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Abstract: Understanding historical processes underlying lineage distribution patterns is a primary
goal of phylogeography. We selected Gobio rivuloides (Cypriniformes: Gobionidae) as a model to
improve our knowledge about how intraspecific genetic divergence of freshwater fishes arises in
coastal drainages of northern China via statistical analysis using cytochrome b gene. The time-
calibrated phylogeny of G. rivuloides showed the divergence of two major lineages (I and II) at
~0.98 Ma (million years ago). Lineage I can be divided into two sub-lineages (I-A and I-B) with a
divergence time of ~0.83 Ma. Sub-lineage I-A inhabits the Amur River, and sub-lineage I-B lives
in the Luan River and Liao River. Lineage II is distributed in the Yellow River and Hai River,
with close genetic relationships between the two drainages, and can be split into two sub-lineages
(II-C and II-D) with a divergence time of ~0.60 Ma. Our findings indicate that the splitting of lineages
and sub-lineages could be attributed to geographic isolation caused by the formation of the Bohai
Sea, river capture, and the episodic hydrologic closing of a paleolake during the late Lower–Middle
Pleistocene. It is also the first report we know of displaying a clear phylogeographic break for
freshwater fishes across coastal drainages in northern China.

Keywords: Gobioninae; time tree; fossil calibration; population demography; river network;
conservation unit

1. Introduction

Understanding the historical processes that underlie the patterns of lineage distribu-
tions is a primary goal of the study of phylogeography [1,2]. Obligate freshwater fishes
are restricted to river basins, and their dispersal and colonization across isolated drainages
rely on river connectivity [3]. River networks are dendritic habitats that change in time
and space, profoundly affecting geographical distributions and the genetic divergence of
freshwater fishes [4,5]. Growing evidence suggests that changes to the drainage landscape
due to tectonic activity, climatic variation, and erosion through different rock types are
the major driving forces of lineage divergence in freshwater fishes (e.g., [6–12]). Two
common types of landscape changes in drainages are river capture and paleo-drainage
connection. River capture is a geomorphological process in which portions of catchments
are displaced between adjacent drainages because of tectonic uplift or headwater ero-
sion [13]. Paleo-drainage connection is another geomorphological process in which coastal
drainages are connected by river coalescence during the Pleistocene period of lowered sea
levels [14,15]. River capture and paleo-drainage connection have been used in numerous
phylogeographic studies to explain phylogeographic breaks or the lack of phylogenetic
structure in freshwater fishes across currently isolated coastal drainages (e.g., [16–23]).

The Bohai Sea (Figure 1) is the youngest shallow marginal sea of the Asian continent,
with an average depth of about 18 m [24]. The timing of the formation of the Bohai Sea
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is ~0.8–0.89 million years ago (Ma), based on geological evidence [25–27]. The Yellow,
Hai, Luan, and Liao rivers flow into the Bohai Sea (Figure 1). Before the formation of
the Bohai Sea, the paleo-Yellow, Hai, Luan, and Liao rivers could be connected by a
long-standing vast freshwater lake—the “Bohai Paleolake”—in this region [25]. After the
formation of the Bohai Sea, a substantial decline in sea level could expose the Bohai Sea
floor during glacial periods of the Middle–Upper Pleistocene [28], providing connectivity
to the currently isolated coastal drainages throughout this region. The findings of a few
phylogeographic studies suggest that the Pleistocene glacial cycles giving rise to episodic
paleo-drainage connections resulted in the lack of phylogeographic structure in freshwater
fishes inhabiting the river basins surrounding the Bohai Sea [29,30]. However, no study
has so far demonstrated the influence of the Bohai Sea formation on the lineage divergence
in freshwater fishes of northern China.

