Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review
Abstract
:1. Introduction
2. Presentation of Cases
2.1. Methodology
2.2. Case No. 1
2.3. Case No. 2
2.4. Case No. 3
2.5. Case No. 4
2.6. Case No. 5
3. Literature Review
3.1. Statistical Analysis
3.2. Review of Clinical Phenotypes of TARDBP Mutations in Cases of ALS
- -
- c.1009A>G, p.M337V: Clinical data were available for 34 patients; of them, 31 (91%) were determined to be familial. Gender was available for 33 patients. Of these, 15 (45%) were male, and 18 (55%) were female. The mean age at onset was 50.33 years (SD: 9.04). Only 13 patients (38%) had a spinal onset, in contrast to the results previously shown for the whole group. Instead, the median disease duration was significantly (p-value < 0.001) higher than the rest of the group, amounting to 120 months (IQR: 96.75–136.50) (Figure 2). Cognitive involvement was found in only two patients.
- -
- c.1144G>A, p.A382T: Only 10 (26%) cases were familial. A total of 28 (71.8%) were male, and 11 (28.2%) were female. The mean age at onset was 56.51 years (SD: 13.58). When taking the whole group into consideration, it was observed that cases with spinal onset predominated (N = 26; 66.7%). Disease duration was described for 36 patients (92.3%), with large variability between the different cases described (min: 6 months; max: 242 months). The median disease duration was 46 months (IQR: 27.25–61.00). Cognitive status was assessed in 24 patients: of these, 6 (25%) had cognitive involvement. These data are similar to those reported in a recent Italian study [34].
- -
- c.881G>T, p.G294V: The number of familial cases (N = 13; 43.3%) was similar to that for sporadic cases (N = 17; 56.7%). Gender was available for 28 patients. Of these, 18 (62.1%) were male, and 11 (37.9%) were female. The mean age at onset was 61.79 years (SD: 7.84). There were no significant differences between bulbar (N = 15; 51.7%) and spinal (N = 14; 48.3%) onset. Disease duration was described for 27 patients (90%), with wide variability between the different cases described. The median disease duration was 15 months (IQR: 12.0–21.5), significantly (p-value < 0.001) lower than that in the other described cases. Cognitive impairment was found in only 2 of the 14 (46.7%) clearly studied patients.
- -
- c.892G>A, p.G298S: Clinical data were available for 22 patients. Of them, 13 (59.1%) were identified as familial. Gender was available for 21 patients. Of these, 11 (52.4%) were male, and 10 (47.6%) were female. The mean age at onset was 51.29 (SD: 8.07). Only 13 patients (59.1%) presented with a pure spinal onset. Disease duration was described for 17 patients (77.3%). The median disease duration was 14 months (IQR: 12–24), significantly (p-value < 0.001) lower than the rest of the records. Cognitive status was evaluated in 21 (95.5%) patients, and none of them showed cognitive impairment.
3.3. Neuroradiological Studies
3.4. Comparison with Other Monogenic Motor Neuron Diseases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buratti, E. Functional Significance of TDP-43 Mutations in Disease. Adv. Genet. 2015, 91, 1–53. [Google Scholar] [CrossRef]
- Feldman, E.L.; Goutman, S.A.; Petri, S.; Mazzini, L.; Savelieff, M.G.; Shaw, P.J.; Sobue, G. Amyotrophic lateral sclerosis. Lancet 2022, 400, 1363–1380. [Google Scholar] [CrossRef]
- Boillée, S.; Vande Velde, C.; Cleveland, D.W.W. ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors. Neuron 2006, 52, 39–59. [Google Scholar] [CrossRef]
- Pasinelli, P.; Brown, R.H. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat. Rev. Neurosci. 2006, 7, 710–723. [Google Scholar] [CrossRef]
