Unveiling the Genetic Basis Underlying Rice Anther Culturability via Segregation Distortion Analysis in Doubled Haploid Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Anther Culture
2.3. Preparation of Genotyping-by-Sequencing (GBS) Libraries
2.4. SNP Calling and Genetic Map Construction
2.5. Analysis of Segregation Distortion Loci (SDLs)
2.6. Segregation Ratio Analysis of SDLs and Rf-1 Loci in F2 Populations
2.7. Identification of Epistatic Interactions between Two Loci Causing SD
3. Results
3.1. GBS Sequencing of the DH Population
3.2. SNP Calling and Linkage Map Construction
3.3. Mapping of Segregation Distortion Loci (SDLs)
3.4. Segregation Ratio of SDLs in F2 Population
3.5. Two-Locus Epistatic Interaction (EPI) Causing SD in DH Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serrat, X.; Cardona, M.; Gil, J.; Brito, A.M.; Moysset, L.; Nogués, S.; Lalanne, E. A Mediterranean japonica rice (Oryza sativa) cultivar improvement through anther culture. Euphytica 2013, 195, 31–44. [Google Scholar] [CrossRef]
- Lantos, C.; Jancso, M.; Szekely, A.; Szaloki, T.; Venkatanagappa, S.; Pauk, J. Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes. Plants 2023, 12, 1774. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.K.; Lenka, D.; Prusti, A.M.; Mishra, D.; Swain, D.; Behera, S. Anther culture in rice: Progress and breeding perspective. Appl. Biol. Res. 2019, 21, 87. [Google Scholar] [CrossRef]
- Lantos, C.; Jancso, M.; Szekely, A.; Nagy, E.; Szaloki, T.; Pauk, J. Improvement of Anther Culture to integrate Doubled Haploid Technology in Temperate Rice (Oryza sativa L.) Breeding. Plants 2022, 11, 3446. [Google Scholar] [CrossRef] [PubMed]
- Germanà, M.A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 2011, 30, 839–857. [Google Scholar] [CrossRef]
- Mayakaduwa, R.; Silva, T. Haploid Induction in Indica Rice: Exploring New Opportunities. Plants 2023, 12, 3118. [Google Scholar] [CrossRef]
- Ali, J.; Nicolas, K.L.C.; Akther, S.; Torabi, A.; Ebadi, A.A.; Marfori-Nazarea, C.M.; Mahender, A. Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice (Oryza sativa L.). Plants 2021, 10, 839. [Google Scholar] [CrossRef]
- Ferreres, I.; Ortega, M.; Lopez-Cristoffanini, C.; Nogues, S.; Serrat, X. Colchicine and osmotic stress for improving anther culture efficiency on long grain temperate and tropical japonica rice genotypes. Plant Biotechnol. 2019, 36, 269–273. [Google Scholar] [CrossRef]
- Pattnaik, S.S.; Dash, B.; Bhuyan, S.S.; Katara, J.L.; Parameswaran, C.; Verma, R.; Ramesh, N.; Samantaray, S. Anther Culture Efficiency in Quality Hybrid Rice: A Comparison between Hybrid Rice and Its Ratooned Plants. Plants 2020, 9, 1306. [Google Scholar] [CrossRef]
