. Age-Specific Clinical Features of Pediatric Malignant Hyperthermia: A Review of 187 Cases Over 60 Years in Japan. Anesth. Analg. 2022, 135, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Toyota, Y.; Kondo, T.; Shorin, D.; Sumii, A.; Kido, K.; Watanabe, T.; Otsuki, S.; Kanzaki, R.; Miyoshi, H.; Yasuda, T.; et al. Rapid Dantrolene Administration with Body Temperature Monitoring Is Associated with Decreased Mortality in Japanese Malignant Hyperthermia Events. Biomed. Res. Int. 2023, 2023, 8340209. [Google Scholar] [CrossRef]
- Janssens, L.; De Puydt, J.; Milazzo, M.; Symoens, S.; De Bleecker, J.L.; Herdewyn, S. Risk of malignant hyperthermia in patients carrying a variant in the skeletal muscle ryanodine receptor 1 gene. Neuromuscul. Disord. 2022, 32, 864–869. [Google Scholar] [CrossRef]
- Hopkins, P.M.; Rüffert, H.; Snoeck, M.M.; Girard, T.; Glahn, K.P.; Ellis, F.R.; Müller, C.R.; Urwyler, A.; European Malignant Hyperthermia Group. European Malignant Hyperthermia Group guidelines for investigation of malignant hyperthermia susceptibility. Br. J. Anaesth. 2015, 115, 531–539. [Google Scholar] [CrossRef]
- Wehner, M.; Rueffert, H.; Koenig, F.; Neuhaus, J.; Olthoff, D. Increased sensitivity to 4-chloro-m-cresol and caffeine in primary myotubes from malignant hyperthermia susceptible individuals carrying the ryanodine receptor 1 Thr2206Met (C6617T) mutation. Clin. Genet. 2002, 62, 135–146. [Google Scholar] [CrossRef]
- Rüffert, H.; Bastian, B.; Bendixen, D.; Girard, T.; Heiderich, S.; Hellblom, A.; Hopkins, P.M.; Johannsen, S.; Snoeck, M.M.; Urwyler, A.; et al. Consensus guidelines on perioperative management of malignant hyperthermia suspected or susceptible patients from the European Malignant Hyperthermia Group. Br. J. Anaesth. 2021, 126, 120–130. [Google Scholar] [CrossRef]
- Gupta, P.K.; Bilmen, J.G.; Hopkins, P.M. Anaesthetic management of a known or suspected malignant hyperthermia susceptible patient. BJA Educ. 2021, 21, 218–224. [Google Scholar] [CrossRef]
- MHAUS, Safe and Unsafe Anesthetics. Available online: https://www.mhaus.org/healthcare-professionals/be-prepared/safe-and-unsafe-anesthetics/ (accessed on 20 October 2023).
- Uchiyama, K.; Sunaga, H.; Katori, N.; Uezono, S. General anesthesia with remimazolam in a patient with clinically suspected malignant hyperthermia. JA Clin. Rep. 2021, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Urabe, T.; Miyoshi, H.; Narasaki, S.; Yanase, Y.; Uchida, K.; Noguchi, S.; Hide, M.; Tsutsumi, Y.M.; Sakai, N. Characterization of intracellular calcium mobilization induced by remimazolam, a newly approved intravenous anesthetic. PLoS ONE 2022, 17, e0263395. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Miyoshi, H.; Noda, Y.; Narasaki, S.; Morio, A.; Toyota, Y.; Kimura, H.; Mukaida, K.; Yasuda, T.; Tsutsumi, Y.M. Effects of Remimazolam and Propofol on Ca2+ Regulation by Ryanodine Receptor 1 with Malignant Hyperthermia Mutation. Biomed. Res. Int. 2021, 2021, 8845129. [Google Scholar] [CrossRef] [PubMed]
- Endo, M. Calcium-induced calcium release in skeletal muscle. Physiol. Rev. 2009, 89, 1153–1176. [Google Scholar] [CrossRef]
