Functional Characterization of the Almstn2 Gene and Its Association with Growth Traits in the Yellowfin Seabream Acanthopagrus latus (Hottuyn, 1782)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Traits
2.2. DNA Extraction, PCR Amplification, and Sequencing
2.3. Bioinformatics of the Almstn2 Gene
2.4. Quantitative Real-Time PCR of the Almstn2 Gene
2.5. SNP Identification and Statistical Analysis
3. Results
3.1. Sequence Characterization of Almstn2b
3.2. Phylogenetic Analysis
3.3. Tissue Expression of Almstn2b
3.4. Polymorphism of the Almstn2b Gene
3.5. Associations between the Genotypes of mstn2b and Growth Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iwatsuki, Y. Review of the Acanthopagrus latus Complex (Perciformes: Sparidae) with Descriptions of Three New Species from the Indo-West Pacific Ocean. J. Fish. Biol. 2013, 83, 64–95. [Google Scholar] [CrossRef]
- Zhu, K.-C.; Zhang, N.; Liu, B.-S.; Guo, L.; Guo, H.-Y.; Jiang, S.-G.; Zhang, D.-C. A Chromosome-Level Genome Assembly of the Yellowfin Seabream (Acanthopagrus latus; Hottuyn, 1782) Provides Insights into Its Osmoregulation and Sex Reversal. Genomics 2021, 113, 1617–1627. [Google Scholar] [CrossRef]
- Bureau of Fisheries, Ministry of Agriculture of China. China Fishery Statistical Yearbook; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Zhu, K.-C.; Song, L.; Liu, B.-S.; Guo, H.-Y.; Guo, L.; Zhang, N.; Zhang, D.-C. Establishment of Parentage Determination in Yellowfin Seabream (Acanthopagrus latus). J. Fish. China 2020, 44, 351–357. [Google Scholar] [CrossRef]
- Zhu, K.-C.; Liu, J.; Liu, B.-S.; Guo, H.-Y.; Zhang, N.; Guo, L.; Jiang, S.-G.; Zhang, D.-C. Functional Characterization of Four ToRac Genes and Their Association with Anti-Parasite Traits in Trachinotus ovatus (Linnaeus, 1758). Aquaculture 2022, 560, 738514. [Google Scholar] [CrossRef]
- Zhu, K.-C.; Li, Y.-L.; Wu, W.-B.; Liu, B.-S.; Guo, H.-Y.; Zhang, N.; Guo, L.; Zhang, D.-C. Isolation and Characterization of 112 SNP Markers in Yellowfin Seabream (Acanthopagrus latus) Using RAD Sequencing. Conserv. Genet. Resour. 2022, 14, 249–255. [Google Scholar] [CrossRef]
- Zhang, D.-C.; Guo, L.; Guo, H.-Y.; Zhu, K.-C.; Li, S.-Q.; Zhang, Y.; Zhang, N.; Liu, B.-S.; Jiang, S.-G.; Li, J.-T. Chromosome-Level Genome Assembly of Golden Pompano (Trachinotus ovatus) in the Family Carangidae. Sci. Data 2019, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Niu, Q.; Jiang, J.; Wang, G.; Zhou, P.; Li, J.; Chen, C.; Liu, L.; Xu, L.; Ren, H. Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers. Genes 2023, 14, 1183. [Google Scholar] [CrossRef]
- Easa, A.A.; Selionova, M.; Aibazov, M.; Mamontova, T.; Sermyagin, A.; Belous, A.; Abdelmanova, A.; Deniskova, T.; Zinovieva, N. Identification of Genomic Regions and Candidate Genes Associated with Body Weight and Body Conformation Traits in Karachai Goats. Genes 2022, 13, 1773. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.J. Double Muscling in Cattle Due to Mutations in the Myostatin Gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457–12461. [Google Scholar] [CrossRef] [PubMed]