Figure 1. Map showing the distribution of 34 sampling localities and 4 sub-lineages for Gobio rivuloides.
The detail of each locality is shown in Table S1. Colors correspond to the division of sub-lineages.
SN—Shaanxi Province; HA—Henan Province; NX—Ningxia Hui Autonomous Region; SX—Shanxi
Province; HE—Hebei Province; NM—Inner Mongolian Autonomous Region; LN—Liaoning Province;
JL—Jilin Province; HL—Heilongjiang Province. The map was sourced from National Catalogue
Service for Geographic Information (https://mulu.tianditu.gov.cn/ accessed on 1 September 2023).

The Amur River runs ~4370 km before draining into the Tatar Strait between the
Okhotsk Sea and the Japan Sea [31]. Geological studies of the past drainage evolution
indicated that the Liao River and the three tributaries of the Amur River (Nenjiang River,
Songhua River, and Second Songhua River (Figure 1)) had belonged to the same hydrologi-
cal system flowing southward into the region of the modern Bohai Sea during the Lower
Pleistocene (before ~0.94 Ma; [32,33]). The paleo-Songhua, Second Songhua, and Nenjiang
rivers were reorganized into the Amur River via river capture between ~0.94 and 0.46 Ma,

https://mulu.tianditu.gov.cn/
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caused by headward erosion and tectonic uplifting of the Songliao divide [33]. Several
studies have shown that the vicariant events via river capture between the Liao River and
the Amur River could result in lineage divergence and secondary contact of freshwater
fishes across the two drainages [18,34,35].

The Yellow River is the second longest river in China, flowing a length of ~5464 km
before emptying into the Bohai Sea. The formation of the modern Yellow River occurred
~1.25–1.5 Ma based on river terrace evidence [36,37]. The upper reaches of the Yellow
River originate in the northeastern Tibetan Plateau. It flows over the Chinese Loess Plateau,
passing through the Hetao Basin, which forms the middle course of the Yellow River [37–39].
The Hetao Basin, with an average altitude of ~900–1200 m, borders the end reaches of the
upper Yellow River, where a vast open “Hetao paleo-lake” existed during the Lower–Upper
Pleistocene [38,40]. Geological evidence indicates that the uplift of the Hetao Basin outlet
occurred ~0.8–0.47 Ma, resulting in the intermittent development of a closed “Hetao paleo-
lake” during this period [39,41,42]. Therefore, we hypothesize that the flow of the Yellow
River through the Hetao Basin could have been interrupted by the episodic occurrence of a
hydrologically closed “Hetao paleo-lake” during the late Lower–Middle Pleistocene, thus
facilitating lineage divergence in fish populations of the upper and middle–lower reaches
of the Yellow River.

Gobio rivuloides (Nichols, 1925) (Cypriniformes: Gobionidae) is a small-sized (<~14 cm
in body length) temperate freshwater fish endemic to the coastal drainages of northern
East Asia, mainly distributed in the Yellow, Hai, Luan, and Liao rivers surrounding the
Bohai Sea, and the Amur River flowing into the Tatar Strait between the Okhotsk Sea and
the Japan Sea [43]. It prefers to inhabit the middle and bottom layers of running water
of streams and rivers and feeds on benthic invertebrates [44]. G. rivuloides reach sexual
maturity at two years old, breeding from May to June [44].

Despite numerous phylogeographic studies of the influence of past drainage con-
nections on the patterns of lineage distributions in southern China (e.g., [23,45–49]), our
understanding of how changes in the drainage landscape have shaped the phylogeographic
patterns of freshwater fishes in northern China is still greatly limited. Using G. rivuloides as
a model and the statistical analysis of phylogeography based on the cytochrome b gene,
the present study attempts to further our understanding of the origins of the intraspecific
genetic divergence of freshwater fishes in northern China. The specific hypotheses regard-
ing major forces driving the lineage divergence of G. rivuloides are tested by examining
the formation of the Bohai Sea, river capture between the Liao River and Amur River, and
episodic existence of a hydrologically closed “Hetao paleo-lake” in the Yellow River basin.

