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Abstract: Uncoupling protein 3 (Ucp3) is an important transporter within mitochondria and is
mainly expressed in skeletal muscle, brown adipose tissue and the myocardium. However, the
effects of Ucp3 on myogenic differentiation are still unclear. This study evaluated the effects of
Ucp3 on myogenic differentiation, myofiber type and energy metabolism in C2C12 cells. Gain- and
loss-of-function studies revealed that Ucp3 could increase the number of myotubes and promote the
myogenic differentiation of C2C12 cells. Furthermore, Ucp3 promoted the expression of the type
IIb myofiber marker gene myosin heavy chain 4 (Myh4) and decreased the expression of the type I
myofiber marker gene myosin heavy chain 7 (Myh7). In addition, energy metabolism related to the
expression of PPARG coactivator 1 alpha (Pgc1-α), ATP synthase, H+ transportation, mitochondrial
F1 complex, alpha subunit 1 (Atp5a1), lactate dehydrogenase A (Ldha) and lactate dehydrogenase B
(Ldhb) increased with Ucp3 overexpression. Ucp3 could promote the myogenic differentiation of type
IIb myotubes and accelerate energy metabolism in C2C12 cells. This study can provide the theoretical
basis for understanding the role of Ucp3 in energy metabolism.

Keywords: C2C12 cells; energy metabolism; myogenic differentiation; types of myotubes; Ucp3

1. Introduction

Skeletal muscle plays an important role in maintaining body movement and energy
homeostasis. Myofiber is the basic unit of skeletal muscle, which can be divided into
four types according to the isomer of myosin heavy chain (Myhc). Myosin heavy chain 7
(Myh7), myosin heavy chain 2 (Myh2), myosin heavy chain 4 (Myh4), and myosin heavy
chain 1 (Myh1) are the marker genes of type I, type IIa, type IIb and type IIx myofibers,
respectively [1]. Different myofibers can be transformed into other myofibers [2]. The
mitochondrial activity and oxidative metabolism vary in the four types of myofibers. Type
I myofibers contain a large amount of mitochondria and cytochrome, which promote
oxidative metabolism, while the type IIb myofibers are the opposite. The characteristics of
type IIa and IIx myofibers are between type I and IIb myofibers [3]. The contents of the
four types of myofibers are correlated with meat quality. The higher the content of type
I myofibers, the better the meat quality. Therefore the transformation between different
types of myofibers becomes very important in improving meat quality [4].

Uncoupling protein 3 (Ucp3) is an anionic carrier protein located in the inner mem-
brane of mitochondria [5], which is mainly expressed in the skeletal muscles. Ucp3 is
expressed more in glycolysis muscle fibers than in oxidized muscle fibers [6]. So far, Ucp3
has mainly been focused on in the research on lipid oxidative metabolism and mitochon-
drial reactive oxygen species. Ucp3 can promote the transformation of porcine white
adipose cells into beige adipose cells, which can promote heat production by increasing
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the rate of respiratory oxygen consumption in adipose cells [7]. Cai et al. found that the
content of subcutaneous fat in MSTN−/− Meishan pigs decreased when the expression of
Ucp3 was significantly increased [8]. Bezaire et al. found that the skeletal-muscle-specific
overexpression of Ucp3 mice had stronger fatty acid uptake and oxidation capacity com-
pared with wild-type mice [9]. Similarly, MacLellan et al. indicated that the expression of
Ucp3 and fatty acid content in rat myoblast cells (L6) increased [10]. Ucp3 can also protect
mitochondria from damage caused by oxidative stress [11,12]. However, there are few
reports about the effect of Ucp3 on myogenic differentiation, and its function is still unclear.

The present research aimed to explore the regulation of Ucp3 on the myogenic dif-
ferentiation, myofiber transformation and energy metabolism of C2C12 cells using im-
munofluorescence staining and a quantitative real-time polymerase link reaction. It pro-
vides a theoretical basis for the study of the molecular mechanism of skeletal muscle
cell metabolism.