- Chio, A.; Moglia, C.; Canosa, A.; Manera, U.; Dovidio, F.; Vasta, R.; Grassano, M.; Brunetti, M.; Barberis, M.; Corrado, L.; et al. ALS phenotype is influenced by age, sex, and genetics: A population-based study. Neurology 2020, 94, E802–E810. [Google Scholar] [CrossRef]
- Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. English J. 2001, 344, 1688–1700. [Google Scholar] [CrossRef]
- Grassano, M.; Calvo, A.; Moglia, C.; Sbaiz, L.; Brunetti, M.; Barberis, M.; Casale, F.; Manera, U.; Vasta, R.; Canosa, A.; et al. Systematic evaluation of genetic mutations in ALS: A population-based study. J. Neurol. Neurosurg. Psychiatry 2022, 93, 1190–1193. [Google Scholar] [CrossRef]
- Balendra, R.; Isaacs, A.M. C9orf72-Mediated ALS and FTD: Multiple Pathways to Disease. Nat. Rev. Neurol. 2018, 14, 544–558. [Google Scholar]
- Rosen, D.R.; Sapp, P.; O’Regan, J.; McKenna-Yasek, D.; Schlumpf, K.S.; Haines, J.L.; Gusella, J.F.; Horvitz, H.R.; Brown, R.H. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers. Am. J. Med. Genet. 1994, 51, 61–69. [Google Scholar] [CrossRef]
- Lai, S.L.; Abramzon, Y.; Schymick, J.C.; Stephan, D.A.; Dunckley, T.; Dillman, A.; Cookson, M.; Calvo, A.; Battistini, S.; Giannini, F.; et al. FUS mutations in sporadic amyotrophic lateral sclerosis. Bone 2011, 23, 550.e1–550.e4. [Google Scholar] [CrossRef]
- Renton, A.E.; Chiò, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 2014, 17, 17–23. [Google Scholar] [CrossRef]
- Oskarsson, B.; Gendron, T.F.; Staff, N.P. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin. Proc. 2018, 93, 1617–1628. [Google Scholar] [CrossRef]
- De Marchi, F.; Tondo, G.; Corrado, L.; Menegon, F.; Aprile, D.; Anselmi, M.; D’Alfonso, S.; Comi, C.; Mazzini, L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes 2023, 14, 1658. [Google Scholar] [CrossRef]
- Kabashi, E.; Valdmanis, P.N.; Dion, P.; Spiegelman, D.; McConkey, B.J.; Velde, C.V.; Bouchard, J.P.; Lacomblez, L.; Pochigaeva, K.; Salachas, F.; et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 2008, 40, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, J.; Blair, I.P.; Tripathi, V.B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J.C.; Williams, K.L.; Buratti, E.; et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Wang, I.F.; Bose, J.; Shen, C.K.J. Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 2004, 83, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.-H.I.; Wu, F.; Harrich, D.; Leό, L.; García, L.F.; García-Martínez, G.; Martínez, M.; Gaynor, R.B. Cloning and Characterization of a Novel Cellular Protein, TDP-43, That Binds to Human Immunodeficiency Virus Type 1 TAR DNA Sequence Motifs. J. Virol. 1995, 69, 3584–3596. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC189073/pdf/693584.pdf (accessed on 1 October 2023). [CrossRef] [PubMed]
- Buratti, E.; Baralle, F.E. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol. 2010, 7, 420–429. [Google Scholar] [CrossRef]
- Ling, S.-C.; Polymenidou, M.; Cleveland, D.W. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron 2013, 79, 416–438. [Google Scholar] [CrossRef]
- Robberecht, W.; Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 2013, 14, 248–264. [Google Scholar] [CrossRef]
- Mackenzie, I.R.A.; Rademakers, R.; Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010, 9, 995–1007. [Google Scholar] [CrossRef]
