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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder classically characterized by
two neuropathological hallmarks: β-amyloid plaques and tau tangles in the brain. However, the
cellular and molecular mechanisms involved in AD are still elusive, which dampens the possibility
of finding new and more effective therapeutic interventions. Current in vitro models are limited
in modelling the complexity of AD pathogenesis. In this study, we aimed to characterize the AD
expression signature upon a meta-analysis of multiple human datasets, including different cell
populations from various brain regions, and compare cell-specific alterations in AD patients and
in vitro models to highlight the appropriateness and the limitations of the currently available models
in recapitulating AD pathology. The meta-analysis showed consistent enrichment of the Rho GTPases
signaling pathway among different cell populations and in the models. The accuracy of in vitro
models was higher for neurons and lowest for astrocytes. Our study underscores the particularly low
fidelity in modelling down-regulated genes across all cell populations. The top enriched pathways
arising from meta-analysis of human data differ from the enriched pathways arising from the overlap.
We hope that our data will prove useful in indicating a starting point in the development of future,
more complex, 3D in vitro models.

Keywords: Alzheimer’s disease; neurodegeneration; in vitro models

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that primarily affects cog-
nitive function and memory. Hypotheses of AD pathophysiology include amyloid cas-
cade, inflammation, vascular and infection factors [1]. AD is classically characterized by
three neuropathological hallmarks: β-amyloid plaques, tau tangles and neuroinflamma-
tion [2]. Plaques are extra-cellular and composed of aggregated Aβ. Amyloid can also
deposit in vessel walls, causing cerebral amyloid angiopathy, the most common cause of
hemorrhagic stroke in the old population [3]. Aβ can vary from 38 to 43 AA, depending on
the way it is cut. It originates from an amyloid precursor protein (APP) due to the activity of
three enzymes (α, β and γ secretases) that cut it at specific sites. The APP process can follow
either the amyloidogenic or the non-amyloidogenic pathway [4]. The latter is mediated by
α and γ secretases. Around 90% of the Aβ we produce is in the form of Aβ-40. The form
Aβ-42 has been found to be the most toxic and originates from the cutting of the amyloid
precursor APP by the β-secretase, and subsequently by the γ-secretase (amyloidogenic
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pathway). The longer the peptide, the higher the probability that it aggregates [5]. Aβ

deposition triggers homeostatic responses like the unfolded protein response (UPR), a stress
response that aims to restore protein homeostasis [6] and seems to be an innate immune
mechanism to a perceived or real immune challenge. Indeed, Aβ entraps pathogens and
elicits neuroinflammation to fight against them [7]. Until the early 2000s, Aβ was the only
focus of AD research, but tangles became more and more studied in subsequent years.
Tangles contain hyperphosphorylated tau, a microtubule-binding protein, which plays
an important role in intracellular transport [8]. Tangles are not uniformly present in the
brain. The entorhinal cortex, hippocampus, part of the neocortex and the nucleus basalis
of Meynert are affected. The first two underlie memory defects. The involvement of the
basal forebrain via cholinergic abnormality contributes to cognitive defects. The cholinergic
involvement distinguishes AD from normal aging, related to fronto-striatal involvement.
Thus, tangles better correlate with symptoms than Aβ plaques [9]. The tau spreading
pattern was thought to be the same in all AD patients and formalized by Braak stages [10].
However, recent data from tau-PET studies show different spatio-temporal trajectories [11].
In particular, a recent study identified four tau deposition trajectories: limbic-predominant,
medial temporal-lobe-sparing, posterior and lateral temporal patterns. No dominant pat-
tern was identified, although the limbic pattern was the most frequent. The third hallmark
of AD pathogenesis is inflammation. Microglia are the resident immune cells patrolling
the cerebral microenvironment. They account for around 10% of brain cells. They rapidly
respond to local damage and undergo a change in morphology when activated [12]. In AD,
many genetic factors are correlated with microglia. The most understood is Trem2. One of
their physiological roles is to prune synapses in development and modulate plasticity. The
reactivation of developmental pruning can be observed in the aged brain. Synapse loss is
an important early event in AD pathogenesis and microglia has been implicated in synapse
loss in AD [13]. Single-cell experiments have identified a subset of microglia called the
disease-associated subset (DAM). According to this model, microglia have a mechanism
that senses damage to neurons (NAMPs) via specific receptors like TREM2.