2. Materials and Methods
2.1. Specimen Sources

We used 286 individuals obtained from 34 localities of 5 river basins (the Yellow,
Hai, Luan, Liao, and Amur rivers) covering the distribution area of G. rivuloides (Figure 1;
Table S1). All specimens were collected from July 2011 to December 2019 using small
set nets and gill nets with the help of local fishermen. Specimens were anesthetized by
immersion in an aqueous solution of eugenol (0.25 mL/L), following the laboratory animal
guidelines for the ethical review of animal welfare in China (GB/T 35892-2018 [50]), and
then stored in 95% ethanol at the Zoological Museum of Fudan University.

2.2. Acquisition, Processing, and Statistical Analysis of Sequence Data

A small amount of muscle tissue was cut from each fish specimen and was used for
genomic DNA extraction under high salt extraction procedures [51]. Primer pairs 1–13
(Table S2) were used to amplify the complete mitochondrial genome of G. rivuloides. The
amplification reactions (50 µL) with 25.0 µL 2 × Es Taq MasterMix, 2.0 µL forward primers
(20 µM), 2.0 µL reverse primers (20 µM), 2.0 µL genomic DNA, and 19.0 µL dd H2O were
run under the following program: an initial denaturing at 94 ◦C for 5 min, 35 cycles of 94 ◦C
for 50 s, 51.8–56.0 ◦C for 60 s (annealing temperature for each primer pair listed in Table S2),
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60 ◦C for 70s, and a final extension at 70 ◦C for 10 min. The purification and Sanger sequencing
of amplification products was entrusted to Jieli Biology Co., Ltd., Shanghai, China.

The sequences were assembled using Sequencher v5.4 (Gene Codes Corp., Ann Arbor,
MI, USA) and then aligned with Mafft v7.427 [52]. The aligned sequences were checked to
ensure no indels or stop codons using DAMBE v6.4.100 [53], and their basic characteristics
were investigated with MEGA v7.0.26 [54]. Cyt b haplotypes for G. rivuloides were generated
using DnaSP v6.12.01 [55] and were subsequently used in the analyses.

2.3. Phylogeny and Ancestral Area Reconstruction

In the absence of a known genus Gobio fossil, we adopted the methods of previous
studies [21,49] by reconstructing the time-calibrated Bayesian phylogeny of G. rivuloides and
its close relatives to gain a secondary calibration point in BEAST v2.6.7 [56]. The Leuciscide
were selected as the outgroup taxa of the Gobionidae based on the results of previous
studies using multi-loci nuclear data [57,58] or mitochondrial genome data [59]. A dataset of
13 protein-coding genes from 38 mitochondrial genomes containing 34 gobionid species and
4 leuciscid species (detailed in Table S3) was used as input. Two fossil records, the earliest
known gobionid and Gnathopogon fossil (detailed in Table S4), were applied to calibrate
the split of families Gobionidae and Leuciscidae and the split of genera Gnathopogon and
Coreoleuciscus, respectively. Each gene was treated as a partition, and its optimal substitution
model was obtained through an automatic search using bModelTest [60]. The relaxed log-
normal clock model was chosen as the molecular clock, and the birth–death process was set
prior as a tree. Two runs of fifty million MCMC generations with a sampling frequency of
one thousand were performed. The resulting tree set was combined with the first 30% as a
burn-in. ESS > 200 for each parameter was used as a criterion to determine the convergence
in Tracer v1.7.0 [61]. The divergence time between G. rivuloides and Gobio coriparoides
(2.69 Ma with a 95% confidence interval of 3.11–2.27 Ma, Figure S1) was obtained as a
secondary calibration point, so we constructed the time-calibrated phylogeny of G. rivuloides
using a normal distribution setting with m = 2.69 and s = 0.21. The hypothesis tests of
the molecular clock using the likelihood ratio test in DAMBE v7.0.35 [62] did not reject
the null hypothesis (X2 = 80.30, df = 84, p = 0.59), so the strict clock model was selected.
G. coriparoides was the outgroup. The remaining settings were as described above.