- Oku, S.; Mukaida, K.; Nosaka, S.; Sai, Y.; Maehara, Y.; Yuge, O. Comparison of the in vitro caffeine-halothane contracture test with the Ca-induced Ca release rate test in patients suspected of having malignant hyperthermia susceptibility. J. Anesth. 2000, 14, 6–13. [Google Scholar] [CrossRef]
- Kobayashi, M.; Mukaida, K.; Migita, T.; Hamada, H.; Kawamoto, M.; Yuge, O. Analysis of human cultured myotubes responses mediated by ryanodine receptor 1. Anaesth. Intensive Care 2011, 39, 252–261. [Google Scholar] [CrossRef]
- Noda, Y.; Mukaida, K.; Miyoshi, H.; Nakamura, R.; Yasuda, T.; Saeki, N.; Nishino, I.; Tsutsumi, Y.M. The effects of dantrolene in the presence or absence of ryanodine receptor type 1 variants in individuals predisposed to malignant hyperthermia. Anaesth. Intensive Care 2022, 50, 312–319. [Google Scholar] [CrossRef]
- Miyoshi, H.; Yasuda, T.; Otsuki, S.; Kondo, T.; Haraki, T.; Mukaida, K.; Nakamura, R.; Hamada, H.; Kawamoto, M. Several Ryanodine Receptor Type 1 Gene Mutations of p.Arg2508 Are Potential Sources of Malignant Hyperthermia. Anesth. Analg. 2015, 121, 994–1000. [Google Scholar] [CrossRef]
- Otsuki, S.; Yasuda, T.; Mukaida, K.; Noda, Y.; Kanzaki, R.; Miyoshi, H.; Kondo, T.; Hamada, H.; Kawamoto, M. Myotoxicity of local anesthetics is equivalent in individuals with and without predisposition to malignant hyperthermia. J. Anesth. 2018, 32, 616–623. [Google Scholar] [CrossRef]
- Miyoshi, H.; Watanabe, T.; Kido, K.; Kamiya, S.; Otsuki, S.; Narasaki, S.; Toyota, Y.; Kondo, T.; Horikawa, Y.T.; Saeki, N.; et al. Remimazolam Requires Less Vasopressor Support during Induction and Maintenance of General Anesthesia in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement: A Retrospective Analysis from a Single Center. Biomed. Res. Int. 2022, 2022, 6386606. [Google Scholar] [CrossRef]
- Censier, K.; Urwyler, A.; Zorzato, F.; Treves, S. Intracellular calcium homeostasis in human primary muscle cells from malignant hyperthermia-susceptible and normal individuals. Effect Of overexpression of recombinant wild-type and Arg163Cys mutated ryanodine receptors. J. Clin. Investig. 1998, 101, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Schüttler, J.; Eisenried, A.; Lerch, M.; Fechner, J.; Jeleazcov, C.; Ihmsen, H. Pharmacokinetics and Pharmacodynamics of Remimazolam (CNS 7056) after Continuous Infusion in Healthy Male Volunteers: Part I. Pharmacokinetics and Clinical Pharmacodynamics. Anesthesiology 2020, 132, 636–651. [Google Scholar] [CrossRef] [PubMed]
- Migita, T.; Mukaida, K.; Hamada, H.; Kobayashi, M.; Nishino, I.; Yuge, O.; Kawamoto, M. Effects of propofol on calcium homeostasis in human skeletal muscle. Anaesth. Intensive Care 2009, 37, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Wehner, M.; Rueffert, H.; Koenig, F.; Meinecke, C.D.; Olthoff, D. The Ile2453Thr mutation in the ryanodine receptor gene 1 is associated with facilitated calcium release from sarcoplasmic reticulum by 4-chloro-m-cresol in human myotubes. Cell Calcium 2003, 34, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Weigl, L.G.; Ludwig-Papst, C.; Kress, H.G. 4-chloro-m-cresol cannot detect malignant hyperthermia equivocal cells in an alternative minimally invasive diagnostic test of malignant hyperthermia susceptibility. Anesth. Analg. 2004, 99, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Fruen, B.R.; Mickelson, J.R.; Roghair, T.J.; Litterer, L.A.; Louis, C.F. Effects of propofol on Ca2+ regulation by malignant hyperthermia-susceptible muscle membranes. Anesthesiology 1995, 82, 1274–1282. [Google Scholar] [CrossRef]