- Bednarek, P.T.; Orlowska, R.; Mankowski, D.R.; Zimny, J.; Kowalczyk, K.; Nowak, M.; Zebrowski, J. Glutathione and copper ions as critical factors of green plant regeneration efficiency of triticale in vitro anther culture. Front. Plant Sci. 2022, 13, 926305. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, J.; Zhou, D.; Huang, Y.; Su, L.; Yang, G.; Luo, W.; Chen, Z.; Wang, H.; Guo, T. Identification and candidate gene screening of qCIR9.1, a novel QTL associated with anther culturability in rice (Oryza sativa L.). Theor. Appl. Genet. 2021, 134, 2097–2111. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Mikkilineni, V.; Verma, L.; Palan, B.; Mali, K.; Char, B. Evaluation of doubled haploid culture conditions and regeneration of anindicarice hybrid. Indian J. Genet. Plant Breed. 2014, 74, 384. [Google Scholar] [CrossRef]
- Bishnoi, U.; Jain, R.K.; Rohilla, J.S.; Chowdhury, V.K.; Gupta, K.R.; Chowdhury, J.B. Anther culture of recalcitrant indica× Basmati rice hybrids. Euphytica 2000, 114, 93–101. [Google Scholar] [CrossRef]
- Tripathy, S.K. High throughput anther culture response in an upland rice cross ‘Khandagiri x Dular’. J. Environ. Biol. 2022, 43, 420–429. [Google Scholar] [CrossRef]
- Wu, J.; Chang, X.; Li, C.; Zhang, Z.; Zhang, J.; Yin, C.; Ma, W.; Chen, H.; Zhou, F.; Lin, Y. QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3. Cells 2022, 11, 4125. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.A.A.; Earle, E.D.; Khush, G.S. Inheritance of callus formation ability in anther cultures of rice, Oryza sativa L. Theor. Appl. Genet. 1985, 70, 113–116. [Google Scholar] [CrossRef]
- Quimio, C.A.; Zapata, F.J. Diallel analysis of callus induction and green-plant regeneration in rice anther culture. Crop Sci. 1990, 30, 188–192. [Google Scholar] [CrossRef]
- He, P.; Shen, L.; Lu, C.; Chen, Y.; Zhu, L. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol. Breed. 1998, 4, 165–172. [Google Scholar] [CrossRef]
- Yamagishi, M.; Otani, M.; Higashi, M.; Fukuta, Y.; Fukui, K.; Shimada, T. Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica 1998, 103, 227–234. [Google Scholar] [CrossRef]
- Yamagishi, M.; Takeuchi, Y.; Tanaka, I.; Kono, I.; Murai, K.; Yano, M. Segregation distortion in F2 and doubled haploid populations of temperate japonica rice. J. Genet. 2010, 89, 237–241. [Google Scholar] [CrossRef]
- Yamagishi, M.; Yano, M.; Fukuta, Y.; Fukui, K.; Otani, M.; Shimada, T. Distorted segregation of RFLP markers in regenerated plants derived from anther culture of F1 hybrid of rice. Genes Genet. Syst. 1996, 71, 37–41. [Google Scholar] [CrossRef]
- Hermisson, J.; Wagner, G.P. The Population Genetic Theory of Hidden Variation and Genetic Robustness. Genetics 2004, 168, 2271–2284. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, F.; Xu, J.; Li, Z.; Xu, S. Mapping quantitative trait loci in selected breeding populations: A segregation distortion approach. Heredity 2015, 115, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.C. The N6 medium and its applications to anther culture of cereal crops. In Proceedings of Symposium on Plant Tissue Culture; Science Press: Beijing, China, 1981; pp. 43–50. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Qi, P.; Gimode, D.; Saha, D.; Schröder, S.; Chakraborty, D.; Wang, X.; Dida, M.M.; Malmberg, R.L.; Devos, K.M. UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: Finger millet as a case study. BMC Plant Biol. 2018, 18, 117. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013, 6, 4. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Y.; Li, X.; Zhang, Q.; Chen, L.; Wu, H.; Su, D.; Chen, Y.; Guo, J.; Luo, D.; et al. Cytoplasmic Male Sterility of Rice with Boro II Cytoplasm Is Caused by a Cytotoxic Peptide and Is Restored by Two Related PPR Motif Genes via Distinct Modes of mRNA Silencing. Plant Cell. 2006, 18, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Komori, T.; Ohta, S.; Murai, N.; Takakura, Y.; Kuraya, Y.; Suzuki, S.; Hiei, Y.; Imaseki, H.; Nitta, N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 2004, 37, 315–325. [Google Scholar] [CrossRef]
- Li, G.; Jin, J.; Zhou, Y.; Bai, X.; Mao, D.; Tan, C.; Wang, G.; Ouyang, Y. Genome-wide dissection of segregation distortion using multiple inter-subspecific crosses in rice. Sci. China Life Sci. 2019, 62, 507–516. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Wang, Y.; Mi, J.; Xing, F.; Zhang, D.; Dong, Q.; Li, X.; Xiao, J.; Zhang, Q.; et al. Three representative inter and intra-subspecific crosses reveal the genetic architecture of reproductive isolation in rice. Plant J. 2017, 92, 349–362. [Google Scholar] [CrossRef]
- Seymour, D.K.; Chae, E.; Arioz, B.I.; Koenig, D.; Weigel, D. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity 2019, 122, 294–304. [Google Scholar] [CrossRef]
- Li, S.; Yang, D.; Zhu, Y. Characterization and Use of Male Sterility in Hybrid Rice Breeding. J. Integr. Plant Biol. 2007, 49, 791–804. [Google Scholar] [CrossRef]
- Ren, J.; Wu, P.; Tian, X.; Lübberstedt, T.; Chen, S. QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theor. Appl. Genet. 2017, 130, 1349–1359. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, L.; Xiao, J.; Huang, N.; McCouch, S.R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet. 1997, 253, 535–545. [Google Scholar] [CrossRef]
- Guiderdoni, E.; Glaszmann, J.C.; Courtois, B. Segregation of 12 isozyme genes among doubled haploid lines derived from a japonica x indica cross of rice (Oryza sativa L.). Euphytica 1989, 42, 45–53. [Google Scholar] [CrossRef]
- Guiderdoni, E. Gametic selection in anther culture of rice (Oryza sauva L.). Theor. Appl. Genet. 1991, 81, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Zheng, J.; Wu, W.R.; Wang, B. Construction of a microsatellite linkage map in a DH population. Yi Chuan 2003, 25, 557–562. [Google Scholar] [PubMed]
- Itabashi, E.; Kazama, T.; Toriyama, K. Characterization of cytoplasmic male sterility of rice with Lead Rice cytoplasm in comparison with that with Chinsurah Boro II cytoplasm. Plant Cell Rep. 2009, 28, 233–239. [Google Scholar] [CrossRef]
- Fujii, S.; Yamada, M.; Fujita, M.; Itabashi, E.; Hamada, K.; Yano, K.; Kurata, N.; Toriyama, K. Cytoplasmic–Nuclear Genomic Barriers in Rice Pollen Development Revealed by Comparison of Global Gene Expression Profiles among Five Independent Cytoplasmic Male Sterile Lines. Plant Cell Physiol. 2010, 51, 610–620. [Google Scholar] [CrossRef]
- Dash, B.; Bhuyan, S.S.; Singh, S.K.; Chandravani, M.; Swain, N.; Rout, P.; Katara, J.L.; C, P.; B. N., D.; Samantaray, S. Androgenesis in indica rice: A comparative competency in development of doubled haploids. PLoS ONE 2022, 17, e0267442. [Google Scholar] [CrossRef]