2. Materials and Methods
2.1. C2C12 Cells Culture and Myogenic Differentiation

The C2C12 cells were purchased from Shanghai Jianing Biotechnology Company.
Resuscitated cells were cultured in dishes supplemented with 7 mL of complete medium
containing 10% fetal bovine serum (FBS; Gibco, Grand Island, NE, USA, Cat. 10099141).
When the cell density reached about 75%, the cells were digested with trypsin (Gibco, Grand
Island, NE, USA, Cat. 25200072) and divided into 6-well plates for 24 h of culture. When
the cell density reached about 50%, an appropriate amount of lentivirus-packed vectors
was added to the serum-free culture medium (Opti-MEM; Gibco, Grand Island, NE, USA,
Cat. 31985070) to infect the cells and then cultured for 12 h. Then, the transfected medium
was replaced with a complete growth medium (high-glucose DMEM, 10% FBS and 1%
penicillin streptomycin) and continued to be cultured for 24 h. When the cells converged to
85%, the transfected C2C12 cells were treated with a culture medium containing 2% horse
serum (Gibco, Grand Island, NE, USA, Cat. 16050122) to induce myogenic differentiation.
The culture medium was changed every 2 days.

2.2. RNA Extraction and cDNA Synthesis

Total RNA was extracted from C2C12 cells using Trizol reagent (Takara, Kusatsu, Japan,
Cat. 9108) according to the manufacturer’s instructions. Thereafter, 1 µg of total RNA was
reverse transcribed with the PrimeScript Regent Kit with gDNA Eraser (Takara, Kusatsu,
Japan, Cat. RR047A) using random hexamer primers according to the manufacturer’s
instructions. The total system of the reaction was 20 microliters and was gently mixed and
incubated at 50 ◦C for 5 min and heated at 85 ◦C for 2 min.

2.3. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Real-time PCR was performed with an Applied Biosystems Quant Studio 3 Real-time
PCR System (Thermo Fisher Scientific, Waltham, MA, USA). Quantitative real-time PCR
was performed using TB Green Premix Ex Taq II (Takara, Kusatsu, Japan, Cat. RR820A).
The expressions of all coding genes were normalized to 18S rRNA. The “2−∆∆Ct” formula
was used to estimate the mean of the triplicate cycle thresholds (CTs) to obtain the relative
expression levels. Gene-specific primers were designed using the online website Primer 3
(http://bioinfo.ut.ee/primer3-0.4.0/ (accessed on 10 August 2023)) and synthesized by
Shanghai Shenggong Biotech Co., Ltd. (Shanghai, China). The reaction system was 10 µL
and comprised the following: 5 µL SYBR, 4 µL cDNA, and 0.5 µL each for upstream and
downstream primers. The reaction procedure was as follows: predenaturated at 95 ◦C for
30 min, denatured at 94 ◦C for 10 s, annealed at 60 ◦C for 20 s, extended at 72 ◦C for 30 s
and carried out for 40 cycles. The primer sequences used for the qRT-PCR analyses are
listed in Table 1.

http://bioinfo.ut.ee/primer3-0.4.0/
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Table 1. Primer sequences.

Gene Primer Sequences (5′–3′)

Ucp3 F: GCCGGCACTGCGGCCTGTTTT
R: TGTGCGCACCATAGTCAGGAT

Myog F: TCCCAACCCAGGAGATCATT
R: AGTTGGGCATGGTTTCGTCT

Myhc F: ACTTGTGGTGTCGGTCACTC
R: CTGAAAATCAGCCGCACGTC

Myh4 F: CTCACCTACCAGACCGAGGA
R: CTCCTGTCACCTCTCAACAGA

Myh7 F: GATTCCTCTAGGACAGCAGCG
R: TTCCTTTCTCTGAGCCACCTTG

Pgc1-α F: TGTGTGCTGTGTGTCAGAGT
R: ACCAGAGCAGCACACTCTAT

Atp5a1 F: TTGTTGGTGCAAGAAATCTCCA
R: TACCATCACCAATGCTTAACACA

Ldha F: AACTTGGCGCTCTACTTGCT
R: GGACTTTGAATCTTTTGAGACCTTG

Ldhb F: AAAGGCTACACCAACTGGGC
R: GCCGTACATTCCCTTCACCA

Uqcrc2 F: CCGGGTCCTTCTCGAGATTTT
R: TGCTTCAATCCCACGGGTTA

Ndufa9 F: TTCCAATGTCACGTCCTGCC
R: CTTGTGACCCCATTCGTCCA

18S rRNA F: ATAAACGATGCCGACTGGCGAT
R: CAATCTGTCAATCCTGTCCGTGT

F: forward; R: reverse.