The typical AD patient has an amnestic phenotype that progresses to impairment in
language, spatial cognition, executive functions and working memory. The amnestic pre-
sentation is more typical of late-onset AD. Non-amnestic presentations are clinically more
common in early-onset disease. Neuropsychiatric symptoms often co-occur. Non-amnestic
phenotypes include: posterior cortical atrophy (also known as visual variant), in which
visuospatial deficits predominate; the logopenic phenotype, which is a primary progressive,
non-fluent aphasia with repetition difficulties; and a dysexecutive phenotype [14]. The
diagnosis of AD has evolved from being purely pathological, as it was considered at the
time of Alois Alzheimer, to purely clinical to purely biological (thanks to advancements in
biomarkers) [15]. Mild cognitive impairment (MCI) constitutes the earliest symptomatic
stage of AD, later progressing to overt clinical dementia as cognitive neurological signs be-
come apparent and increasingly affect daily functioning [15]. With only clinical parameters,
the diagnosis of AD was previously restricted only to the stage of dementia. Biomarker
research has shown that biomarkers are positive well before the clinical onset of disease,
thus stressing the importance of an AD continuum ranging from pre-clinical AD to MCI to
dementia [16]. AD genes can be divided into causal and risk genes. In the 1990s, genetic
studies discovered mutations in APP, PSEN1, and PSEN2, three genes involved in the
processing of the amyloid precursor protein (APP) [4,17]. Various animal models were
created to replicate amyloid pathology. These include vertebrate models like non-human
primate models and canine models that replicate spontaneous AD, rodents and zebrafish
models that enable the use of genetic tools and drug screening, and invertebrate models like
Drosophila, C. elegans and yeast [18]. Refs. [18,19] Early-onset familial AD represents only
a small percentage of all AD cases, which are mainly sporadic. Genetic variants have been
associated with sporadic AD; however, no single genetic association is fully deterministic.
Genetic studies of sporadic AD have challenged the neuron-centric view of the disease,
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suggesting that AD arises from alterations in cell–cell interactions in specific tissues of the
brain [19].

Ongoing research is focusing on cell-specific interventions for Alzheimer’s disease
(AD) that could potentially transform its treatment. These cell-specific interventions aim to
be more precise and effective, minimizing side effects compared to current AD treatments.
Specific interventions that are under development include, but are not limited to, Aβ-
targeted CAR T-cell therapy, tau-targeted gene silencing, and astrocyte-derived exosomes.
Although these interventions are in the early stages of development, they hold promise for
revolutionizing AD treatment and offer hope to those affected by the disease (reviewed
in [20].

Unfortunately, current in vitro models are limited in modelling the complexity of AD
pathogenesis [21], which, in turn, limits the possibility of identifying effective strategies
of intervention.

Bulk and single-cell transcriptomics have unveiled the intricate cellular diversity
and dynamics within aging and degenerating brains, notably in postmortem Alzheimer’s
disease (AD) samples. This approach has pinpointed disease-related gene networks and
pathways across various cell types. Despite the wealth of insights from these studies, the
number of overlapping differentially expressed genes (DEGs) is relatively low, largely due
to methodological differences and challenges in obtaining undamaged cells from post-
mortem brain tissue. To enhance the reliability of postmortem transcriptomic studies, it will
be necessary to address biological variability, optimize cell-isolation methods, standardize
cell clustering annotation, and incorporate spatial cell transcriptomics (reviewed in [22].

In this study, we aimed to characterize the AD expression signature by performing a
meta-analysis of multiple human datasets, including different cell populations from various
brain regions, and to compare cell-specific alterations in AD patients and in vitro models
to highlight the appropriateness and the limitations of the currently available models in
recapitulating AD pathology.

The meta-analysis showed consistent enrichment of the Rho GTPases signaling path-
way among different cell populations and in the models. Rho GTPases are a family of
proteins that play a crucial role in regulating cellular functions, such as cytoskeleton modu-
lation, growth cone and dendritic spine formation, and axonal guidance [23]. In the nervous
system, Rho GTPases are highly expressed, as they are involved in neuronal development
and synaptic plasticity. Notably, Rho GTPases have been implicated in neurodegenerative
processes, including AD. The deposition of extracellular plaques in AD brains leads to
the activation of the Rho-GTPases pathway. This activation subsequently triggers the
hyperactivation of GSK3beta, a kinase enzyme involved in tau hyperphosphorylation, tau
aggregation, microtubule instability, and actin modulation [24]. These events are hallmark
features of AD pathogenesis.