- Mackay, T.F.C. Epistasis and quantitative traits: Using model organisms to study gene–gene interactions. Nat. Rev. Genet. 2014, 15, 22–33. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 2015, 47, 834–838. [Google Scholar]
- Mayakaduwa, D.M.R.G.; Silva, T.D. Anther Culture as a Supplementary Tool for Rice Breeding. In Rice Crop—Current Developments; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
Locus | Marker Name | Forward Primer (5′-3′) | Reversed Primer (5′-3′) | Fragment Length (bp) |
---|---|---|---|---|
SDL1.1 | Chr1-7062962 | TGAGGGAGCAAAAGTCGTGTA | AGTCTTGCTTGAGCCTTTTCT | 109 (Shen9A)/96 (Shenhui26) |
SDL1.2 | Chr1-20652344 | GCCACCACGTATAGTACCACC | ATGCTACACCGTACTGTTTATTGG | 173 (Shen9A)/161 (Shenhui26) |
SDL2.1 | Chr2-6769846 | ACGAACCCCAAGACATCACTC | TGAGATCTGTATTTTAAGGACTCCA | 108 (Shen9A)/85 (Shenhui26) |
SDL2.2 | Chr2-33964543 | TATGCGTTAGTTCGTGCGTC | AGATGTGATCAAACTTGTCTAAGGA | 100 (Shen9A)/84 (Shenhui26) |
SDL5 | Chr5-3034981 | GTTCGGGAACGTGGTTCAAA | AGCACGGCCATCCTCATTTC | 83 (Shen9A)/91 (Shenhui26) |
SDL7 | Chr7-21343661 | CGGATTGAGAGTGGCGTTTG | ATGGCCCCTTGGAACTGAAG | 108 (Shen9A)/97 (Shenhui26) |
Rf-1 | Rf1aM | GGACCGGGGGATTTTACCTG | AACCCAACTGAGACCATGCC | 383 (Shen9A)/957 (Shenhui26) |
Chromosome | No. of Markers | Genetic Length (cM) | Average Interval (cM) | Max. Interval Length (cM) | Average Physical Distance (kb) |
---|---|---|---|---|---|
1 | 56 | 198.93 | 3.55 | 23.39 | 765.05 |
2 | 57 | 177.28 | 3.11 | 35.50 | 626.61 |
3 | 14 | 100.91 | 7.21 | 39.19 | 1494.75 |
4 | 46 | 144.13 | 3.13 | 15.04 | 705.83 |
5 | 37 | 133.40 | 3.61 | 42.42 | 796.40 |
6 | 31 | 147.47 | 4.76 | 47.90 | 968.72 |
7 | 40 | 124.43 | 3.11 | 17.08 | 690.00 |
8 | 19 | 159.97 | 8.42 | 71.93 | 1408.65 |
9 | 24 | 113.08 | 4.71 | 26.59 | 876.16 |
10 | 20 | 107.73 | 5.39 | 23.22 | 1113.89 |
11 | 73 | 155.51 | 2.13 | 16.50 | 391.05 |
12 | 53 | 88.10 | 1.66 | 9.95 | 485.08 |
Overall | 470 | 1650.94 | 4.23 | 30.72 | 860.18 |
Locus | Position (cM) | LOD Value | Range (cM) | Left Marker | Right Marker | ||
---|---|---|---|---|---|---|---|
Name | χ2 Test (−log10P) | Name | χ2 Test (−log10P) | ||||
SDL 1.1 | 39 | 11.66 | 39.0–40.3 | Chr1-7030821 | 12.17 | Chr1-7624356 | 11.75 |
SDL 1.2 | 87 | 7.07 | 86.6–89.3 | Chr1-20457965 | 7.97 | Chr1-21236975 | 6.67 |
SDL 2.1 | 46 | 6.87 | 44.3–46.5 | Chr2-6765899 | 7.31 | Chr2-7165431 | 7.64 |
SDL 5 | 18 | 3.74 | 15.7–18.0 | Chr5-2465095 | 5.00 | Chr5-3055104 | 4.32 |
SDL 7 | 99 | 5.07 | 96.8–99.0 | Chr7-21109481 | 4.96 | Chr7-21471990 | 5.70 |
Locus/Gene | Population Size | Genotype Frequency | χ2 Test * | ||||
---|---|---|---|---|---|---|---|
S6 | H | S9A | NA | χ2 | p | ||
SDL1.1 | 96 | 21 | 55 | 13 | 7 | 2.0625 | 0.3566 |
SDL1.2 | 96 | 20 | 44 | 24 | 8 | 0.3636 | 0.8338 |
SDL2 | 96 | 24 | 49 | 23 | 0 | 0.0625 | 0.9692 |
SDL5 | 96 | 16 | 56 | 22 | 2 | 4.2128 | 0.1217 |
SDL7 | 96 | 26 | 45 | 25 | 0 | 0.3958 | 0.8204 |
Rf-1 | 96 | 46 | 43 | 0 | 7 | 0.1011 | 0.7505 |