2.4. Lentiviral-Mediated Transduction

A pair of short hairpin oligonucleotides (GAAGAGGGCCTTAATGAAAG) targeting
the open reading frame (ORF) of Ucp3 were designed and synthesized using GenePharma.
Both the vector construction and lentivirus package were undertaken using Gene Pharma.
The C2C12 cells were cultured in 6-well plates. When the cell density was about 50%, the
appropriate amount of lentivirus was directly added to the medium for infection. The
culture medium was changed to a fresh medium after 24 h of infection.

2.5. Immunofluorescence Staining

After myogenic differentiation for 6 days in C2C12 cells, a large number of myotubes
could be observed and immunofluorescence staining was performed. The cells were
washed with PBS three times, fixed with 4% paraformaldehyde for 30 min and then cleaned
with PBS three times. The cells were permeated using 0.5% Triton X-100 at room tempera-
ture for 20 min and sealed with 2% goat serum for 1 h. The cells were then treated with
primary antibody and incubated overnight at 4 ◦C. The information regarding the primary
antibody is as follows: anti-Myosin Heavy Chain mouse monoclonal antibody (Myhc, Iowa
City, IA, USA, Cat. MF20, 1:100), anti-Myosin Heavy Chain 4 mouse monoclonal antibody
(Myh4, Iowa City, IA, USA, Cat. BF-F3, 1:100) and anti-Myosin Heavy Chain 7 mouse mon-
oclonal antibody (Myh7, Iowa City, IA, USA, Cat. BA-D5, 1:100). After incubation with the
primary antibody, the cells were washed three times in PBS with 0.025% Tween20 and then
incubated with an appropriate fluorescent secondary Goat anti-mouse lgG (H+L) Alexa594
antibody (Chicago, IL, USA, Cat. SA00013-3, 1:100) for 1 h at room temperature. Then, the
nuclei were labeled with DAPI. Finally, the cells were washed three times with PBS and
observed under a fluorescence microscope (Life Technologies, Brown Deer, WI, USA).

2.6. Western Blot

The cells were treated with a lysis buffer supplemented with a protease inhibitor
(Solarbio, Beijing, China, Cat. P6730); the total protein was extracted from the cell sample
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after lysis, which was loaded on 10% SDS-polyacrylamide gel electrophoresis and then
transferred onto nitrocellulose filter membranes (Solarbio, Beijing, China, Cat. HATF00010).
After the membrane transfer, the membrane was rinsed with PBS and sealed in PBS with
5% skim milk powder for 1 h. Incubating them with primary antibodies, the Ucp3 antibody
(1:1000, abclonal, Wuhan, China, Cat. A23285), Myog antibody (1:1000, abclonal, Wuhan,
China, Cat. A6664) and Gapdh antibody (1:4000, Proteintech, Wuhan, China, Cat. 60004-
1-Ig) were used for a Western blot assay. After washing with TBST, the membranes were
incubated with a secondary antibody (1:10,000, LI-COR, Lincoln, NE, USA, Cat. 92632211)
at room temperature for 1 h. After the second antibody was incubated, the membranes
were exposed using the Odyssey CLX imaging system (LI-COR, Lincoln, NE, USA).

2.7. Statistical Analysis

The two groups of samples were compared using an unpaired Student’s t-test, and
multiple groups of samples were analyzed using one-way ANOVA. Data were expressed
as “means ± SEM”. A value of p < 0.05 indicated the difference was significant and p < 0.01
represented an extremely significant difference. GraphPad Prism (Version 8, San Diego,
CA, USA) was used to conduct the statistical analysis and plotting.

3. Results
3.1. The Expression Patterns of Ucp3

The expression of Ucp3 was detected during the myogenic differentiation of C2C12
cells. The expression of Ucp3 increased from days 1 to 6, with the highest expression at
6 d (Figure 1A). Myog was mainly expressed in the late stage of myogenic differentiation
(Figure 1B). The expression patterns of Ucp3 were consistent with that of Myog, suggesting
that Ucp3 may play an important role in the myogenic differentiation of C2C12 cells.
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Figure 1. Expression characteristics of Ucp3 in myogenic differentiation of C2C12 cells. (A,B) Time-
course of Ucp3 and Myog mRNA expression during myogenic differentiation of C2C12 cells. C2C12
cells were differentiated into myoblasts using DMEM, 2% horse serum and 1% double antibody. Bar
graphs with the same superscript letters indicate no significant difference (p > 0.05), while those with
different superscript letters indicate significant differences (p < 0.05).