Studying human cells using in vitro model systems is key to enhancing our under-
standing of AD mechanisms and the development of effective treatments. Future studies
will need to recreate all major cellular components of the AD brain in a single in vitro model;
for example, through 3D cell cultures, the incorporation of synthetic immune systems and
the modelling of non-genetic factors such as sex and microbiome. We hope that our data
will prove useful in indicating a starting point for the development of future, more reliable,
in vitro models.

2. Materials and Methods

The NCBI transcriptomics database Gene Expression Omnibus (GEO) was searched
in September 2022 to collect transcriptomic datasets of human and model AD brain sam-
ples. Three datasets generated from in vitro AD models were retrieved, each modelling
a different cell type. GSE139643 for neurons, GSE187452 for microglia and GSE157461
for astrocytes (Table 1). In brief, GSE139643 included data from human neuroblastoma
SH-SY5Y cells exposed to 5 µM Aβ-(1−42) for 24 h [25]; GSE187452 included data from
human monocyte-derived microglial-like (MDMi) cells stimulated for 24 h to 500 nM stable



Genes 2023, 14, 2187 4 of 13

human Aβ1-42 oligomers [26]); GSE157461 was generated using primary human astrocytes
treated with 1 µM Aβ1−42 for 24 h [27]. Detailed experimental details can be retrieved
from the indicated references.

Table 1. Datasets used in the study for the in vitro models.

GEO Accession Model Description

GSE139643 Abeta-stimulated neuroblastoma SH-SY5Y cells

GSE187452 Abeta-stimulated human monocyte-derived microglia cells

GSE157461 Abeta-stimulated primary human astrocytes

For the human data, the human single-nucleus/single-cell RNA-seq datasets were
obtained from The Alzheimer’s Cell Atlas (TACA) [28]. The GSE148822 and GSE157827
datasets were used for the present study. The GSE148822 included transcriptomes from
post-mortem brain tissues of 10 AD donors and 8 controls. snRNA-seq was performed on
482.472 nuclei. For each donor, two brain cortical regions were analyzed: occipital cortex
(OC) and occipitotemporal cortex (OCT). The GSE157827 included transcriptomes from
post-mortem brain tissues of 12 AD donors and 9 controls. snRNA-seq was performed on
169.496 nuclei. For each donor, samples from prefrontal cortex (PFC) tissue were included.
The characteristics of the included datasets are summarized in Table 2.

Table 2. Datasets used in the study for the human AD.

GEO Accession Brain Region N. of Samples

GSE148822 Occipital cortex (OC) and
occipitotemporal cortex (OCT) 10 AD, 8 CTR

GSE157827 Prefrontal cortex (PFC) 12 AD, 9 CTR

The differential expression analysis of individual transcriptomic datasets was per-
formed using GEO2R and GREIN. For the microarray dataset, the Linear Model of Mi-
croarray Analysis (LIMMA) was used for the identification of the Differentially Expressed
Genes (DEGs). For the analysis of the RNA-seq, the negative binomial generalized linear
model, as implemented in edgeR, was used. A False Discovery Rate (FDR) q-value < 0.005
was considered the threshold of statistical significance. The Fisher’s inverse Chi-square
combined test was used for meta-analysis [29]. The following formula was used to combine
p-values from the datasets:

χ2(d f = 2K) = −2
k

∑
i=1

log(Xi)

where Xi represents the individual raw p-value for the ith gene and K represents the number
of considered p-values. Overall p-values for each gene were then obtained from the χ2

values and compared to the reference value (p = 0.05) to determine statistical significance.
We identified the list of overlapping genes between human data and the data from the
in vitro model for each cell type and the statistical significance of the overlap for the up
and down DEGs for each cell type was calculated using a modified Fisher exact Chi-square
test. A p-value < 0.05 was considered statistically significant.

Functional Enrichment Analysis of the identified overlap genes was performed using
the online software Metascape (v3.5.20230501) [30]. Metascape analysis relies on several
databases (Gene Ontology, KEGG, MSigDB, Reactome). Upregulated and downregulated
genes were analyzed separately. The workflow of the study is presented as Figure 1.
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Figure 1. Experimental design. “*” means an extremely significant difference (p < 0.05).