- Lee, E.B.; Lee, V.M.-Y.; Trojanowski, J.Q. Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 2012, 13, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Swarup, V.; Julien, J.P. ALS pathogenesis: Recent insights from genetics and mouse models. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Chiò, A.; Calvo, A.; Moglia, C.R.; Manera, U.; Brunetti, M.; Mora, G.; Mazzini, L.; Restagno, G.; Traynor, B.; Chio, A. Extensive genetics of ALS: A population-based study in Italy. Neurology 2012, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Lattante, S.; Rouleau, G.A.; Kabashi, E. TARDBP and FUS Mutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update. Hum. Mutat. 2013, 34, 812–826. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2019, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, L.; Huntley, M.L.; Perry, G.; Wang, X. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem. 2018, 27, 1111. [Google Scholar] [CrossRef]
- Corrado, L.; Pensato, V.; Croce, R.; Di Pierro, A.; Mellone, S.; Dalla Bella, E.; Salsano, E.; Paraboschi, E.M.; Giordano, M.; Saraceno, M.; et al. The first case of the TARDBP p.G294V mutation in a homozygous state: Is a single pathogenic allele sufficient to cause ALS? Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 273–279. [Google Scholar] [CrossRef]
- Corcia, P.; Valdmanis, P.; Millecamps, S.; Lionnet, C.; Blasco, H.; Mouzat, K.; Daoud, H.; Belzil, V.; Morales, R.; Pageot, N.; et al. Phenotype and genotype analysis in amyotrophic lateral sclerosis with TARDBP gene mutations. Neurology 2012, 78, 1519–1526. [Google Scholar] [CrossRef]
- Huang, R.; Fang, D.F.; Ma, M.Y.; Guo, X.Y.; Zhao, B.; Zeng, Y.; Zhou, D.; Yang, Y.; Shang, H.F. TARDBP gene mutations among Chinese patients with sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 2012, 33, 1015.e1–1015.e6. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, R.L.; Zhang, W.; Che, C.H.; Feng, S.Y.; Huang, H.P.; Liu, C.Y.; Zou, Z.Y. Novel TARDBP missense mutation caused familial amyotrophic lateral sclerosis with frontotemporal dementia and parkinsonism. Neurobiol. Aging 2021, 107, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Corrado, L.; Ratti, A.; Gellera, C.; Buratti, E.; Castellotti, B.; Carlomagno, Y.; Ticozzi, N.; Mazzini, L.; Testa, L.; Taroni, F.; et al. High frequency of TARDBP gene mutations in italian patients with amyotrophic lateral sclerosis. Hum. Mutat. 2009, 30, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.D.; Liu, W.C.; Li, X.G.; Liu, N.; Zhang, N.; Liu, T.; Deng, M. Two distinct clinical features and cognitive impairment in amyotrophic lateral sclerosis patients with TARDBP gene mutations in the Chinese population. Neurobiol. Aging 2015, 38, 216.e1–216.e6. [Google Scholar] [CrossRef]
- Lattante, S.; Sabatelli, M.; Bisogni, G.; Marangi, G.; Doronzio, P.N.; Martello, F.; Renzi, A.G.; Del Giudice, E.; Leon, A.; Cimbolli, P.; et al. Evaluating the contribution of the gene TARDBP in Italian patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2023, 30, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, E.G.; Ghirelli, A.; Basaia, S.; Cividini, C.; Riva, N.; Canu, E.; Castelnovo, V.; Domi, T.; Magnani, G.; Caso, F.; et al. Structural MRI Signatures in Genetic Presentations of the Frontotemporal Dementia/Motor Neuron Disease Spectrum. Neurology 2021, 97, E1594–E1607. [Google Scholar] [CrossRef]
- Borroni, B.; Bonvicini, C.; Alberici, A.; Buratti, E.; Agosti, C.; Archetti, S.; Papetti, A.; Stuani, C.; Di Luca, M.; Gennarelli, M.; et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum. Mutat. 2009, 30, E974–E983. [Google Scholar] [CrossRef]
- Gelpi, E.; van der Zee, J.; Turon Estrada, A.; Van Broeckhoven, C.; Sanchez-Valle, R. TARDBP mutation p.Ile383Val associated with semantic dementia and complex proteinopathy. Neuropathol. Appl. Neurobiol. 2014, 40, 225–230. [Google Scholar] [CrossRef]