3.2. Ucp3 Promoted Myogenic Differentiation of C2C12 Cells

To clarify the function of Ucp3 in myogenic differentiation, the overexpression vector
of Ucp3 (OE-Ucp3) was transfected into C2C12 cells using lentivirus. The expression of Ucp3
was significantly increased after transfecting the overexpression vector (Figure 2A). Then,
the transfected C2C12 cells were induced to undergo myogenic differentiation. The expres-
sions of Myog and Myhc were upregulated (Figure 2B,D) and the protein levels of Ucp3 and
the myogenic factor Myog were dramatically improved in the Ucp3 overexpression group
compared with the control group (Figure 2C). Then, the number of Myhc myotubes was
increased (Figure 2E,F). In contrast, the mRNA and protein levels of Ucp3 and Myog were



Genes 2023, 14, 2049 5 of 13

significantly reduced in the C2C12 cells transfected with the Ucp3 shRNA vector (Sh-Ucp3)
(Figure 3A–C). Also, myogenic factor Myhc was significantly downregulated (Figure 3D)
and the number of myotubes decreased with the shRNA of Ucp3 (Figure 3E,F).
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Figure 2. Ucp3 overexpression promotes myogenic differentiation in C2C12 cells. (A) qRT–PCR was
used to test the Ucp3 overexpression efficiency in C2C12 cells. (B) The expression of Myog gene after
affecting the Ucp3 overexpression. (C) Expression changes of Ucp3 and myogenic factor Myog at
protein level. (D) Expression changes in Myhc gene after overexpression of Ucp3, as determined using
qRT–PCR. (E,F) Myotube formation was detected using immunofluorescence and quantified positive
cell statistics. **: p < 0.01.
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Figure 3. Ucp3 silencing slowed myogenesis of C2C12 cells. (A) Expression level of Ucp3 was
determined using qRT–PCR following shRNA knockdown. (B) mRNA levels of Myog knockdown,
as detected using qRT–PCR. (C) Western blot was used to test Ucp3 and myogenic factor Myog.
(D) The level of Myhc mRNA after knockdown of Ucp3. (E,F) Myotube formation was detected using
immunofluorescence and quantified positive cell statistics. **: p < 0.01.

3.3. Effects of Ucp3 on Myofiber Conversion

To further determine the regulatory effect of Ucp3 on myofiber types during myo-
genic differentiation, the overexpression vector of Ucp3 was transfected into C2C12 cells
using lentivirus. The expression of Myh7 decreased (Figure 4A) and the number of Myh7-
positive cells reduced (Figure 4B,C). Meanwhile, the expression of Myh4 was upregulated
(Figure 4D) and the number of Myh4-positive cells increased (Figure 4E,F). In contrast, the
expression of Myh7 was upregulated (Figure 5A) and the number of Myh7-positive cells
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increased (Figure 5B,C) in C2C12 cells transfected with the Ucp3 shRNA vector. The result
of Myh4 was the opposite of Myh7 (Figure 5D–F).
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Figure 4. Active Ucp3 could motivate the muscle-fiber-type transformation from type I to IIb. (A) qRT–
PCR was used to test the expression of oxidized muscle fiber marker gene Myh7. (B,C) Immunofluo-
rescence staining was used to identify the positive signal of Myh7. (D) The level of colytic muscle
fiber marker gene Myh4 in C2C12 cells. (E,F) Immunofluorescence staining was used to identify the
positive signal of Myh4. *: p < 0.05, **: p < 0.01.
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Figure 5. Ucp3 knockdown increased the muscle-fiber-type transformation from type IIb to I. (A) Ex-
pression changes of the oxidized muscle fiber marker gene Myh7 were determined using qRT–PCR
following inhibitor of Ucp3. (B,C) Myotube formation was detected using immunofluorescence under
the same conditions and quantified using positive cell statistics. (D) Expression changes of the colytic
muscle fiber marker gene Myh4 using qRT–PCR, as specified in the legend. (E,F) Positive signal
identification assay carried out in the same way as in panel. *: p < 0.05, **: p < 0.01.
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3.4. Regulation Effects of Ucp3 on Energy Metabolism in C2C12 Cells