3. Results
3.1. Meta-Analysis of Human Alzheimer’s Disease Transcriptomic Data

The two human RNA-seq datasets GSE148822 and GSE157827, were meta-analyzed
for the identification of the upregulated and downregulated DEGs for each brain cell
population. The meta-analysis identified 1475 upregulated and 406 downregulated genes
for neurons, 592 upregulated and 98 downregulated genes for astrocytes, and 854 upregu-
lated and 186 downregulated genes for microglia. Enriched terms for excitatory neurons,
astrocytes and microglia are shown in Figure 2. The Rho GTPase signaling pathway was
enriched in all the meta-analyzed cell populations. Most of the enriched pathways were
related to the functional role of Rho GTPases (cytoskeleton organization and modulation,
cell projections’ regulation and intracellular transport) among all three cell populations.

Although it was not possible to meta-analyze inhibitory neurons data due to the lack
of multiple datasets, we included inhibitory neurons in the analysis for later comparison
with the model. A total of 6602 upregulated and 8301 downregulated genes were identified
for inhibitory neurons. Enrichment results are shown in Figure 2b.

3.2. Relevance of an In Vitro Model of AD Neurons

Excitatory and inhibitory neurons were separately analyzed. A total of 662 overlap
genes were found between human and in vitro model data for the excitatory neurons,
representing only 8.6% of the model genes. A significant overlap was observed for the
upregulated DEGs (p < 0.05) (Figure 3c). The most statistically significant enriched terms
obtained from the gene ontology and enrichment analysis are shown in Figure 4.

Among the upregulated DEGs characterizing the AD inhibitory neurons, we iden-
tified 2395 genes overlapping those from the in vitro model, representing 31.2% of all
the in vitro model DEGs (p < 0.05) (Figure 3d). Enriched pathways for the overlapping
upregulated genes in inhibitory neurons are shown in Figure 4. No overlap was observed
between the human and the in vitro model downregulated DEGs for both the excitatory and
inhibitory neurons.
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3.3. Relevance of an In Vitro Model of AD Astrocytes

Astrocytes showed a modest overlap between upregulated genes from human and
in vitro model data that did not reach statistical significance (26 genes, representing 1.9%
of model genes), as shown in Figure 3. Downregulated genes show a significant overlap of
eight genes, representing 0.6% of the in vitro model genes (p < 0.05).

3.4. Relevance of an In Vitro Model of AD Microglia

A total of 382 upregulated genes were found to be in common between the human and
in vitro model data, representing 4.5% of the model genes. Downregulated genes showed
an overlap of 68 genes, representing 0.8% of the in vitro model DEGs (Figure 3). Enriched
pathways among upregulated and downregulated overlap genes are shown in Figure 4. The
most enriched terms among all cell populations included pathways functionally related
to Rho GTPase signaling (microtubule-based transport, cytoskeleton organization and
cell projection organization), thus showing an overlap in the enriched pathway between
human and model genes, despite the low percentage of overlapping genes, as graphically
evident from the circle plots shown in Figure 3. The 20 most significantly upregulated and
downregulated human DEGs overlapping with the DEGs from the in vitro AD models are
presented in Table 3.
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Table 3. The 20 most significantly upregulated and downregulated human DEGs overlapping with
the DEGs from the in vitro AD models.