- Kerr, T.; Roalson, E.H.; Rodgers, B.D. Phylogenetic Analysis of the Myostatin Gene Sub-Family and the Differential Expression of a Novel Member in Zebrafish. Evol. Dev. 2005, 7, 390–400. [Google Scholar] [CrossRef]
- Rodgers, B.D.; Roalson, E.H.; Weber, G.M.; Roberts, S.B.; Goetz, F.W. A Proposed Nomenclature Consensus for the Myostatin Gene Family. Am. J. Physiol.-Endocrinol. Metab. 2007, 292, E371–E372. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Hu, S.-Y.; Gong, H.-Y.; Chen, M.H.-C.; Lu, J.-K.; Wu, J.-L. Suppression of Myostatin with Vector-Based RNA Interference Causes a Double-Muscle Effect in Transgenic Zebrafish. Biochem. Biophys. Res. Commun. 2009, 387, 766–771. [Google Scholar] [CrossRef]
- Maccatrozzo, L.; Bargelloni, L.; Radaelli, G.; Mascarello, F.; Patarnello, T. Characterization of the Myostatin Gene in the Gilthead Seabream (Sparus aurata): Sequence, Genomic Structure, and Expression Pattern. Mar. Biotechnol. 2001, 3, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, B.D.; Weber, G.M.; Sullivan, C.V.; Levine, M.A. Isolation and Characterization of Myostatin Complementary Deoxyribonucleic Acid Clones from Two Commercially Important Fish: Oreochromis Mossambicus and Morone Chrysops. Endocrinology 2001, 142, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Kocabas, A.M.; Kucuktas, H.; Dunham, R.A.; Liu, Z. Molecular Characterization and Differential Expression of the Myostatin Gene in Channel Catfish (Ictalurus punctatus). Biochim. Biophys. Acta 2002, 1575, 99–107. [Google Scholar] [CrossRef]
- Peng, K.; Chen, W.; Hu, W.; Wang, Y.; Zhao, H. Cloning of Partial Sequence of Myostatin of Misgurnus Anguillicaudatus and Its Tissue Expression Analysis. J. Fish. China 2007, 31, 145–151. (In Chinese) [Google Scholar]
- Li, X.-M.; Fan, W.; Zhang, B.; Peng, K.; Wang, Y.-F.; Hu, W.; Zhao, H. Cloning of myostatin of common carp (Cyprinus carpio) and its expression pattern in different tissues. Acta Hydrobiol. Sin. 2007, 31, 643–648. [Google Scholar]
- Helterline, D.L.I.; Garikipati, D.; Stenkamp, D.L.; Rodgers, B.D. Embryonic and Tissue-Specific Regulation of Myostatin-1 and -2 Gene Expression in Zebrafish. Gen. Comp. Endocrinol. 2007, 151, 90–97. [Google Scholar] [CrossRef]
- Garikipati, D.K.; Gahr, S.A.; Rodgers, B.D. Identification, Characterization, and Quantitative Expression Analysis of Rainbow Trout Myostatin-1a and Myostatin-1b Genes. J. Endocrinol. 2006, 190, 879–888. [Google Scholar] [CrossRef]
- Xu, J.; Chen, S. Cloning and Expression Analysis of the Myostatin (MSTN) Gene in Paralichthys olivaceus. J. Fish. China 2008, 32, 497–506. (In Chinese) [Google Scholar]
- Yang, F.; Liu, S.; Qu, J.; Zhang, Q. Identification and Functional Characterization of Pomstna in Japanese Flounder (Paralichthys olivaceus). Gene 2022, 837, 146675. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Y.; Wang, X.; Xu, J.; Lu, X.; Li, J.; Gu, Z. Cloning and Expression Analysis of the Myostatin Gene in Elopichthys bambusa. J. Fish. China 2010, 34, 1486–1494. [Google Scholar] [CrossRef]