An evolutionary network for haplotypes was generated using the median-joining
network method in Network v10.2 [63] and then embellished with the drainage distribution
of each haplotype.

Ancestral area estimation was performed under DEC (dispersal–extinction–cladogenesis),
DIVALIKE (dispersal–vicariance-like), BAYAREALIKE (Bayesian historical area reconstruction-
like; [64]), and their derived model with a j (jump dispersal) parameter using the R package
BioGeoBEARS v0.2.1 [65]. The input tree was the time-calibrated phylogeny of G. rivuloides
obtained in this study. Each of the five drainages was regarded as a biogeographical unit and
was assigned to each haplotype according to sampling information (Table S1). The Akaike
information criterion (AIC) was applied to evaluate the best-fitting biogeographical model.

2.4. Genetic Structure and Demographic History

Arlequin v3.5.2.2 was applied to estimate four genetic diversity parameters, i.e., haplo-
type number, private haplotype number, nucleotide diversity, and haplotype diversity [66].
Analysis of molecular variance and pairwise ΦST comparison between drainages were
also performed in Arlequin. The spatial analysis of molecular variance (SAMOVA) was
analyzed to identify the optimal grouping with maximum ΦST using SAMOVA v2.0 [67].

To detect the expansion signal, neutrality tests were performed to estimate Tajima’s
D [68] and Fu’s Fs [69], and mismatch distribution analyses were conducted with the popu-
lation expansion model in Arlequin v3.5.2.2. Bayesian skyline plots (BSP) were constructed
with Cyt b mutation rate of 0.70% substitutions per site per million years (obtained from
the time-calibrated phylogeny of G. rivuloides) to infer historical demography, using BEAST
v2.6.7 and Tracer v1.7.0 [61]. Based on the generation time of two years for G. rivuloides [44]
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and the mutation rate unit of per site per million years used in this analysis, the original
values measured on the y-axis on BSP were transformed into effective population size by
multiplying them by one million and dividing by two.

To explore the demographic history of G. rivuloides, approximate Bayesian computation
(ABC) analyses were performed using DIYABC v.2.1.0 [70]. Five demographic scenarios
(scenario I–V) were defined (Figure 2; [71]): a constant population size (scenario I: CON
model), a recent bottleneck event (scenario II: DEC model), a recent population expansion
(scenario III: INC model), a population expansion followed by a bottleneck event (scenario
IV: INDEC), and a bottleneck event followed by a population expansion (scenario V:
DEINC). Information on parameters and priors for all scenarios is provided in Table S5.
The number of simulated data sets for demographic scenarios was set as 500,000. All
summary statistics available in DIYABC were calculated for observed and simulated data
sets. The posterior probability (PP) with 95% confidence interval (CI) was computed for
each scenario using the logistic regression approach.

Figure 2. Schematic representation of demographic scenarios tested using DIYABC. Effective popula-
tion size (N0–N5) and time (T1–T3) are not to scale.

3. Results
3.1. Phylogeny and Ancestral Area Reconstruction

A total of 286 Cyt b sequences (1140 bp) obtained from 34 sampling localities across
the 5 river basins (Figure 1; Table S1) defined 85 haplotypes (GenBank number: OP354001–
OP354075, OP354077–OP354086). These sequences contained 62 parsimony informative
sites and 44.8% GC content. The time-calibrated phylogeny showed that all populations of
G. rivuloides could be divided into two major lineages, I and II, and their divergence time
occurred ~0.98 Ma with 95% CI (confidence interval) of 1.34–0.66 Ma (Figure 3). Lineage I
could be further split into two sub-lineages, I-A and I-B, with a divergence time of ~0.83 Ma
(95% CI: 1.16–0.48 Ma). Lineage II comprised sub-lineages II-C and II-D, with a divergence
time of ~0.60 Ma (95% CI: 0.91–0.27 Ma).