Subsequently, the effects of Ucp3 on energy metabolism were detected. With the Ucp3
overexpression in C2C12 cells, the expression of the glycolysis-related genes (Ldha and
Ldhb), oxidative-phosphorylation-related genes (Uqcrc2 and Ndufa9) and mitochondrial-
activity-related genes (Pgc1-α and Atp5a1) increased significantly (Figure 6A–C). In contrast,
all the above gene expressions decreased due to Ucp3 knockdown (Figure 6D–F).

Genes 2023, 14, x FOR PEER REVIEW  11  of  15 
 

 

Figure 5. Ucp3 knockdown increased the muscle-fiber-type transformation from type IIb to I. (A) 

Expression changes of the oxidized muscle fiber marker gene Myh7 were determined using qRT–

PCR following inhibitor of Ucp3. (B,C) Myotube formation was detected using immunofluorescence 

under the same conditions and quantified using positive cell statistics. (D) Expression changes of 

the colytic muscle fiber marker gene Myh4 using qRT–PCR, as specified in the legend. (E,F) Positive 

signal identification assay carried out in the same way as in panel. *: p < 0.05, **: p < 0.01. 

3.4. Regulation Effects of Ucp3 on Energy Metabolism in C2C12 Cells 

Subsequently, the effects of Ucp3 on energy metabolism were detected. With the Ucp3 

overexpression  in C2C12 cells,  the expression of  the glycolysis-related genes  (Ldha and 

Ldhb), oxidative-phosphorylation-related genes (Uqcrc2 and Ndufa9) and mitochondrial-

activity-related genes (Pgc1-α and Atp5a1) increased significantly (Figure 6A–C). In con-

trast, all the above gene expressions decreased due to Ucp3 knockdown (Figure 6D–F). 

 

Figure 6. Ucp3 had a positive regulatory effect on energy metabolism in C2C12 cells. (A–C) Relative 

levels of genes associated with energy metabolism due to overexpression of Ucp3 in C2C12 cells. 

(D–F) Quantitative real-time PCR analysis of gene expression levels associated with energy metab-

olism by silencing Ucp3 gene. *: p < 0.05, **: p < 0.01. 

4. Discussion 

Ucp1, Ucp2 and Ucp3 are the members of the Ucp family. Ucp1 is mainly enriched 

in brown adipose tissue, which is the key protein for nonshivering thermogenesis in mam-

mals. Ucp1 plays an important role in regulating energy metabolism and mitochondrial 

homeostasis by uncoupling oxidation and phosphorylation, which can consume the en-

ergy of the proton gradient in the electron chain to generate heat [13]. Ucp2 is expressed 

in a variety of tissues, such as white adipose tissue, skeletal muscle, heart, spleen, lung 

and thymus, which participate in various metabolic processes, including vascular diseases 

[14], fatty acid metabolism [15], inflammation and oxidative stress [16,17]. Ucp3 is mainly 

found in skeletal muscle, brown adipose tissue and the myocardium [18–20]. Ucp3 plays 

an important role in regulating energy metabolism, thermogenesis and lipid metabolism 

in animals. The growth hormone (GH) upregulates the expression of Ucp3 gene, thus in-

creasing the heat production of the body [21]. Kerstin et al. reported that a hamster lacking 

Ucp3 in brown adipose tissue displays reduced cold tolerance and has impaired nonshiv-

ering thermogenesis [22]. Furthermore, Ucp3 expression was significantly increased in the 

Figure 6. Ucp3 had a positive regulatory effect on energy metabolism in C2C12 cells. (A–C) Rel-
ative levels of genes associated with energy metabolism due to overexpression of Ucp3 in C2C12
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metabolism by silencing Ucp3 gene. *: p < 0.05, **: p < 0.01.

