Genetic Analysis Based on Mitochondrial nad2 Gene Reveals a Recent Population Expansion of the Invasive Mussel, Mytella strigata, in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mussels and Sampling
2.2. DNA Extraction, Sequencing, Assembly, and Annotation for Mitochondrial Genomes
2.3. Selective Pressure (Ka/Ks) Analysis
2.4. Amplification and Sequencing of Marker Gene
2.5. Data Analysis
3. Results
3.1. Mitochondrial Genome of M. strigata
3.2. Base Composition and Sequence Variation of nad2
3.3. Population Genetic Diversity Analysis
3.4. Neutrality Test and Mismatch Distribution Analysis
4. Discussion
4.1. Screening and Characterization of the Molecular Marker
4.2. Population Genetic Diversity and Structure of M. strigata
4.3. Population Historical Dynamics of M. strigata
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teem, J.L.; Alphey, L.; Descamps, S.; Edgington, M.P.; Edwards, O.; Gemmell, N.; Harvey Samuel, T.; Melnick, R.L.; Oh, K.P.; Piaggio, A.J.; et al. Genetic Biocontrol for Invasive Species. Front. Bioeng. Biotechnol. 2020, 8, 452. [Google Scholar] [CrossRef] [PubMed]
- Sherpa, S.; Després, L. The evolutionary dynamics of biological invasions: A multi-approach perspective. Evol. Appl. 2021, 14, 1463–1484. [Google Scholar] [CrossRef]
- Sax, D.F.; Stachowicz, J.J.; Brown, J.H.; Bruno, J.F.; Dawson, M.N.; Gaines, S.D.; Grosberg, R.K.; Hastings, A.; Holt, R.D.; Mayfield, M.M.; et al. Ecological and evolutionary insights from species invasions. Trends Ecol. Evol. 2007, 22, 465–471. [Google Scholar] [CrossRef]
- Renault, D.; Hess, M.C.M.; Braschi, J.; Cuthbert, R.N.; Sperandii, M.G.; Bazzichetto, M.; Chabrerie, O.; Thiébaut, G.; Buisson, E.; Grandjean, F.; et al. Advancing biological invasion hypothesis testing using functional diversity indices. Sci. Total Environ. 2022, 834, 155102. [Google Scholar] [CrossRef] [PubMed]
- Molnar, J.L.; Gamboa, R.L.; Revenga, C.; Spalding, M.D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 2008, 6, 485–492. [Google Scholar] [CrossRef]
- Lim, C.S.; Tay, T.S.; Tan, K.S.; Teo, S.L. Removal of larvae of two marine invasive bivalves, Mytilopsis sallei (Récluz, 1849) and Mytella strigata (Hanley, 1843), by water treatment processes. Mar. Pollut. Bull. 2020, 155, 111154. [Google Scholar] [CrossRef]
- Ma, P.Z.; Li, H.M.; Liu, Y.M.; Li, C.; Zhang, Z.; Wang, H.Y. First confirmed occurrence of the invasive mussel Mytella strigata (Hanley, 1843) in Guangdong and Hainan, China, and its rapid spread in Indo-West Pacific regions. BioInvasions Rec. 2022, 11, 947–963. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Peng, J.; Deng, Y.; Liu, Y.; Jiang, L.; Zhao, L. Survival and physiological energetics of highly invasive mussels exposed to heatwaves. Mar. Environ. Res. 2023, 187, 105948. [Google Scholar] [CrossRef]
- Ma, P.Z.; Zuo, C.X.; Li, H.M.; Wang, H.Y.; Wang, Q.H.; Zhang, Z. The basic biology and biological invasion of Mytella strigata. Acta Ecol. Sin. 2023, 43, 5251–5259. [Google Scholar] [CrossRef]
- Huang, Y.C.; Li, Z.K.; Chen, W.L.; Chan, C.C.; Hsu, H.Y.; Lin, Y.T.; Huang, Y.S.; Han, Y.S. First record of the invasive biofouling mussel Mytella strigata (Hanley, 1843) (Bivalvia: Mytilidae) from clam ponds in Taiwan. BioInvasions Rec. 2021, 10, 304–312. [Google Scholar] [CrossRef]
- Sanpanichl, K.; Wells, F.E. Mytella strigata (Hanley, 1843) emerging as an invasive marine threat in Southeast Asia. BioInvasions Rec. 2019, 8, 343–356. [Google Scholar] [CrossRef]
- Dahlberg, A.D.; Waller, D.L.; Hammond, D.; Lund, K.; Phelps, N.B.D. Open water dreissenid mussel control projects: Lessons learned from a retrospective analysis. Sci. Rep. 2023, 13, 10410. [Google Scholar] [CrossRef]