The haplotype networks of lineages I and II are displayed in Figure 4. The two major
lineages were linked with four mutation steps (not shown in Figure 4). In lineage I, sub-
lineages I-A (40 haplotypes) and I-B (35 haplotypes) were connected with eight mutation
steps (Figure 4A). The former was distributed in the Amur River. The latter lived in
the Luan and Liao rivers with two shared haplotypes, B14 and B15. In lineage II, sub-
lineages II-C (eight haplotypes) and II-D (two haplotypes) were linked with five mutation
steps (Figure 4B). Sub-lineage II-C occurred in the Yellow and Hai rivers with one shared
haplotype, C05, whereas sub-lineage II-D only appeared in the Yellow River.
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Figure 3. Time-calibrated Bayesian phylogeny and ancestral area reconstruction of 85 Cyt b haplotypes
for G. rivuloides. Ancestral areas were inferred under the DEC+J model. Divergence time (average
value and 95% confidence interval) and posterior probability are given above and below the branch,
respectively. Codes for the primary nodes are given in a black circle.

Ancestral area reconstruction of G. rivuloides used the best-fitting DEC+J model as the
biogeographical model (Table S6). G. rivuloides originated in the Yellow, Luan, Liao, and
Amur rivers. Two major vicariant events occurred at nodes 1 and 5, as well as multiple
dispersal events within nodes 4 and 6 (Figure 3).
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Figure 4. Median-joining networks of G. rivuloides: (A) lineage I and (B) lineage II. The area of
each circle is proportional to the sample size for each Cyt b haplotype. Values between haplotypes
represent mutation steps, and the value of one mutation step is omitted.

3.2. Genetic Structure of Drainage Populations

The overall haplotype diversity (h) of G. rivuloides was 0.9204, and nucleotide diversity
(π) was 0.0112 (Table 1). Among the five drainages, the haplotype diversity was in the
range of 0.5541 (Yellow River) to 0.9600 (Luan River), and nucleotide diversity was in the
range of 0.0011 (Hai River) to 0.0025 (Luan River and Liao River).

Table 1. Genetic diversity for mitochondrial Cyt b of G. rivuloides.

Drainage No. of
Individuals

No. of
Haplotypes

No. of Private
Haplotypes

Haplotype
Diversity

Nucleotide
Diversity

Yellow River 102 8 7 0.5541 ± 0.0495 0.0024 ± 0.0015
Hai River 11 3 2 0.5636 ± 0.1340 0.0011 ± 0.0009

Luan River 25 17 15 0.9600 ± 0.0233 0.0025 ± 0.0015
Liao River 49 20 18 0.8469 ± 0.0412 0.0025 ± 0.0015

Amur River 99 40 40 0.8667 ± 0.0311 0.0018 ± 0.0011
Total 286 85 82 0.9204 ± 0.0103 0.0074 ± 0.0038

Total ΦST was 0.7783 (p < 0.001). Pairwise divergences among the five drainages
were high, except for the Luan and Liao rivers or the Yellow and Hai rivers (Table 2). The
SAMOVA analyses supported three groups, the Yellow + Hai rivers, the Luan + Liao rivers,
and the Amur River, as the optimum grouping with the maximum ΦCT of 0.7200.

3.3. Historical Demography

The population histories of sub-lineages I-A and I-B were analyzed separately because
of the strong phylogeographic structure in lineage I. For lineage II, overall population history
analysis was conducted because of the lack of phylogeographic structure (Figures 3 and 4).
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Table 2. ΦST (below diagonal) and Bonferroni-corrected p values (above diagonal) under pairwise
comparisons among the five drainages for G. rivuloides.

Yellow River Hai River Luan River Liao River Amur River

Yellow River 0.0000 0.0000 0.0000 0.0000
Hai River 0.4017 0.0000 0.0000 0.0000

Luan River 0.7459 0.7658 0.0005 0.0000
Liao River 0.7539 0.7588 0.0834 0.0000

Amur River 0.8145 0.8358 0.7991 0.7987

The values of Tajima’s D and Fu’s Fs were both negative and statistically significant for
the sub-lineages I-A (D = −2.441 (p = 0.000); Fs = −27.441 (p = 0.000)) and I-B (D = −2.266
(p = 0.000); Fs = −26.485 (p = 0.000)) and both positive and statistically insignificant for the
lineage II (D = 0.480 (p = 0.694); Fs = 0.947 (p = 0.705)).