4. Discussion

Ucp1, Ucp2 and Ucp3 are the members of the Ucp family. Ucp1 is mainly enriched in
brown adipose tissue, which is the key protein for nonshivering thermogenesis in mam-
mals. Ucp1 plays an important role in regulating energy metabolism and mitochondrial
homeostasis by uncoupling oxidation and phosphorylation, which can consume the energy
of the proton gradient in the electron chain to generate heat [13]. Ucp2 is expressed in a
variety of tissues, such as white adipose tissue, skeletal muscle, heart, spleen, lung and
thymus, which participate in various metabolic processes, including vascular diseases [14],
fatty acid metabolism [15], inflammation and oxidative stress [16,17]. Ucp3 is mainly
found in skeletal muscle, brown adipose tissue and the myocardium [18–20]. Ucp3 plays
an important role in regulating energy metabolism, thermogenesis and lipid metabolism
in animals. The growth hormone (GH) upregulates the expression of Ucp3 gene, thus
increasing the heat production of the body [21]. Kerstin et al. reported that a hamster
lacking Ucp3 in brown adipose tissue displays reduced cold tolerance and has impaired
nonshivering thermogenesis [22]. Furthermore, Ucp3 expression was significantly increased
in the subcutaneous adipose tissue of pigs under cold conditions, and the expressions of
beige adipose marker genes (Cd137 and Tmem26) and thermogenesis marker genes (Pgc1-α,
Prdm16 and Cidea) were significantly increased, along with the enhancement of mitochon-
drial activity [7]. Ucp3 is involved in the production of mitochondrial reactive oxygen
species (ROS) to prevent mitochondrial oxidative damage [23].

Ucp3 plays an important role in regulating the growth development of skeletal muscle.
The expression of Ucp3 in the skeletal muscle of hypothyroidism rats is significantly lower
than that of rats with normal thyroid function [24]. Ucp3 is strongly associated with Ca2+
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concentration in skeletal muscle. Recent studies highlighted that an intracellular Ca2+

increase can promote the phosphorylation of Camk2, which enhances the Ucp3 expression
and fatty acid oxidation [25]. In addition, maternal exercise regulates the content of
Ca2+, activating the apelin-AMPK signaling pathway, which promotes the expression
of Ucp3 in fetal skeletal muscle [26]. Previous studies showed that miR-181a decreases
ATP production in vivo by targeting IGFBP to downregulate the expression of Ucp3 in rat
skeletal muscle [27]. At present, there are few reports on the regulation of Ucp3 during the
proliferation and differentiation of myoblasts. Gynostemma pentaphyllum extract (GPE)
and Gypenoside L (GL) promote the myogenic differentiation of C2C12 cells via activation
of the PGC-1α pathway and stimulate the expression of Ucp2 and Ucp3, thus enhancing
the anti-oxidative stress ability of the body [28]. Branched-chain amino acid (BCAA) is
a key regulator of protein synthesis in skeletal muscle, which promotes the myogenic
differentiation of C2C12 cells by activating mTORC1 signaling pathways and significantly
increasing the expression of Ucp3 [29]. Furthermore, Yukiko et al. demonstrated that the
expression of Ucp3 shows an upward trend during the myoblast differentiation of C2C12
cells, with the highest expression on the eighth day, indicating that Ucp3 may play an
important role in the later stage of myoblast differentiation [30]. Our data show that Ucp3
promoted the myoblastic differentiation of C2C12 cells.

Ucp3 plays a key role in controlling energy metabolism in skeletal muscle. Past
studies showed that the expression of Ucp3 is elevated in acute exercise and decreased
in endurance exercise in skeletal muscle [31]. Compared with normal mice, Ucp3−/−

mice show a deficiency in ATP production, oxygen consumption and heat production [32].
Curcumin significantly attenuates myocardial apoptosis in rat cardiomyocytes, and the
expression of Ucp3 decreases, indicating that Ucp3 may be involved in curcumin-mediated
mitochondrial protection [33]. Additionally, the expression of Ucp3 and Glut4 increases in
lanthionine synthase C-like (LANCL1)-overexpressing L6 cells, and oxygen consumption is
obviously increased [34]. Insulin-like growth factor-1 (IGF-1) upregulates Ucp3 expression
via the phosphorylation of Foxo4, and Ucp3 expression is significantly reduced after the
addition of PI3K inhibitors, demonstrating that IGF-1 plays a role in energy homeostasis by
regulating Ucp3 expression in C2C12 myoblasts through the PI3-Akt/foxo4 pathway [30].
Moreover, this study showed that Ucp3 contributes to the expression of glycolysis key
genes (Ldha, Ldhb), oxidative phosphorylation metabolic genes (Uqcrc2, Ndufa9) and mito-
chondrial activity marker genes (Pgc1-α, Atp5a1), thereby regulating energy metabolism in
C2C12 cells.