EPI | Locus 1 | Locus 2 | χ2 Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chr. | Start | End | Chr. | Start | End | χ2 | p | |||||
Marker | Position | Marker | Position | Marker | Position | Marker | Position | |||||
EPI-1 | 1 | Chr1-9618113 | 9618113 | Chr1-10692179 | 10692179 | 5 | Chr5-18996450 | 18996450 | Chr5-19448955 | 19448955 | 24.23 | 1.51 × 10−5 * |
EPI-2 | 1 | Chr1-35221655 | 35221655 | Chr1-37122278 | 37122278 | 10 | Chr10-13369804 | 13369804 | Chr10-17052933 | 17052933 | 22.25 | 4.06 × 10−5 * |
EPI-3 | 1 | Chr1-6789448 | 6789448 | Chr1-7814575 | 7814575 | 12 | Chr12-2938653 | 2938653 | Chr12-4453458 | 4453458 | 36.46 | 3.3 × 10−8 * |
EPI-4 | 1 | Chr1-6789448 | 6789448 | Chr1-7814575 | 7814575 | 12 | Chr12-16416363 | 16416363 | Chr12-21784888 | 21784888 | 45.61 | 3.37 × 10−10 * |
EPI-5 | 1 | Chr1-9341775 | 9341775 | Chr1-10692179 | 10692179 | 12 | Chr12-16416363 | 16416363 | Chr12-21784888 | 21784888 | 30.11 | 7.98 × 10−7 * |
EPI-6 | 5 | Chr5-18500584 | 18500584 | Chr5-20940019 | 20940019 | 11 | Chr11-6478662 | 6478662 | Chr11-8993081 | 8993081 | 25.79 | 6.91 × 10−6 * |
Epistatic Interaction | SNP1 | SNP2 | Genotype Frequency | χ2 Test | ||||
---|---|---|---|---|---|---|---|---|
I/II | i/ii | I/ii | i/II | χ2 | p | |||
EPI-1 | Chr1-10115270 | Chr5-19448955 | 55 | 19 | 97 | 53 | 54.642857 | 8.1828 × 10−12 * |
EPI-2 | Chr1-37122278 | Chr10-17052933 | 50 | 26 | 68 | 80 | 29.571429 | 0.000002 * |
EPI-3 | Chr1-6960979 | Chr12-4202216 | 97 | 52 | 67 | 8 | 73.607143 | 7.2044 × 10−16 * |
EPI-4 | Chr1-7624356 | Chr12-21335477 | 86 | 58 | 79 | 1 | 79.607143 | 3.7265 × 10−17 * |
EPI-5 | Chr1-9618113 | Chr12-21784888 | 82 | 58 | 76 | 8 | 60.428571 | 4.7608 × 10−13 * |
EPI-6 | Chr5-18500584 | Chr11-7657093 | 62 | 89 | 41 | 32 | 34.392857 | 1.6367 × 10−7 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Ding, X.; Ye, J.; Dai, Y.; Cheng, C.; Zhou, J.; Niu, F.; Tu, R.; Hu, Q.; Xie, K.; et al. Unveiling the Genetic Basis Underlying Rice Anther Culturability via Segregation Distortion Analysis in Doubled Haploid Population. Genes 2023, 14, 2086. https://doi.org/10.3390/genes14112086
Sun B, Ding X, Ye J, Dai Y, Cheng C, Zhou J, Niu F, Tu R, Hu Q, Xie K, et al. Unveiling the Genetic Basis Underlying Rice Anther Culturability via Segregation Distortion Analysis in Doubled Haploid Population. Genes. 2023; 14(11):2086. https://doi.org/10.3390/genes14112086
Chicago/Turabian StyleSun, Bin, Xiaorui Ding, Junhua Ye, Yuting Dai, Can Cheng, Jihua Zhou, Fuan Niu, Rongjian Tu, Qiyan Hu, Kaizhen Xie, and et al. 2023. "Unveiling the Genetic Basis Underlying Rice Anther Culturability via Segregation Distortion Analysis in Doubled Haploid Population" Genes 14, no. 11: 2086. https://doi.org/10.3390/genes14112086
APA StyleSun, B., Ding, X., Ye, J., Dai, Y., Cheng, C., Zhou, J., Niu, F., Tu, R., Hu, Q., Xie, K., Qiu, Y., Li, H., Feng, Z., Shao, C., Cao, L., Zhang, A., & Chu, H. (2023). Unveiling the Genetic Basis Underlying Rice Anther Culturability via Segregation Distortion Analysis in Doubled Haploid Population. Genes, 14(11), 2086. https://doi.org/10.3390/genes14112086