UP EXC.
NEURONS

UP INIB.
NEURONS

UP MI-
CROGLIA

DOWN MI-
CROGLIA

UP ASTRO-
CYTES

DOWN AS-
TROCYTES

RNF180 CLDN1 SSBP1 C7orf50 GABBR1 OSBPL9

PIK3IP1 RNF180 ARHGEF37 PRPSAP2 SDC4 ZNF91

FOXP1 SLC8A1-AS1 TRIM25 SP140 BTRC ZNF442

SREK1 COL12A1 SLC8A1-AS1 ARID3A GTF2H2 AUTS2

MSC-AS1 ZNF154 FRA10AC1 MAGT1 ZNF654 PCCA

MAPK1IP1L C11orf1 SLC7A6OS SUFU GBA TRIM2

RERG PIK3IP1 ARL17A DHTKD1 BCAP29 PHIP

SESN3 ARNT FAM13A PID1 TMED9 ARSG

TMEM232 PIAS2 OPRM1 FOXO1 STOML1

ZC3H15 MEGF10 TK2 ARID1B INTS2

CD109 GNA13 LINC02328 PFKFB4 SLC35F5

SYNJ1 TRPC4 DLST GRIPAP1 RPAP2

PDXDC1 CCNL1 MICU3 MAPKAPK3 KDSR

GRM8 SAV1 DNAH14 NEK6 TRIM44

SLC48A1 NT5E DIAPH2-AS1 RAB40C RPP30

DENND6B MTMR7 EFHC1 ARHGAP35 REX1BD

CFAP221 TNXB RNF217 RCAN1 CHST7

EMCN SEC14L2 AUTS2 SEMA4D PIAS1

PRKAA2 PTPRD G2E3 PGPEP1 DENR

SERP2 SREK1 ZNF718 ROCK2 DYM

4. Discussion

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that predom-
inantly affects the elderly, characterized by progressive cognitive decline, memory im-
pairment, and functional loss. Despite extensive research efforts, the precise etiology and
pathogenesis of AD remain elusive. Studying individual cell populations and their contri-
butions to AD pathogenesis is crucial for unraveling the complex molecular mechanisms
underlying the disease. In vitro models, which allow for the isolation and study of spe-
cific cell types, have emerged as indispensable tools in investigating neurodegenerative
disorders [31]. In this study, we conducted a comprehensive meta-analysis of publicly
available AD human transcriptomics datasets, and performed an enrichment analysis of the
differentially expressed genes. Additionally, we explored the accuracy of in vitro models
in recapitulating cell-specific pathogenic features of AD. Our findings shed light on the
relevance and limitations of in vitro models and highlight the need for more sophisticated
in vitro models to better represent the complexity of AD.

In vitro models have revolutionized biomedical research by providing controlled ex-
perimental systems to study biological processes and diseases. For neurodegenerative
disorders like AD, in vitro models offer the advantage of studying individual cell popula-
tions in isolation, enabling researchers to investigate the specific role of neurons, microglia,
astrocytes, and other cell types in disease pathogenesis. Furthermore, these models allow
for the high-throughput screening of potential therapeutic agents and the evaluation of
drug efficacy. However, it is important to recognize that in vitro models have inherent
limitations as they lack the intricate interactions between different cell types, cellular
microenvironments and external stimuli present in the complex in vivo setting.
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To gain a comprehensive understanding of the molecular landscape underlying AD,
we conducted a meta-analysis of publicly available AD human single-cell transcriptomics
datasets. Specifically, we analyzed different cell populations, including excitatory and
inhibitory neurons, microglia and astrocytes, to gain insights into their unique contributions
to AD pathogenesis.

Of note, some genes well-known to be expressed in neurons and microglia by the recent
supporting evidence were not accurately recapitulated in the models. For example, TREM2
expression in microglia was shown to play an important role in disease pathogenesis,
enabling these cells to sense neuronal damage [32]. TRIM11 was found to have an important
role in removing protein tangles and to be downregulated in AD neurons [33]. P38 MAPK
was found to regulate Aβ toxicity [34]. Both TRIM11 and p38 MAPK were not present
among the significant overlapped genes, raising concerns for future studies testing their
use as therapeutic targets.

Among the up-regulated genes identified in our meta-analysis, we observed a consis-
tent enrichment of the Rho GTPases signaling pathway in excitatory human AD neurons,
microglia, and astrocytes.

Rho GTPases, particularly ROCK2, emerge as key players in neurodegeneration. In
AD, ROCK2 inhibition shows promise in preserving synapse structure and promoting the
autophagic clearance of the pathological Tau protein.