- Østbye, T.K.; Galloway, T.F.; Nielsen, C.; Gabestad, I.; Bardal, T.; Andersen, Ø. The Two Myostatin Genes of Atlantic Salmon (Salmo salar) Are Expressed in a Variety of Tissues. Eur. J. Biochem. 2001, 268, 5249–5257. [Google Scholar] [CrossRef] [PubMed]
- Peñaloza, C.; Hamilton, A.; Guy, D.R.; Bishop, S.C.; Houston, R.D. A SNP in the 5′ Flanking Region of the Myostatin-1b Gene Is Associated with Harvest Traits in Atlantic Salmon (Salmo salar). BMC Genet. 2013, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, J.L.; Deng, Y.F. Cloning of myostatin cDNA and its tissue expression in the Mandarin fish Siniperca chuatsi. Chin. J. Zool. 2010, 45, 1–10. [Google Scholar]
- Liu, Z.; Xue, L.; Sun, S.; Xu, Z.; Yu, H. Myostatin-2 Isolation and Spatiotemporal Expression Comparison between Myostatin-1 and-2 in Larimichthys crocea. Genes. Genom. 2014, 36, 599–609. [Google Scholar] [CrossRef]
- Zheng, G.-D.; Sun, C.-F.; Pu, J.-W.; Chen, J.; Jiang, X.-Y.; Zou, S.-M. Two Myostatin Genes Exhibit Divergent and Conserved Functions in Grass Carp (Ctenopharyngodon idellus). Gen. Comp. Endocrinol. 2015, 214, 68–76. [Google Scholar] [CrossRef]
- Tong, C.; Zhang, C.; Shi, J.; Qi, H.; Zhang, R.; Tang, Y.; Li, G.; Feng, C.; Zhao, K. Characterization of Two Paralogous Myostatin Genes and Evidence for Positive Selection in Tibet Fish: Gymnocypris przewalskii. Gene 2015, 565, 201–210. [Google Scholar] [CrossRef]
- Ong, J.L.Y.; Chng, Y.R.; Ching, B.; Chen, X.L.; Hiong, K.C.; Wong, W.P.; Chew, S.F.; Ip, Y.K. Molecular Characterization of Myostatin from the Skeletal Muscle of the African Lungfish, Protopterus annectens, and Changes in Its mRNA and Protein Expression Levels during Three Phases of Aestivation. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 2017, 187, 575–589. [Google Scholar] [CrossRef]
- Sheng, Y.; Sun, Y.; Zhang, X.; Wan, H.; Yao, C.; Liang, K.; Li, L.; Liu, B.; Zhong, J.; Zhang, Z.; et al. Characterization of Two Myostatin Genes in Pufferfish Takifugu bimaculatus: Sequence, Genomic Structure, and Expression. PeerJ 2020, 8, e9655. [Google Scholar] [CrossRef]
- Segev-Hadar, A.; Alupo, G.; Tal, K.; Nitzan, T.; Biran, J. Identification and Characterization of a Non-Muscular Myostatin in the Nile Tilapia. Front. Endocrinol. 2020, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Özcan Gökçek, E.; Işık, R.; Karahan, B.; Gamsız, K. Characterisation of Single Nucleotide Polymorphisms and Haplotypes of MSTN Associated with Growth Traits in European Sea Bass (Dicentrarchus labrax). Mar. Biotechnol. 2023, 25, 347–357. [Google Scholar] [CrossRef]
- Yu, F.Z.; Pan, R.H.; Li, W.D.; Li, Y.; Yang, H.B.; Guo, J.Y.; Zhu, K.C.; Guo, H.Y.; Liu, B.S.; Zhang, D.C. Association analysis of MSTN1 gene polymorphisms and growth traits of Acanthopagrus latus. Ocean. Fish. 2023, 3, 88–90. [Google Scholar]