The mismatch distributions of sub-lineages I-A and I-B exhibited unimodal patterns,
and lineage II showed a bimodal pattern (Figure 5A). The BSP analyses indicated that a
rapid population expansion occurred in the sub-lineage I-A ~0.118–0.068 Ma, sub-lineage
I-B ~0.177–0.140 Ma, and lineage II since 0.012 Ma (Figure 5B).

Figure 5. Demographic dynamics for G. rivuloides. (A) Mismatch distribution and observed and
predicted distributions are presented by grey columnar and black lines with dots, respectively.
(B) Bayesian skyline plot, mid-value, and 95% confidence interval of log10 (effective population size)
are shown in blue lines and shadows, respectively. Time intervals of demographical expansion are
shown in orange shadows.
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The ABC analyses (Table S7) demonstrated that sub-lineage I-A favored the DEINC
model (scenario V; PP = 0.5679 (95% CI: 0.5567–0.5791)) over the other models, indicating
that this sub-lineage underwent a bottleneck event followed by a population expansion.
Sub-lineage I-B favored the INC model (scenario III; PP = 0.9805 (95% CI: 0.9787–0.9823)),
suggesting it experienced a recent population expansion. Lineage II favored the INDEC
model (scenario IV; PP = 0.3480 (95% CI: 0.3425–0.3536)), indicating a population expansion
followed by a bottleneck event.

4. Discussion
4.1. Drivers of Lineage Divergence

In this study, lineages I and II of G. rivuloides were revealed to exhibit the pattern of
allopatric distributions (Figure 1), with the former’s origin in the Luan, Liao, and Amur
rivers and the latter’s origin in the Yellow River, based on the results of our ancestral
area reconstruction (Figure 3). Our timing of the splitting between the two major lineages
~0.98 Ma (95% CI: 1.34–0.66 Ma) coincided well with the timing of the Bohai Sea formation
during the late Lower Pleistocene [26,27]. Therefore, the divergence between lineages I
and II of G. rivuloides could be attributed to a vicariant event between the Yellow River
and other rivers caused by the formation of the Bohai Sea. Similarly, the splitting of
Rhodeus notatus populations between China and the Korean Peninsula dated back to the
late Lower Pleistocene in a previous study [72] could also result from geographic isolation
owing to the formation of the Bohai Sea.

In lineage I, our analyses detected the phylogeographic break of G. rivuloides
(Figure 1) between the Amur River (sub-lineage I-A) and the other two rivers (Luan and Liao
rivers; sub-lineage I-B). Our timing of the divergence between the sub-lineages I-A and I-B
(~0.83 Ma) was consistent with the timing of river capture between the upper Amur River
and Liao River during the late Lower–Middle Pleistocene [33]. The Amur River currently
drains into the Tatar Strait between the Okhotsk Sea and Japan Sea, and the Liao River flows
into the Bohai Sea. It suggested that a paleo-drainage connection could not have occurred
between the Amur River and Liao River by river coalescence during the Pleistocene period
of a substantial decline in sea level. Therefore, the splitting of sub-lineages I-A and I-B of
G. rivuloides could be attributed to a vicariant event between the Amur River and Liao River
via river capture.