Furthermore, Rho GTPases affect neurodegeneration through their role in regulating
the actin cytoskeleton. Cofilin-actin rods, implicated in early-stage neurodegeneration, are
formed during neuronal stress. In AD, cofilin dephosphorylation, triggered by Aβ, induces
Cdc42 activation and RhoA down-regulation, contributing to rod formation. Studies in AD
mouse models suggest that enhancing cofilin phosphorylation via the overexpression of
LIMK1 improves memory formation, underscoring the importance of Rho GTPase down-
stream effectors in neurodegeneration. The identification of the Rho GTPases signaling
pathway as being consistently enriched in multiple cell populations in our study high-
lights its potential as a therapeutic target for intervention. Several Rho GTPase inhibitors
are currently available and were tested in preclinical research. Early studies focused on
nonsteroidal anti-inflammatory drugs (NSAIDs), such as sulindac sulfide, ibuprofen and
indomethacin, which primarily function as cyclooxygenase (COX) inhibitors, and also exert
RhoA activity. In cell studies involving SH-SY5Y cells transfected with the Swedish mutant
APP695, and in the AD transgenic PDAPP mouse model, NSAIDs demonstrated their
ability to lower Aβ42 formation and inhibit RhoA activity. Another approach involved the
use of Rho kinase (ROCK) inhibitors, such as Y27632. This compound, originally identified
as an antihypertensive drug, has shown to be able to lower Aβ levels in 2-month-old
PDAPP mice and exhibited potential therapeutic effects. Moreover, NSC23766, a Rac1
inhibitor, which operates by preventing the interaction between Rac1 and its guanine
nucleotide exchange factors (GEFs), unveiled the capacity to decrease APP and Aβ levels
through APP gene regulation, suggesting its potential role in regulating Aβ metabolism.
Additionally, it demonstrated an ability to protect against Aβ42-peptide-induced cell death.
Along the same lines, another Rac1 inhibitor, EHT1864, efficiently altered APP metabolism
processing by selectively inhibiting γ-secretase metabolism. While RhoA and Rac1 have
received substantial attention, studies targeting the third member of the Rho GTPase family,
Cdc42, have been relatively limited. However, recent drug design and development efforts
have resulted in the discovery of several Cdc42 inhibitors, opening up a new avenue for
exploring the role of Cdc42 in AD pathogenesis. Overall, the identification of specific phar-
macological tools targeting the Rho GTPase pathway offers a viable means to investigate its
contribution to AD pathogenesis and novel potential therapeutic intervention (as reviewed
in [35]).

To assess the relevance and accuracy of in vitro models in recapitulating AD patho-
genesis, we compared the results of our meta-analysis with transcriptomics data obtained
from in vitro models of AD for each cell population. We found a relatively low number of
overlapping DEGs between human and in vitro model data, suggesting that the current
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in vitro models have limited fidelity in replicating the complexities of AD pathogenesis
observed in human brain tissue. However, our analysis revealed that in vitro models
showed a higher fidelity in modeling up-regulated genes in neurons compared to microglia
and astrocytes. On the other hand, the modeling of down-regulated genes was particularly
challenging across all cell populations. This suggests that current in vitro models may not
fully capture the complexity of gene regulation in the context of AD, especially as regards
the down-regulated pathways.

Our study highlights the pressing need for the development of more sophisticated
in vitro models that can better replicate the complexities of AD pathogenesis observed
in human brain tissue. Although in vitro models may not fully recapitulate the entire
disease complexity, they remain valuable tools for studying individual cell populations
and screening potential drugs. Efforts should be directed towards creating more advanced
in vitro models, such as brain organoids and 3D cultures, which can better mimic the
cellular interactions and environmental factors present in the brain microenvironment.

Additionally, integrating multiple omics data, including epigenetic and protein-level
alterations, holds promise in providing a more comprehensive understanding of the rel-
evance of in vitro models in AD research. Studying epigenetic changes, such as DNA
methylation and histone modifications, can shed light on the dynamic regulation of gene ex-
pression in AD. Similarly, analyzing protein-level alterations can reveal post-transcriptional
modifications that might not be evident in transcriptomics data alone.

Despite the valuable insights gained from our meta-analysis, our study suffers from
several significant limitations, particularly the limited number of datasets available for the
meta-analysis. The current scarcity of datasets, combined with the low representation of
cell populations and brain regions in our analysis, poses constraints regarding the breadth
and generalizability of our findings. This limitation highlights the necessity for future
studies to adopt a more inclusive approach by incorporating a diverse range of datasets,
accommodating a variety of cell types that play pivotal roles in AD pathogenesis. This
comprises, but is not limited to, the inclusion of endothelial cells and pericytes, given their
roles in both AD pathogenesis and the maintenance of blood–brain barrier integrity.

Expanding the dataset pool not only serves to increase the statistical robustness of our
findings but also ensures a more comprehensive exploration of the molecular landscape
of AD. Incorporating a broader range of brain regions, particularly those affected in AD,
such as the hippocampus and entorhinal cortex, is also strongly warranted. These brain
regions are known to undergo significant pathological changes in AD, and their inclusion
in analyses can provide a more detailed understanding of the disease’s progression.