- Johnston, J.J.; Dirksen, R.T.; Girard, T.; Hopkins, P.M.; Kraeva, N.; Ognoon, M.; Radenbaugh, K.B.; Riazi, S.; Robinson, R.L.; Saddic, L.A., III; et al. Updated variant curation expert panel criteria and pathogenicity classifications for 251 variants for RYR1-related malignant hyperthermia susceptibility. Hum. Mol. Genet. 2022, 31, 4087–4093. [Google Scholar] [CrossRef]
- White, R.; Schiemann, A.H.; Burling, S.M.; Bjorksten, A.; Bulger, T.; Gillies, R.; Hopkins, P.M.; Kamsteeg, E.J.; Machon, R.G.; Massey, S.; et al. Functional analysis of RYR1 variants in patients with confirmed susceptibility to malignant hyperthermia. Br. J. Anaesth. 2022, 129, 879–888. [Google Scholar] [CrossRef]
- Ibarra, M.C.A.; Wu, S.; Murayama, K.; Minami, N.; Ichihara, Y.; Kikuchi, H.; Noguchi, S.; Hayashi, Y.K.; Ochiai, R.; Nishino, I. Malignant hyperthermia in Japan: Mutation screening of the entire ryanodine receptor type 1 gene coding region by direct sequencing. Anesthesiology 2006, 104, 1146–1154. [Google Scholar] [CrossRef]
- Miller, D.M.; Daly, C.; Aboelsaod, E.M.; Gardner, L.; Hobson, S.J.; Riasat, K.; Shepherd, S.; Robinson, R.L.; Bilmen, J.G.; Gupta, P.K.; et al. Genetic epidemiology of malignant hyperthermia in the UK. Br. J. Anaesth. 2018, 121, 944–952. [Google Scholar] [CrossRef]
- Nakano, M.; Oyamada, H.; Yamazawa, T.; Murayama, T.; Nanba, H.; Iijima, K.; Oguchi, K. Construction and expression of ryanodine receptor mutants relevant to malignant hyperthermia patients in Japan. Showa Univ. J. Med. Sci. 2014, 26, 27–38. [Google Scholar] [CrossRef]
Patient | Gender | Age | Reason for Taking CICR Test |
---|---|---|---|
1 | F | 24 | relative has MH |
2 | F | 80 | suspicion of postoperative MH |
3 | M | 62 | relative has MH |
4 | M | 23 | develop MH |
5 | M | 49 | develop MH |
6 | F | 73 | relative has MH |
7 | M | 38 | relative has MH |
8 | F | 14 | relative has MH |
9 | M | 25 | develop MH |
10 | F | 44 | develop MH |
Gene | Amino Acid Change | Chromosome | Region | Type | Reference | Allele | Mutation Taster | CADD | REVEL | SIFT | PP2 | VCEP Guidelines | EMHG Scoring Matrix |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RYR1 | Q155K | 19 | 38934827 | SNV | C | A | Deleterious | 25.4 | 0.94 | Deleterious (0) | Probably damaging (0.998) | Likely Pathogenic | VUS |
R163C | 19 | 38934851 | SNV | C | T | Deleterious | 25.5 | 0.959 | Deleterious (0) | Probably damaging (1.000) | Pathogenic | Pathogenic | |
R2508H | 19 | 38991539 | SNV | G | A | Deleterious | 25.4 | 0.898 | Deleterious (0) | Probably damaging (0.987) | Likely Pathogenic | Pathogenic | |
R4645Q | 19 | 39062846 | SNV | G | A | Deleterious | 23.1 | 0.567 | Tolerated (0.06) | Benign (0.007) | VUS | VUS | |
W5020G | 19 | 39078001 | SNV | T | G | Deleterious | 31 | 0.872 | Deleterious (0) | Probably damaging (0.983) | VUS | VUS | |