- Pira, E.; Vacca, G.M.; Dettori, M.L.; Piras, G.; Moro, M.; Paschino, P.; Pazzola, M. Polymorphisms at Myostatin Gene (MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses. Animals 2021, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- Na, R.; Ni, W.; E, G.; Zeng, Y.; Han, Y.; Huang, Y. SNP Screening of the MSTN Gene and Correlation Analysis between Genetic Polymorphisms and Growth Traits in Dazu Black Goat. Anim. Biotechnol. 2021, 32, 558–565. [Google Scholar] [CrossRef]
- Louro, B.; Kuhl, H.; Tine, M.; de Koning, D.-J.; Batargias, C.; Volckaert, F.A.M.; Reinhardt, R.; Canario, A.V.M.; Power, D.M. Characterization and Refinement of Growth Related Quantitative Trait Loci in European Sea Bass (Dicentrarchus labrax) Using a Comparative Approach. Aquaculture 2016, 455, 8–21. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, M.; Yang, J.; Liu, B.; Li, L.; Shi, Y.; Pu, F.; Xu, P. Genome-Wide Association Analysis Reveals Genetic Variations and Candidate Genes Associated with Growth-Related Traits and Condition Factor in Takifugu bimaculatus. Reprod. Breed. 2021, 1, 89–99. [Google Scholar] [CrossRef]
- Kong, S.; Zhou, Z.; Zhou, T.; Zhao, J.; Chen, L.; Lin, H.; Pu, F.; Ke, Q.; Bai, H.; Xu, P. Genome-Wide Association Study of Body Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea). Mar. Biotechnol. 2020, 22, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Özcan Gökçek, E.; Işık, R. Associations between Genetic Variants of the Insulin-like Growth Factor I (IGF-I) Gene and Growth Traits in European Sea Bass (Dicentrarchus labrax, L.). Fish. Physiol. Biochem. 2020, 46, 1131–1138. [Google Scholar] [CrossRef]
- Tran, T.T.H.; Nguyen, H.T.; Le, B.T.N.; Tran, P.H.; Van Nguyen, S.; Kim, O.T.P. Characterization of Single Nucleotide Polymorphism in IGF1 and IGF1R Genes Associated with Growth Traits in Striped Catfish (Pangasianodon hypophthalmus Sauvage, 1878). Aquaculture 2021, 538, 736542. [Google Scholar] [CrossRef]
- Quere, N.; Guinand, B.; Kuhl, H.; Reinhardt, R.; Bonhomme, F.; Desmarais, E. Genomic Sequences and Genetic Differentiation at Associated Tandem Repeat Markers in Growth Hormone, Somatolactin and Insulin-like Growth Factor-1 Genes of the Sea Bass, Dicentrarchus labrax. Aquat. Living Resour. 2010, 23, 285–296. [Google Scholar] [CrossRef]
- Liu, L.; Yu, X.; Tong, J. Molecular Characterization of Myostatin (MSTN) Gene and Association Analysis with Growth Traits in the Bighead Carp (Aristichthys nobilis). Mol. Biol. Rep. 2012, 39, 9211–9221. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Hamilton, A.; Guy, D.R.; Houston, R.D. Single Nucleotide Polymorphisms in the Insulin-like Growth Factor 1 (IGF1) Gene Are Associated with Growth-Related Traits in Farmed Atlantic Salmon. Anim. Genet. 2014, 45, 709–715. [Google Scholar] [CrossRef]
- Nazari, S.; Jafari, V.; Pourkazemi, M.; Miandare, H.K.; Abdolhay, H.A. Association between Myostatin Gene (MSTN-1) Polymorphism and Growth Traits in Domesticated Rainbow Trout (Oncorhynchus mykiss). Agri. Gene 2016, 1, 109–115. [Google Scholar] [CrossRef]