In light of these points, future efforts should be directed towards actively collecting
and integrating additional datasets. This approach aims to enrich the diversity of our anal-
yses, enabling a more representative and insightful exploration of the molecular alterations
underlying AD. By addressing the current limitations in dataset availability, it is possible
to enhance the reliability and applicability of our present findings, ultimately achiev-
ing a more thorough comprehension of the complex molecular dynamics characterizing
AD pathogenesis.

Moreover, in the current study, we did not investigate the overlapping pattern of gene
expression modulation that occurs in AD patients and in animal models of the disease.
Future works will be devoted to analyzing how closely the cell-specific gene expression
modulation of the different available animal models mirror the transcriptional alterations
observed in AD patients.

Furthermore, our study focused solely on transcriptomics data, and an analysis of epi-
genetic components and protein-level alterations in AD in vitro models could enhance our
understanding of disease mechanisms. Integrating multiple omics data may uncover novel
regulatory networks and potential biomarkers that could be relevant to AD pathogenesis.

Another limitation of the present study comes from the use of SH-S5Y5 cells stimulated
with Aβ for comparison with both excitatory and inhibitory AD neurons. Originating from
neuroblastoma, SH-SY5Y cells carry unique characteristics associated with their tumoral
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phenotype and, despite efforts to induce differentiation, these cells fall short in achieving
a maturity level akin to adult human neurons. Therefore, SH-SY5Y cells have limited
reliability in resembling the diverse properties of excitatory and inhibitory neurons found
in the brain. Furthermore, their simplistic 2D culture systems lack the nuanced three-
dimensional structure crucial for replicating the complexity of the brain. In addition, being
a single-cell type model, they overlook the intricate interplay of the various neuron types
present in the brain, a crucial aspect of AD pathology.

To overcome the limitations of the current in vitro models, future research should focus on
advancing the complexity and fidelity of these models. Organoids [36], three-dimensional (3D)
cultures [37] and microfluidic devices represent promising avenues for the development of
more sophisticated in vitro systems. Organoids are self-organizing, multicellular structures
that recapitulate aspects of organ development and function, including the brain. They can
be derived from patient-specific induced pluripotent stem cells (iPSCs) and allow for the
study of complex cellular interactions and the three-dimensional architecture present in the
brain. Incorporating different cell types within organoids, such as neurons, astrocytes, and
microglia, could provide a more holistic representation of the AD brain microenvironment.

Similarly, 3D cultures enable the co-culture of different cell types in a three-dimensional
setting, allowing for researchers to investigate cell–cell interactions and cell responses in a
more physiologically relevant context. These models offer better insights into the cross-talk
between different cell populations and how their interactions influence disease progression.
Microfluidic devices, on the other hand, provide precise control over the microenvironment
surrounding the cells and can simulate the blood–brain barrier, enabling the study of
cell–cell interactions across this critical interface.

Moreover, the incorporation of patient-derived iPSCs into in vitro models holds great
potential for personalized medicine approaches in AD research. Patient-specific iPSCs can
be differentiated into various cell types affected by AD, providing a unique opportunity to
study individualized disease mechanisms and identify patient-specific therapeutic targets.

In parallel, exploring the use of co-culture systems that mimic the complex cellular
interactions within the brain microenvironment is crucial. AD pathogenesis involves a
delicate interplay between neurons, astrocytes, microglia, and other cell types. Understand-
ing how these interactions influence disease progression can open new avenues for drug
development and precision medicine in AD.

5. Conclusions

In conclusion, our meta-analysis of AD human transcriptomics data and investigation
of in vitro models shed light on the complexity of AD pathogenesis and the relevance of
current in vitro systems. The Rho GTPases signaling pathway emerged as a key player in
AD pathogenesis across multiple cell populations, warranting further investigation using
in vitro models and potential therapeutic targeting. While in vitro models provide valuable
insights into individual cell populations and drug screenings, their current limitations, par-
ticularly in modeling down-regulated genes and complex cellular interactions, emphasize
the need for more sophisticated models.

The future of AD research lies in the development of advanced in vitro models, such as
organoids, 3D cultures, and co-culture systems, which can better mimic the complexity of
the brain microenvironment. Additionally, the integration of multiple omics data, including
transcriptomics, epigenomics, and proteomics, could enhance our understanding of AD
pathogenesis and identify novel therapeutic strategies.

By combining insights from meta-analyses of human transcriptomics data and cutting-
edge in vitro models, we can work towards unraveling the intricacies of AD pathogenesis
and eventually pave the way for effective therapeutic interventions to combat this devas-
tating neurodegenerative disorder.
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