CACNA1S | I639V | 1 | 201044656 | SNV | T | C | Benign | 22.6 | 0.353 | Tolerated (0.18) | Benign (0.022) | VUS | VUS |
Patient | CICR Test | Gene Mutation | EC50 (Mean ± SD) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RYR1 | CACNA1S | Stac3 | Caffeine (mM) | N | p Value | 4-CmC (μM) | N | p Value | Remima (μM) | N | p Value | ||
1 | - | non | non | non | 4.559 ± 1.017 | 25 | - | 279.1 ± 77.9 | 17 | - | 865.1 ± 317.8 | 9 | - |
2 | - | non | I639V (Benign) | non | 4.993 ± 1.317 | 7 | 0.8921 | 217.4 ± 80.6 | 14 | 0.0240 | 626.9 ± 117.4 | 6 | 0.0302 |
3 | + | non | non | non | 2.552 ± 1.083 | 11 | <0.0001 | 130.7 ± 37.3 | 8 | <0.0001 | 426.6 ± 40.3 | 5 | <0.0001 |
4 | + | non | non | non | 3.244 ± 0.845 | 12 | 0.0005 | 163.7 ± 22.8 | 7 | 0.0001 | 405.2 ± 189.2 | 11 | <0.0001 |
5 | + | non | non | non | 3.311 ± 0.746 | 17 | 0.0002 | 158.5 ± 39.5 | 7 | <0.0001 | 208.0 ± 87.1 | 16 | <0.0001 |
6 | + | Q155K | non | non | 2.753 ± 0.846 | 10 | <0.0001 | 145.9 ± 59.7 | 9 | <0.0001 | 396.6 ± 128.3 | 12 | <0.0001 |
7 | + | R4645Q | non | non | 3.255 ± 0.775 | 9 | 0.0024 | 119.6 ± 57.6 | 11 | <0.0001 | 206.0 ± 40.9 | 9 | <0.0001 |
8 | + | R2508H | non | non | 2.782 ± 0.323 | 5 | 0.0029 | 107.2 ± 35.4 | 5 | <0.0001 | 546.8 ± 71.5 | 4 | 0.0069 |
9 | + | W5020G | non | non | 1.680 ± 0.972 | 24 | <0.0001 | 110.7 ± 42.1 | 30 | <0.0001 | 339.8 ± 198.0 | 5 | <0.0001 |
10 | + | R163C | non | non | 3.193 ± 0.681 | 26 | <0.0001 | 142.5 ± 55.4 | 17 | <0.0001 | 343.9 ± 119.0 | 14 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyoshi, H.; Otsuki, S.; Mukaida, K.; Kido, K.; Sumii, A.; Ikeda, T.; Noda, Y.; Yasuda, T.; Narasaki, S.; Kato, T.; et al. Effects of Remimazolam on Intracellular Calcium Dynamics in Myotubes Derived from Patients with Malignant Hyperthermia and Functional Analysis of Type 1 Ryanodine Receptor Gene Variants. Genes 2023, 14, 2009. https://doi.org/10.3390/genes14112009
Miyoshi H, Otsuki S, Mukaida K, Kido K, Sumii A, Ikeda T, Noda Y, Yasuda T, Narasaki S, Kato T, et al. Effects of Remimazolam on Intracellular Calcium Dynamics in Myotubes Derived from Patients with Malignant Hyperthermia and Functional Analysis of Type 1 Ryanodine Receptor Gene Variants. Genes. 2023; 14(11):2009. https://doi.org/10.3390/genes14112009
Chicago/Turabian StyleMiyoshi, Hirotsugu, Sachiko Otsuki, Keiko Mukaida, Kenshiro Kido, Ayako Sumii, Tsuyoshi Ikeda, Yuko Noda, Toshimichi Yasuda, Soshi Narasaki, Takahiro Kato, and et al. 2023. "Effects of Remimazolam on Intracellular Calcium Dynamics in Myotubes Derived from Patients with Malignant Hyperthermia and Functional Analysis of Type 1 Ryanodine Receptor Gene Variants" Genes 14, no. 11: 2009. https://doi.org/10.3390/genes14112009
APA StyleMiyoshi, H., Otsuki, S., Mukaida, K., Kido, K., Sumii, A., Ikeda, T., Noda, Y., Yasuda, T., Narasaki, S., Kato, T., Kamiya, S., Horikawa, Y. T., & Tsutsumi, Y. M. (2023). Effects of Remimazolam on Intracellular Calcium Dynamics in Myotubes Derived from Patients with Malignant Hyperthermia and Functional Analysis of Type 1 Ryanodine Receptor Gene Variants. Genes, 14(11), 2009. https://doi.org/10.3390/genes14112009