- Li, H.Y. Genetic Diversity and Differentiation among Populations of Flaveria bidentis in Hebei province. Master’s Thesis, Hebei Agricultural University, Baoding, China, June 2009. [Google Scholar]
- Jarić, I.; Heger, T.; Castro Monzon, F.; Jeschke, J.M.; Kowarik, I.; McConkey, K.R.; Pyšek, P.; Sagouis, A.; Essl, F. Crypticity in Biological Invasions. Trends Ecol. Evol. 2019, 34, 291–302. [Google Scholar] [CrossRef] [PubMed]
- White, D.J.; Wolff, J.N.; Pierson, M.; Gemmell, N.J. Revealing the hidden complexities of mtDNA inheritance. Mol. Ecol. 2008, 17, 4925–4942. [Google Scholar] [CrossRef]
- Birky, C.W. The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annu. Rev. Genet. 2001, 35, 125–148. [Google Scholar] [CrossRef]
- Ghiselli, F.; Gomes Dos Santos, A.; Adema, C.M.; Lopes Lima, M.; Sharbrough, J.; Boore, J.L. Molluscan mitochondrial genomes break the rules. Philos. Trans. R. Soc. London Ser. B. 2021, 376, 20200159. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Sato, M. Multiple ways to prevent transmission of paternal mitochondrial DNA for maternal inheritance in animals. J. Biochem. 2017, 162, 247–253. [Google Scholar] [CrossRef]
- Ghiselli, F.; Milani, L.; Passamonti, M. Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae). Mol. Biol. Evol. 2011, 28, 949–961. [Google Scholar] [CrossRef]
- Obata, M.; Kamiya, C.; Kawamura, K.; Komaru, A. Sperm mitochondrial DNA transmission to both male and female offspring in the blue mussel Mytilus galloprovincialis. Dev. Growth Differ. 2006, 48, 253–261. [Google Scholar] [CrossRef]
- Alves, F.A.d.S.; Beasley, C.R.; Hoeh, W.R.; Rocha, R.M.D.; Tagliaro, C.H. Detection of mitochondrial DNA heteroplasmy suggests a doubly uniparental inheritance pattern in the mussel Mytella charruana. Braz. J. Biosci. 2012, 10, 176–185. [Google Scholar]
- Zuo, C.X.; Zhang, T.T.; Zhang, C.C.; Zhao, D.T.; Zhu, Y.; Ma, X.J.; Wang, H.Y.; Ma, P.Z.; Zhang, Z. Evaluating the utility of five gene fragments for genetic diversity analyses of Mytella strigata populations. Fishes 2023, 8, 34. [Google Scholar] [CrossRef]
- Ngandu, N.K.; Scheffler, K.; Moore, P.; Woodman, Z.; Martin, D.; Seoighe, C. Extensive purifying selection acting on synonymous sites in HIV-1 Group M sequences. Virol. J. 2008, 5, 160. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Tay, T.S.; Lim, C.S.; Lee, S.S.C.; Teo, S.L.M.; Tan, K.S. Mytella strigata (Bivalvia: Mytilidae): An alien mussel recently introduced to Singapore and spreading rapidly. Molluscan Res. 2018, 38, 170–186. [Google Scholar] [CrossRef]
- Coil, D.; Jospin, G.; Darling, A.E. A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015, 31, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer Mata, A.; Sánchez DelBarrio, J.C.; Guirao Rico, S.; Librado, P.; Ramos Onsins, S.E.; Sánchez Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M.; Prager, E.M.; Wang, A.; Wilson, A.C. Mitochondrial DNA sequences of primates: Tempo and mode of evolution. J. Mol. Evol. 1982, 18, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Allio, R.; Donega, S.; Galtier, N.; Nabholz, B. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker. Mol. Biol. Evol. 2017, 34, 2762–2772. [Google Scholar] [CrossRef]
- Mortz, M.; Levivier, A.; Lartillot, N.; Dufresne, F.; Blier, P.U. Long-Lived Species of Bivalves Exhibit Low MT-DNA Substitution Rates. Front. Mol. Biosci. 2021, 8, 626042. [Google Scholar] [CrossRef]