The conversion of skeletal muscle fiber types is closely related to energy metabolism.
Pgc-1α transgenic pigs increase skeletal muscle mitochondrial biogenesis and ATP syn-
thesis, along with the upregulation of oxidative fiber markers and downregulation of
glycolytic fiber markers [35]. Similarly, endurance training in mice enhances skeletal mus-
cle mitochondrial activity through activation of the AMPK signaling pathway, leading to
the conversion of type IIb muscle fibers to type I muscle fibers [36]. Ucp3 is mainly ex-
pressed in type IIb muscle fibers and less so in type I muscle fibers [37]. Anguer et al. found
that mice overexpressing Ucp3 significantly increase oxygen consumption and oxidize fiber
markers after endurance training [38]. In addition, the number of type IIb myofibers in the
skeletal muscle of ovariectomized mice increases significantly and the expression of Ucp3
also increases [39]. Moreover, by interfering with the Ucp3 gene in porcine skeletal muscle
myoblasts, the activity of Ldh decreases as the expression of type IIb myofiber marker gene
Myh4 decreases and the expression of type I myofiber marker gene Myh7 increases [40].
The same result was obtained in this study. The expression of the type IIb myofiber marker
gene Myh4 was significantly reduced and the number of myotubes was also reduced in
C2C12 cells after interfering with Ucp3. Meanwhile, the expression of the type I myofiber
marker gene Myh7 was opposite to that of Myh4.

There were some limitations to this study. This study found that Ucp3 could promote
myogenic differentiation and accelerate the conversion of myofibers from type I to type IIb
in C2C12 cells. But, the molecular mechanism of Ucp3 in myogenic differentiation, myotube
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fusion and energy metabolism is missing. Further research is needed. All experiments
in this study were only completed on C2C12 cells. More experiments should be done
in other cells, such as mouse, pig, and human primary myoblasts and cell lines. The
experimental method was relatively limited in this study. The mRNA expression data
and immunofluorescence data presented were insufficient to support the conclusion. The
expression of mRNA could only reflect the gene transcription, and could not indicate the
amount of protein content. In many cases, the data of mRNA expression and protein content
was not consistent because of the post-transcriptional regulation. The immunofluorescence
data of protein may not accurately reflect the changes in protein content due to the non-
specific immune response. A Western blot experiment can eliminate the band of non-specific
immune response through the size of the protein. A Western blot experiment should be
done to accurately reflect the changes in protein content. The Western blot experiment
successfully obtained the bends of UCP3 and myogenin but failed on Myh4 and Myh7.
Therefore, more experiments should be done in further studies.

In my opinion, Ucp3 can promote myotube fusion via the conversion of the mito-
chondrial inner membrane potential difference into heat in the late stage of the myogenic
differentiation of C2C12 cells. Overall, the myogenic differentiation of C2C12 cells requires
ATP and heat. PGC1a can enhance cellular respiration and lead to an increase in the
mitochondrial inner membrane potential by activating the AMPK and mTOR signaling
pathways during the late stage of myogenic differentiation [26,28,29,41]. The high potential
of the mitochondrial inner membrane causes ATP synthase to produce ATP while gener-
ating heat using Ucp3. Therefore, cellular respiration, mitochondrial activity and Ucp3
content were significantly enhanced during the myogenic differentiation of C2C12 cells.
The substrate for cellular respiration is NADH, which is produced via glycolysis and the
tricarboxylic acid cycle (TCA cycle) while generating some ATP. Therefore, glycolysis is
also significantly enhanced during the myogenic differentiation of C2C12 cells.

5. Conclusions

Ucp3 could promote myogenic differentiation in C2C12 cells and accelerate the con-
version of myofibers from type I to type IIb. The genes for glycolysis, oxidative phosphory-
lation and mitochondrial activity increased with Ucp3 overexpression.
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