- Spinelli, E.G.; Ghirelli, A.; Riva, N.; Canu, E.; Castelnovo, V.; Domi, T.; Pozzi, L.; Carrera, P.; Silani, V.; Chiò, A.; et al. Profiling morphologic MRI features of motor neuron disease caused by TARDBP mutations. Front. Neurol. 2022, 13, 931006. [Google Scholar] [CrossRef]
- Canosa, A.; Calvo, A.; Moglia, C.; Vasta, R.; Palumbo, F.; Fuda, G.; Di Pede, F.; Cabras, S.; Arena, V.; Novara, A.; et al. Brain 18fluorodeoxyglucose-positron emission tomography changes in amyotrophic lateral sclerosis with TARDBP mutations. J. Neurol. Neurosurg. Psychiatry 2022, 93, 1021–1023. [Google Scholar] [CrossRef] [PubMed]
- Opie-Martin, S.; Iacoangeli, A.; Topp, S.D.; Abel, O.; Mayl, K.; Mehta, P.R.; Shatunov, A.; Fogh, I.; Bowles, H.; Limbachiya, N.; et al. The SOD1-mediated ALS phenotype shows a decoupling between age of symptom onset and disease duration. Nat. Commun. 2022, 13, 6901. [Google Scholar] [CrossRef]
- Martinelli, I.; Ghezzi, A.; Zucchi, E.; Gianferrari, G.; Ferri, L.; Moglia, C.; Manera, U.; Solero, L.; Vasta, R.; Canosa, A.; et al. Predictors for progression in amyotrophic lateral sclerosis associated to SOD1 mutation: Insight from two population-based registries. J. Neurol. 2023, 0123456789. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; Wu, Z.Y. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl. Neurodegener. 2016, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Mandrioli, J.; Zucchi, E.; Martinelli, I.; Van der Most, L.; Gianferrari, G.; Moglia, C.; Manera, U.; Solero, L.; Vasta, R.; Canosa, A.; et al. Factors predicting disease progression in C9ORF72 ALS patients. J. Neurol. 2023, 270, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Iazzolino, B.; Peotta, L.; Zucchetti, J.P.; Canosa, A.; Manera, U.; Vasta, R.; Grassano, M.; Palumbo, F.; Brunetti, M.; Barberis, M.; et al. Differential Neuropsychological Profile of Patients With Amyotrophic Lateral Sclerosis With and Without C9orf72 Mutation. Neurology 2021, 96, E141–E152. [Google Scholar] [CrossRef]
- Millecamps, S.; Boillée, S.; Le Ber, I.; Seilhean, D.; Teyssou, E.; Giraudeau, M.; Moigneu, C.; Vandenberghe, N.; Danel-Brunaud, V.; Corcia, P.; et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J. Med. Genet. 2012, 49, 258–263. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.T.; Zong, Y.; Zhou, J.; Tan, L. C9ORF72 mutations in neurodegenerative diseases. Mol. Neurobiol. 2014, 49, 386–398. [Google Scholar] [CrossRef]
- Brown, C.A.; Lally, C.; Kupelian, V.; Dana Flanders, W. Estimated Prevalence and Incidence of Amyotrophic Lateral Sclerosis and SOD1 and C9orf72 Genetic Variants. Neuroepidemiology 2021, 55, 342–353. [Google Scholar] [CrossRef]
- Chen, W.; Xie, Y.; Zheng, M.; Lin, J.; Huang, P.; Pei, Z.; Yao, X. Clinical and genetic features of patients with amyotrophic lateral sclerosis in southern China. Eur. J. Neurol. 2020, 27, 1017–1022. [Google Scholar] [CrossRef]
- Conforti, F.L.; Sproviero, W.; Simone, I.L.; Mazzei, R.; Valentino, P.; Ungaro, C.; Magariello, A.; Patitucci, A.; La Bella, V.; Sprovieri, T.; et al. TARDBP gene mutations in south Italian patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2010, 82, 587–588. [Google Scholar] [CrossRef]
- Czell, D.; Andersen, P.; Morita, M.; Neuwirth, C.; Perren, F.; Weber, M. Phenotypes in Swiss Patients with Familial ALS Carrying TARDBP Mutations. Neurodegener. Dis. 2013, 12, 150–155. [Google Scholar] [CrossRef]
- Del Bo, R.; Ghezzi, S.; Corti, S.; Pandolfo, M.; Ranieri, M.; Santoro, D.; Ghione, I.; Prelle, A.; Orsetti, V.; Mancuso, M.; et al. TARDBP (TDP-43) sequence analysis in patients with familial and sporadic ALS: Identification of two novel mutations. Eur. J. Neurol. 2009, 16, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Wang, H.; Liu, J.; Wang, Z.; Xu, B.; Zhao, K.; Tao, X.; He, Z.; Yang, F.; Huang, X. Genetic and clinical features of Chinese sporadic amyotrophic lateral sclerosis patients with TARDBP mutations. Brain Behav. 2021, 11, e2312. [Google Scholar] [CrossRef] [PubMed]