- Kambadur, R.; Sharma, M.; Smith, T.P.; Bass, J.J. Mutations in Myostatin (GDF8) in Double-Muscled Belgian Blue and Piedmontese Cattle. Genome Res. 1997, 7, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Grobet, L.; Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Menissier, F.; Massabanda, J.; et al. A Deletion in the Bovine Myostatin Gene Causes the Double-Muscled Phenotype in Cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef]
- Stinckens, A.; Georges, M.; Buys, N. Mutations in the Myostatin Gene Leading to Hypermuscularity in Mammals: Indications for a Similar Mechanism in Fish? Anim. Genet. 2011, 42, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Gabillard, J.-C.; Biga, P.R.; Rescan, P.-Y.; Seiliez, I. Revisiting the Paradigm of Myostatin in Vertebrates: Insights from Fishes. Gen. Comp. Endocrinol. 2013, 194, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Dong, X.; Zhang, X.; Diallo, A. Organization and Functional Analysis of the 5′ Flanking Regions of Myostatin-1 and 2 Genes from Larimichthys crocea. DNA Cell Biol. 2012, 31, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.B.; Goetz, F.W. Differential Skeletal Muscle Expression of Myostatin across Teleost Species, and the Isolation of Multiple Myostatin Isoforms. FEBS Lett. 2001, 491, 212–216. [Google Scholar] [CrossRef]
Subject and Primers | Nucleotide Sequence | Tm (°C) |
---|---|---|
M2b-G-R1 | GAGCACAGCAAGCAGATG | 56 |
M2b-G-L1 | CTTTGGAGTCGTAGGCGT | |
M2b-G-R2 | AACAACACCCGAATCAGA | 56 |
M2b-G-L2 | CCAGGGACGAGAAGACC | |
M2b-SNP-R2 | TTCTTCTTCCAGACAATCC | 56 |
M2b-SNP-L2 | AAAAAGTGCCACATCCC |
Traits | Genotype | |||
---|---|---|---|---|
AA | AG | GG | X2 (p) | |
BW/g | 34.56 ± 6.41 a | 25.51 ± 7.97 b | 27.31 ± 6.64 b | 0.001 |
ID/cm | 1.45 ± 0.08 a | 1.32 ± 0.12 b | 1.36 ± 0.10 b | 0.002 |
SL/cm | 0.65 ± 0.23 | 0.65 ± 0.13 | 0.69 ± 0.20 | 0.243 |
ED/cm | 0.99 ± 0.10 | 0.98 ± 0.11 | 1.00 ± 0.11 | 0.555 |
LHBE/cm | 1.50 ± 0.10 | 1.40 ± 0.17 | 1.37 ± 0.17 | 0.089 |
HL/cm | 3.14 ± 0.34 | 3.02 ± 0.33 | 3.07 ± 0.37 | 0.552 |
HH/cm | 3.95 ± 0.31 | 3.74 ± 0.42 | 3.83 ± 0.36 | 0.173 |
SL/cm | 4.63 ± 0.44 a | 4.17 ± 0.63 b | 4.33 ± 0.50 ab | 0.029 |
BH/cm | 4.43 ± 0.28 | 4.14 ± 0.49 | 4.25 ± 0.41 | 0.087 |
TL/cm | 3.05 ± 0.30 a | 2.66 ± 0.39 b | 2.74 ± 0.36 b | 0.009 |
CL/cm | 2.21 ± 0.18 a | 1.93 ± 0.30 b | 1.99 ± 0.24 b | 0.008 |
CH/cm | 1.47 ± 0.13 a | 1.32 ± 0.24 b | 1.37 ± 0.14 ab | 0.046 |
BL/cm | 10.82 ± 0.68 a | 9.85 ± 1.06 b | 10.14 ± 0.90 b | 0.009 |
TFL/cm | 2.37 ± 0.19 | 2.22 ± 0.36 | 2.21 ± 0.38 | 0.408 |
TL/cm | 13.19 ± 0.81 a | 12.07 ± 1.29 b | 12.35 ± 1.15 b | 0.021 |
Traits | Genotype | |||
---|---|---|---|---|
AA | AG | GG | X2 (p) | |
BW/g | 27.26 ± 6.7 b | 25.38 ± 7.73 b | 33.87 ± 6.92 a | 0.001 |
ID/cm | 1.36 ± 0.10 b | 1.32 ± 0.12 b | 1.43 ± 0.08 a | 0.002 |
SL/cm | 0.69 ± 0.20 | 0.65 ± 0.14 | 0.67 ± 0.21 | 0.368 |
ED/cm | 1.00 ± 0.11 | 0.97 ± 0.11 | 1.01 ± 0.09 | 0.235 |