- Lee, Y.; Ni, G.; Shin, J.; Kim, T.; Kern, E.M.A.; Kim, Y.; Kim, S.C.; Chan, B.; Goto, R.; Nakano, T.; et al. Phylogeography of Mytilisepta virgata (Mytilidae: Bivalvia) in the northwestern Pacific: Cryptic mitochondrial lineages and mito-nuclear discordance. Mol. Phylogenet. Evol. 2021, 157, 107037. [Google Scholar] [CrossRef]
- Peretolchina, T.E.; Bukin Iu, S.; Sitnikova, T.; Shcherbakov, D. Genetic differentiation of the endemic Baikalian mollusk Baicalia carinata (Mollusca: Caenogastropoda). Genetika 2007, 43, 1667–1675. [Google Scholar] [CrossRef]
- Brown, W.M.; George, M.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef]
- De Silva, D.R.; Nichols, R.; Elgar, G. Purifying selection in deeply conserved human enhancers is more consistent than in coding sequences. PLoS ONE 2014, 9, e103357. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, J.Q.; Xu, W.J.; Fan, L.X. Mitochondrial Genome Characterization and Phylogeny of Diplodiscus nigromaculati. Sichuan J. Zool. 2022, 41, 248–255. [Google Scholar] [CrossRef]
- Mao, Y.L. Studies on molecular phylogenetics of genus mytilus and population morphology and genetics of three mussels. Master’s Thesis, Ocean University of China, Qingdao, China, June 2011. [Google Scholar]
- Zhong, D.; Zhao, G.J.; Zhang, Z.S.; Xun, A.L. Advance in the Entire Balance and Local Unbalance of Base Distribution in Genome. Hereditas 2002, 24, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Natl. Acad. Sci. USA 1962, 48, 582–592. [Google Scholar] [CrossRef]
- Stoltzfus, A.; Norris, R.W. On the Causes of Evolutionary Transition: Transversion Bias. Mol. Biol. Evol. 2016, 33, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.L.; Dai, J.C.; Zhao, N.H.; Zhao, H.; Wei, J.; Nie, Z.L. Genetic diversity analysis of Schizothorax biddulphi based on mitochondrial DNA COII and ND4 genes. J. Fish. China 2022, 46, 2274–2285. [Google Scholar] [CrossRef]
- Grant, W.S.; Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 1998, 89, 415–426. [Google Scholar] [CrossRef]
- Yin, X.Y.; Chen, Y.T.; Zhuang, E.J.; Zhao, J.J.; Dong, L.; Li, H.L. Genetic diversity analysis of Taenia asiatica in Dali based on mitochondrial nad1 gene. J. Trop. Med. 2023, 23, 301–304. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Wu, S.S.; Wei, Y.; Zhong, D.B.; Zheng, X.L. Analysis of the genetic diversity of 15 Aedes albopictus populations in Guangzhou based on the mitochondrial COI gene. Chin. J. Zoonoses. 2021, 37, 985–994. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, Q.D.; Zhou, Z.J.; Shi, F.M. Phylogeography and Genetic Structure of the Bush Cricket Decma fissa (Orthoptera, Tettigoniidae) in Southern China. Zool. Stud. 2023, 62, e32. [Google Scholar] [CrossRef]
- Slatkin, M.; Hudson, R.R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 1991, 129, 555–562. [Google Scholar] [CrossRef]
- Mousset, S.; Derome, N.; Veuille, M. A test of neutrality and constant population size based on the mismatch distribution. Mol. Biol. Evol. 2004, 21, 724–731. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.; Massart, S.; He, K.; Francis, F.; Wang, Z. Analysis of the Genetic Diversity of Two Rhopalosiphum Species from China and Europe Based on Nuclear and Mitochondrial Genes. Insects 2023, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef] [PubMed]
Location | Collection Date | Geographical Coordinates | Quantity |
---|---|---|---|
ZJ | 2 April 2023 | 110°31′43″ E, 20°55′53″ N | 43 |
BH | 3 April 2023 | 109°11′36″ E, 21°24′42″ N | 38 |
SW | 5 April 2023 | 115°36′28″ E, 22°51′25″ N | 45 |
ZZ | 6 April 2023 | 117°58′0″ E, 24°9′14″ N | 38 |
QK | 1 April 2023 | 110°35′7″ E, 19°59′7″ N | 40 |
GB | 1 April 2023 | 110°30′50″ E, 18°53′12″ N | 43 |