- Grassano, M.; Calvo, A.; Moglia, C.; Brunetti, M.; Barberis, M.; Sbaiz, L.; Canosa, A.; Manera, U.; Vasta, R.; Corrado, L.; et al. 2021. Mutational analysis of known ALS genes in an Italian population-base cohort. Neurology 2021, 96, e600–e609. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Sun, X.; Zhang, K.; Liu, S.; Wang, Z.; Yang, X.; Liu, M.; Cui, L.; Zhang, X. Genotype–phenotype association of TARDBP mutations in Chinese patients with amyotrophic lateral sclerosis: A single-center study and systematic review of published literature. J. Neurol. 2022, 269, 4204–4212. [Google Scholar] [CrossRef]
- Vrabec, K.; Koritnik, B.; Leonardis, L.; Dolenc-Grošelj, L.; Zidar, J.; Smith, B.; Vance, C.; Shaw, C.; Rogelj, B.; Glavač, D.; et al. Genetic analysis of amyotrophic lateral sclerosis in the Slovenian population. Neurobiol. Aging 2015, 36, 1601.e17–1601.e20. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, H.; Liu, G.; Tao, Q.; Ni, W.; Xiao, B.; Wu, Z. The investigation of genetic and clinical features in Chinese patients with juvenile amyotrophic lateral sclerosis. Clin. Genet. 2017, 92, 267–273. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Lin, H.-X.; Wei, Q.; Zhang, Q.-J.; Chen, C.-X.; Tao, Q.-Q.; Liu, G.-L.; Ni, W.; Gitler, A.D.; Li, H.-F.; et al. Genetic Spectrum and Variability in Chinese Patients with Amyotrophic Lateral Sclerosis. Aging Dis. 2019, 10, 1199–1206. [Google Scholar] [CrossRef]
- McCann, E.; Williams, K.; Fifita, J.; Tarr, I.; O’Connor, J.; Rowe, D.; Nicholson, G.; Blair, I. The genotype-phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin. Genet. 2017, 92, 259–266. [Google Scholar] [CrossRef]
- Narain, P.; Pandey, A.; Gupta, S.; Gomes, J.; Bhatia, R.; Vivekanandan, P. Targeted next-generation sequencing reveals novel and rare variants in Indian patients with amyotrophic lateral sclerosis. Neurobiol. Aging 2018, 71, 265.e9–265.e14. [Google Scholar] [CrossRef] [PubMed]
- Newell, K.; Paron, F.; Mompean, M.; Murrell, J.; Salis, E.; Stuani, C.; Pattee, G.; Romano, M.; Laurents, D.; Ghetti, B.; et al. Dysregulation of TDP-43 intracellular localization and early onset ALS are associated with a TARDBP S375G variant. Brain Pathol. 2018, 29, 397–413. [Google Scholar] [CrossRef]
- Rutherford, N.J.; Zhang, Y.-J.; Baker, M.; Gass, J.M.; Finch, N.A.; Xu, Y.-F.; Stewart, H.; Kelley, B.J.; Kuntz, K.; Crook, R.J.P.; et al. Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis. PLOS Genet. 2008, 4, e1000193. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tejerina, D.; Restrepo-Vera, J.L.; Rovira-Moreno, E.; Codina-Sola, M.; Llauradó, A.; Sotoca, J.; Salvado, M.; Raguer, N.; García-Arumí, E.; Juntas-Morales, R. An Atypical Presentation of Upper Motor Neuron Predominant Juvenile Amyotrophic Lateral Sclerosis Associated with TARDBP Gene: A Case Report and Review of the Literature. Genes 2022, 13, 1483. [Google Scholar] [CrossRef] [PubMed]
- Soong, B.-W.; Lin, K.-P.; Guo, Y.-C.; Lin, C.-C.K.; Tsai, P.-C.; Liao, Y.-C.; Lu, Y.-C.; Wang, S.-J.; Tsai, C.-P.; Lee, Y.-C. Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 2014, 35, 2423.e1–2423.e6. [Google Scholar] [CrossRef] [PubMed]
- Ungaro, C.; Sprovieri, T.; Morello, G.; Perrone, B.; Spampinato, A.G.; Simone, I.L.; Trojsi, F.; Monsurrò, M.R.; Spataro, R.; La Bella, V.; et al. Genetic investigation of amyotrophic lateral sclerosis patients in south Italy: A two-decade analysis. Neurobiol. Aging 2020, 99, 99.e7–99.e14. [Google Scholar] [CrossRef]