LHBE/cm | 1.37 ± 0.18 b | 1.39 ± 0.17 b | 1.51 ± 0.10 a | 0.022 |
HL/cm | 3.07 ± 0.37 | 3.01 ± 0.33 | 3.19 ± 0.31 | 0.227 |
HH/cm | 3.83 ± 0.36 | 3.73 ± 0.41 | 3.99 ± 0.29 | 0.051 |
SL/cm | 4.33 ± 0.51 | 4.18 ± 0.63 | 4.52 ± 0.46 | 0.082 |
BH/cm | 4.25 ± 0.41 ab | 4.13 ± 0.49 b | 4.47 ± 0.29 a | 0.029 |
TL/cm | 2.74 ± 0.36 b | 2.67 ± 0.39 b | 2.97 ± 0.34 a | 0.034 |
CL/cm | 1.99 ± 0.24 b | 1.94 ± 0.30 b | 2.13 ± 0.22 a | 0.049 |
CH/cm | 1.37 ± 0.14 | 1.32 ± 0.24 | 1.44 ± 0.14 | 0.076 |
BL/cm | 10.13 ± 0.91 b | 9.86 ± 1.06 b | 10.69 ± 0.73 a | 0.015 |
TFL/cm | 2.20 ± 0.38 | 2.24 ± 0.34 | 2.29 ± 0.34 | 0.647 |
TL/cm | 12.33 ± 1.17 | 12.1 ± 1.29 | 12.97 ± 0.94 | 0.060 |
Traits | Genotype | |||
---|---|---|---|---|
AA | AG | GG | X2 (p) | |
BW/g | 27.19 ± 6.72 b | 25.55 ± 7.99 b | 31.19 ± 7.71 a | 0.017 |
ID/cm | 1.36 ± 0.10 | 1.32 ± 0.12 | 1.39 ± 0.10 | 0.053 |
SL/cm | 0.69 ± 0.20 | 0.64 ± 0.14 | 0.66 ± 0.19 | 0.279 |
ED/cm | 1.00 ± 0.12 | 0.97 ± 0.11 | 1.01 ± 0.11 | 0.236 |
LHBE/cm | 1.38 ± 0.18 b | 1.38 ± 0.17 b | 1.49 ± 0.12 a | 0.025 |
HL/cm | 3.07 ± 0.37 | 2.99 ± 0.34 | 3.17 ± 0.30 | 0.164 |
HH/cm | 3.83 ± 0.37 | 3.72 ± 0.41 | 3.93 ± 0.33 | 0.077 |
SL/cm | 4.32 ± 0.50 | 4.21 ± 0.65 | 4.37 ± 0.55 | 0.458 |
BH/cm | 4.25 ± 0.42 | 4.13 ± 0.49 | 4.35 ± 0.38 | 0.133 |
TL/cm | 2.75 ± 0.37 | 2.68 ± 0.39 | 2.80 ± 0.41 | 0.403 |
CL/cm | 1.99 ± 0.25 | 1.94 ± 0.30 | 2.06 ± 0.26 | 0.185 |
CH/cm | 1.37 ± 0.14 | 1.32 ± 0.26 | 1.40 ± 0.14 | 0.215 |
BL/cm | 10.13 ± 0.91 | 9.89 ± 1.08 | 10.34 ± 0.95 | 0.157 |
TFL/cm | 2.20 ± 0.38 | 2.23 ± 0.33 | 2.28 ± 0.37 | 0.667 |
TL/cm | 12.34 ± 1.16 | 12.12 ± 1.31 | 12.62 ± 1.14 | 0.273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Guo, H.; Chen, C.; Yu, F.; Liu, B.; Zhang, N.; Xian, L.; Luo, Z.; Liu, W.; Zhu, K.; et al. Functional Characterization of the Almstn2 Gene and Its Association with Growth Traits in the Yellowfin Seabream Acanthopagrus latus (Hottuyn, 1782). Genes 2023, 14, 2142. https://doi.org/10.3390/genes14122142
Guo J, Guo H, Chen C, Yu F, Liu B, Zhang N, Xian L, Luo Z, Liu W, Zhu K, et al. Functional Characterization of the Almstn2 Gene and Its Association with Growth Traits in the Yellowfin Seabream Acanthopagrus latus (Hottuyn, 1782). Genes. 2023; 14(12):2142. https://doi.org/10.3390/genes14122142
Chicago/Turabian StyleGuo, Jianyi, Huayang Guo, Chuanghua Chen, Fangzhao Yu, Baosuo Liu, Nan Zhang, Lin Xian, Zhiping Luo, Wen Liu, Kecheng Zhu, and et al. 2023. "Functional Characterization of the Almstn2 Gene and Its Association with Growth Traits in the Yellowfin Seabream Acanthopagrus latus (Hottuyn, 1782)" Genes 14, no. 12: 2142. https://doi.org/10.3390/genes14122142
APA StyleGuo, J., Guo, H., Chen, C., Yu, F., Liu, B., Zhang, N., Xian, L., Luo, Z., Liu, W., Zhu, K., & Zhang, D. (2023). Functional Characterization of the Almstn2 Gene and Its Association with Growth Traits in the Yellowfin Seabream Acanthopagrus latus (Hottuyn, 1782). Genes, 14(12), 2142. https://doi.org/10.3390/genes14122142