In lineage II, our analyses revealed that sub-lineage II-C originated in the Yellow River
and subsequently moved into the Hai River (node 4 in Figure 3). Sub-lineage II-D was
restricted to the Yellow River, mainly to the Hetao Basin and its adjacent positions (localities
2, 3, and 5 in Figure 1). Our timing of the divergence between sub-lineages II-C and II-D
(~0.60 Ma) aligns with the timing of the episodic closure of “Hetao paleo-lake” during the
late Lower–Middle Pleistocene [39,41,42]. Geological evidence suggests that the “Hetao
paleo-lake” is not an inland lake but a river-connected lake of the Yellow River [38,39].
Therefore, the splitting of sub-lineages II-C and II-D of G. rivuloides could likely be a result
of a vicariant event between the upper and middle–lower reaches of the Yellow River
caused by the episodic hydrologically closed “Hetao paleo-lake” in the Hetao Basin. A
previous study argued that the existence of many isolated paleolakes in the early Lower
Pleistocene, before the formation of the modern Yellow River, played an important role in
shaping the current fish distribution in the Yellow River basin [73].

However, previous phylogeographic studies revealed the lack of phylogeographic structure
or secondary contact between divergent lineages of freshwater fishes living in the river basins
surrounding the Bohai Sea or across the Liao River and Amur River [18,29,34,35,74,75]. These
findings are inconsistent, with a clear phylogeographic break appearing in G. rivuloides. Different
phylogeographic patterns of freshwater fishes in northern China are likely due to different life
histories or dispersal abilities. More research is still needed to build a clear detailed picture of
how past landscape dynamics and species traits drive lineage divergence of freshwater fishes in
coastal drainages of northern China.
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4.2. Genetic Structure and Historical Demography

The genetic structure of G. rivuloides showed spatial subdivisions in the groups of
the Yellow + Hai rivers, the Luan + Liao rivers, and the Amur River. The high degree
of genetic differentiation among these three groups (ΦST: 0.7459–0.8358) suggests long-
term geographical barriers that prevented gene flow among the populations of different
regions [1]. There was a small ΦST value between the populations of Luan River and
Liao River, but only two haplotypes were shared by the two drainages. A similar pattern
was also found in the Yellow River and Hai River, with only one haplotype shared by
the two drainages. These results indicate the historically close relationships between the
populations of the Luan + Liao rivers, as well as between the populations of the Yellow
+ Hai rivers, suggested by a low level of contemporary gene flow [1]. G. rivuloides popu-
lations of these groups coalesced ~0.55 Ma and ~0.33 Ma (Figure 3). Geological evidence
has shown that the global sea level decreased by ca. 65 m ~0.55 Ma and by ca. 70 m
~0.33 Ma [76]. During the Middle Pleistocene, the Bohai Sea transgression occurred
~0.20 Ma [28]. Therefore, sea level drops during the Middle Pleistocene could have caused
a historical confluence of adjacent drainages, including the Luan and Liao rivers as well
as Yellow and Hai rivers, resulting in close genetic relationships between the populations
of G. rivuloides within the group of the Yellow + Hai rivers or the Luan + Liao rivers. The
historical exchange of freshwater fish populations among coastal drainages surrounding
the Bohai Sea as a result of paleo-drainage connection during the Upper Pleistocene sea
level drop has also been indicated by previous phylogeographic studies [29,34,74,75].

The genetic diversity of G. rivuloides displayed two patterns (Table 1). One was a pattern
with high haplotype diversity (h) and low nucleotide diversity (π) in the Luan, Liao, and
Amur rivers, suggesting these populations experienced recent rapid expansion or bottlenecks
followed by population expansion [77]. The other pattern of relatively low h and low π was
detected in the Yellow and Hai rivers and could be attributed to populations experiencing recent
bottlenecks [77]. Our ABC analyses further supported these interpretations that sub-lineage I-B
underwent population expansion and sub-lineage I-A and lineage II experienced population
decline before and after population expansion, respectively.

Our BSP analyses indicated that sub-lineages I-A and I-B underwent rapid population
expansion ~0.118–0.068 Ma and ~0.177–0.140 Ma, respectively. Lineage II began to expand
around 0.012 Ma. Our timing of G. rivuloides rapid population expansion in these three groups
coincides well with the periods of warm humid climate in East Asia ~0.18–0.17 Ma, ~0.13–0.1 Ma,
and ~0.015 Ma to the present due to intensified East Asian summer monsoons [78,79]. Therefore,
G. rivuloides may have undergone population decline caused by the cold and dry climate during
the glaciation of the Upper Pleistocene, but the subsequent warm and humid climate stimulated
the rapid population growth during the Upper Pleistocene interglaciation.