- Van Deerlin, V.M.; Leverenz, J.B.; Bekris, L.M.; Bird, T.D.; Yuan, W.; Elman, L.B.; Clay, D.; Wood, E.M.; Chen-Plotkin, A.S.; Martinez-Lage, M.; et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: A genetic and histopathological analysis. Lancet Neurol. 2008, 7, 409–416. [Google Scholar] [CrossRef]
- Wang, F.; Fu, S.; Lei, J.; Wu, H.; Shi, S.; Chen, K.; Hu, J.; Xu, X. Identification of novel FUS and TARDBP gene mutations in Chinese amyotrophic lateral sclerosis patients with HRM analysis. Aging 2020, 12, 22859–22868. [Google Scholar] [CrossRef]
- Williams, K.L.; Durnall, J.C.; Thoeng, A.D.; Warraich, S.T.; A Nicholson, G.; Blair, I.P. A novel TARDBP mutation in an Australian amyotrophic lateral sclerosis kindred. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1286–1288. [Google Scholar] [CrossRef]
- Xu, F.; Huang, S.; Li, X.-Y.; Lin, J.; Feng, X.; Xie, S.; Wang, Z.; Li, X.; Zhu, J.; Lai, H.; et al. Identification of TARDBP Gly298Ser as a founder mutation for amyotrophic lateral sclerosis in Southern China. BMC Med Genom. 2022, 15, 173. [Google Scholar] [CrossRef]
CASE 1 | CASE 2 | CASE 3 | CASE 4 | CASE 5 | |
---|---|---|---|---|---|
Age at onset (years) | 61 | 55 | 66 | 72 | 63 |
Symptoms at onset | |||||
bulbar involvement | no | no | dysphonia, dysphagia | dysarthria | dysarthria |
upper-limb involvement | no | no | no | no | no |
lower-limb involvement | spasticity | weakness | no | no | no |
Diagnostic delay (year) | 6 | 4 | 2 | 21 | 2 |
Progression | slow | fast | fast | slow | fast |
Cognition | none | none | N/A | none | mild |
EMG | negative for LMN signs | positive for UMN signs | mild LMN signs | negative for LMN signs | positive for cranial, cervical, and lumbar signs |
PEMs | no cortical potential in lower limbs | reduced cortical potential derived from lower limbs (right > left) | no cortical potential derived from right leg; reduced from left leg | reduced cortical potential in upper and lower limbs | N/A |
MRI | mild FA reduction (left internal capsule) | pyramidal tracts hyperintensity | unremarkable | unremarkable | unremarkable |
FDG-PET | no brain hypometabolism | N/A | N/A | N/A | N/A |
Mutation | c.G1144A, p.A382T, NM_007375 | c.1075A>G p.M359V, NM_007375 | c.881 G>T p.G294V, NM_007375 | c.1169A>G p.N390S, NM_007375 | c.G1144A, p.A382T, NM_007375 |
Familial cases | 1 (father); no clinical evidence in siblings and son | none | none | none | 1 (brother); no clinical evidence in parents and son |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, M.; Corrado, L.; Piola, B.; Comi, C.; Cantello, R.; D’Alfonso, S.; Mazzini, L.; De Marchi, F. Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review. Genes 2023, 14, 2039. https://doi.org/10.3390/genes14112039
Lombardi M, Corrado L, Piola B, Comi C, Cantello R, D’Alfonso S, Mazzini L, De Marchi F. Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review. Genes. 2023; 14(11):2039. https://doi.org/10.3390/genes14112039
Chicago/Turabian StyleLombardi, Michele, Lucia Corrado, Beatrice Piola, Cristoforo Comi, Roberto Cantello, Sandra D’Alfonso, Letizia Mazzini, and Fabiola De Marchi. 2023. "Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review" Genes 14, no. 11: 2039. https://doi.org/10.3390/genes14112039
APA StyleLombardi, M., Corrado, L., Piola, B., Comi, C., Cantello, R., D’Alfonso, S., Mazzini, L., & De Marchi, F. (2023). Variability in Clinical Phenotype in TARDBP Mutations: Amyotrophic Lateral Sclerosis Case Description and Literature Review. Genes, 14(11), 2039. https://doi.org/10.3390/genes14112039