XM | 6 April 2023 | 118°4′41″ E, 24°28′1″ N | 38 |
Total | - | 285 |
Mitochondrial PCGs | Ka | Ks | Ka/Ks |
---|---|---|---|
atp6 | 0.00126 | 0.01233 | 0.10219 |
atp8 | 0.00000 | 0.03750 | 0.00000 |
cox1 | 0.00113 | 0.01614 | 0.07001 |
cox2 | 0.00279 | 0.00000 | - |
cox3 | 0.00000 | 0.01351 | 0.00000 |
cytb | 0.00000 | 0.00375 | 0.00000 |
nad1 | 0.00000 | 0.01453 | 0.00000 |
nad2 | 0.00093 | 0.00607 | 0.15321 |
nad3 | 0.00000 | 0.01633 | 0.00000 |
nad4 | 0.00134 | 0.01938 | 0.06914 |
nad4l | 0.00000 | 0.00000 | - |
nad5 | 0.00202 | 0.01650 | 0.12242 |
nad6 | 0.00187 | 0.01744 | 0.10722 |
Nucleotide Composition | A | T | C | G |
---|---|---|---|---|
ZJ | 13.50 | 34.66 | 41.26 | 10.58 |
BH | 13.33 | 35.31 | 41.51 | 9.85 |
SW | 13.19 | 35.56 | 41.08 | 10.18 |
ZZ | 13.50 | 35.40 | 41.26 | 9.85 |
QK | 13.95 | 34.03 | 42.26 | 9.76 |
GB | 14.78 | 34.66 | 40.74 | 9.83 |
XM | 13.41 | 34.55 | 41.94 | 10.10 |
Average | 13.67 | 34.88 | 41.44 | 10.02 |
h | S | Hd | Pi | K | |
---|---|---|---|---|---|
ZJ | 19 | 19 | 0.898 | 0.00403 | 2.783 |
BH | 7 | 10 | 0.811 | 0.00301 | 2.077 |
SW | 14 | 18 | 0.867 | 0.00377 | 2.606 |
ZZ | 8 | 11 | 0.772 | 0.00345 | 2.385 |
QK | 8 | 9 | 0.804 | 0.00364 | 2.517 |
GB | 9 | 13 | 0.712 | 0.00368 | 2.545 |
XM | 11 | 15 | 0.882 | 0.00349 | 2.410 |
Total | 31 | 31 | 0.869 | 0.00384 | 2.652 |
ZJ | BH | SW | ZZ | QK | GB | XM | |
---|---|---|---|---|---|---|---|
ZJ | 0.00407 | −0.00912 | −0.00360 | 0.01563 | 0.07061 * | 0.16360 * | 0.01903 |
BH | 0.00351 | 0.00303 | −0.00192 | 0.02429 | 0.05826 * | 0.15309 * | 0.00331 |
SW | 0.00392 | 0.00341 | 0.00380 | 0.00382 | 0.07391 * | 0.17637 * | 0.01665 |
ZZ | 0.00383 | 0.00333 | 0.00365 | 0.00348 | 0.04562 * | 0.22865 * | 0.01477 |
QK | 0.00417 | 0.00356 | 0.00404 | 0.00375 | 0.00367 | 0.13784 * | 0.00103 |
GB | 0.00465 | 0.00399 | 0.00457 | 0.00467 | 0.00429 | 0.00372 | 0.14683 * |
XM | 0.00386 | 0.00328 | 0.00372 | 0.00355 | 0.00360 | 0.00424 | 0.00351 |
Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation |
---|---|---|---|---|
Among populations | 6 | 31.110 | 0.09690 Va | 7.23 |
Within populations | 278 | 345.424 | 1.24253 Vb | 92.77 |
Fu’s Fs | p-Value | Tajima’s D | p-Value | |
---|---|---|---|---|
ZJ | −10.53399 | 0.000 * | −1.18943 | 0.114 |
BH | 0.05077 | 0.531 | −0.38389 | 0.410 |
SW | −4.45261 | 0.028 * | −1.17457 | 0.128 |
ZZ | −0.25569 | 0.495 | −0.27226 | 0.419 |
QK | 0.01903 | 0.541 | 0.55355 | 0.737 |
GB | −0.53739 | 0.439 | −0.47109 | 0.376 |
XM | −2.58937 | 0.101 | −1.04582 | 0.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Ma, P.; Zuo, C.; Zhu, Y.; Ma, X.; Zhang, Z. Genetic Analysis Based on Mitochondrial nad2 Gene Reveals a Recent Population Expansion of the Invasive Mussel, Mytella strigata, in China. Genes 2023, 14, 2038. https://doi.org/10.3390/genes14112038
Yan S, Ma P, Zuo C, Zhu Y, Ma X, Zhang Z. Genetic Analysis Based on Mitochondrial nad2 Gene Reveals a Recent Population Expansion of the Invasive Mussel, Mytella strigata, in China. Genes. 2023; 14(11):2038. https://doi.org/10.3390/genes14112038
Chicago/Turabian StyleYan, Shaojing, Peizhen Ma, Chenxia Zuo, Yi Zhu, Xiaojie Ma, and Zhen Zhang. 2023. "Genetic Analysis Based on Mitochondrial nad2 Gene Reveals a Recent Population Expansion of the Invasive Mussel, Mytella strigata, in China" Genes 14, no. 11: 2038. https://doi.org/10.3390/genes14112038
APA StyleYan, S., Ma, P., Zuo, C., Zhu, Y., Ma, X., & Zhang, Z. (2023). Genetic Analysis Based on Mitochondrial nad2 Gene Reveals a Recent Population Expansion of the Invasive Mussel, Mytella strigata, in China. Genes, 14(11), 2038. https://doi.org/10.3390/genes14112038