Two temporal patterns of rapid population expansion prior to the last glacial maximum
(LGM, 0.026–0.019 Ma) and after the LGM detected in different lineages of G. rivuloides
have also been reported in other East Asia freshwater fishes [10,80,81]. However, previous
phylogeographic research of freshwater fishes in East Asia offers the strongest evidence of
the pattern of rapid population expansion prior to LGM (e.g., [18,21,23,46,49]).

4.3. Implications for Conservation

The phylogeographic research evaluates the evolutionary history of species and the genetic
structure among populations, providing a valuable reference for the identification of intraspecific
conservation units and thus promoting scientific protection and management of unique genetic
diversity [82–85]. Although the overall nucleotide diversity of G. rivuloides was high, the
nucleotide diversity for each drainage was low (Table 1), pointing to the need to protect the
intraspecific genetic diversity of this species. The results of our SAMOVA analysis indicated
that three geographical units (Yellow + Hai rivers, Luan + Liao rivers, and Amur River) should
be considered as management units (MUs) [86]. According to Kang et al. [87], northern China
freshwater fishes were divided into two biogeographical areas—the Heilongjiang Region (Amur
River) and the 3H Plain Region (Luan, Liao, Yellow, Hai, and Huai rivers)—based on the
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freshwater fish fauna. This study identified two lineages in the 3H Plain Region, suggesting
substantial differences in the biogeographical divisions at the intraspecific level. Our two
identified MUs (Yellow + Hai rivers, Luan + Liao rivers) are located in the 3H Plain Region and
show a lack of phylogeographic structure between the Yellow River and Hai River as well as
between the Luan River and Liao River (Table 2). Therefore, our results highlight that the Yellow
+ Hai rivers, Luan + Liao rivers, and Amur River should be considered as three independent
areas for spatial conservation of G. rivuloides genetic diversity [88].

5. Conclusions

G. rivuloides exhibited a clear phylogeographic break across coastal drainages in
northern China. The splitting of lineages and sub-lineages could be attributed to geographic
isolation due to the formation of the Bohai Sea, river capture, and episodic hydrologic
closed paleolake during the late Lower–Middle Pleistocene. High haplotype diversity
(h) and low nucleotide diversity (π) in the Luan River, Liao River, and Amur River were
due to populations undergoing either recent rapid expansion or bottlenecks followed by
population expansion. Relatively low h and low π in the Yellow and Hai rivers could
be attributed to populations experiencing recent bottlenecks. Historical demographic
dynamics were likely due to climate oscillations during glacial–interglacial cycles of the
Upper Pleistocene. Three genetically distinct geographical units (Yellow + Hai rivers,
Luan + Liao rivers, and Amur River) of G. rivuloides should be considered separately for
conservation and management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14122146/s1, Figure S1: The time-calibrated Bayesian
phylogeny of Gobio rivuloides and its close relatives inferred from 13 mitochondrial protein-coding
genes; Table S1: Geography and Cyt b haplotype information of 34 sampling localities for G. rivuloides;
Table S2: Primer pairs used to amplify the mitochondrial genome of G. rivuloides; Table S3: The
detailed sources of mitochondrial genomes used in this study; Table S4: Sources, stratigraphic
information, and parameter setting of two fossil species used in this study; Table S5: Information of
parameters and priors for scenarios tested using DIYABC; Table S6: Model comparison for ancestral
area reconstruction of G. rivuloides implemented in BioGeoBEARS; Table S7: Posterior probability with
95% confidence interval in bracket for each scenario in DIYABC analyses. References [21,49,89–119]
are cited in the supplementary materials.
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