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Abstract: Sotos syndrome is a rare genetic disorder caused by haploinsufficiency of the NSD1 (nuclear
receptor binding SET domain containing protein 1) gene. No clinical diagnostic consensus criteria
are published yet, and molecular analysis reduces the clinical diagnostic uncertainty. We screened
1530 unrelated patients enrolled from 2003 to 2021 at Galliera Hospital and Gaslini Institute in Genoa.
NSD1 variants were identified in 292 patients including nine partial gene deletions, 13 microdeletions
of the entire NSD1 gene, and 115 novel intragenic variants never previously described. Thirty-two
variants of uncertain significance (VUS) out of 115 identified were re-classified. Twenty-five missense
NSD1 VUS (25/32, 78.1%) changed class to likely pathogenic or likely benign, showing a highly
significant shift in class (p < 0.01). Apart from NSD1, we identified variants in additional genes (NFIX,
PTEN, EZH2, TCF20, BRWD3, PPP2R5D) in nine patients analyzed by the NGS custom panel. We
describe the evolution of diagnostic techniques in our laboratory to ascertain molecular diagnosis,
the identification of 115 new variants, and the re-classification of 25 VUS in NSD1. We underline
the utility of sharing variant classification and the need to improve communication between the
laboratory staff and the referring physician.
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1. Introduction

Sotos syndrome (SoS) (OMIM 117550) is a rare genetic disorder whose prevalence
is estimated to be 1:14,000 live births [1,2]. It is characterized by pre- and postnatal over-
growth (height and/or head circumference ≥98th percentile), advanced age compared
to chronological age, delayed psychomotor development of varying degrees, and typical
craniofacial anomalies such as macrocephaly, prominent forehead, downslanting palpebral
fissures, and a pointed chin [1–3].

The growth pattern is especially increased in the early years of childhood [1]. Phe-
notypic overlap with other overgrowth syndromes exists, in particular with Weaver and
Malan syndromes [4,5].

From the literature data, facial dimorphism is the most stringent criterion for clinical
diagnosis [6–9].

However, no clinical diagnostic consensus criteria have yet been published for SoS
and clinical evaluation and expertise can be different from center to center.

Clinical diagnosis can be difficult because of the wide variability of the features and
the presence of cases described in the literature as “Sotos like” [10–12].
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Molecular analysis of the NSD1 gene (nuclear receptor binding SET domain containing
protein 1) reduces diagnostic uncertainty in patients with suspected SoS and allows for
diagnosis to be confirmed.

The NSD1 gene (MIM 606681) is mapped to 5q35.2–q35.3 and consists of 23 exons, the
first of which is noncoding. The open reading frame starts in the second exon, is 8088 bp
long, and encodes 2696 amino acids. There are different known transcripts of NSD1 [13–15].
Recently, we described two novel short NSD1 isoforms that are expressed in both healthy
individuals and in SoS patients [16].

NSD1 contains multiple functional domains including SET domain (Su(var) 3–9, En-
hancer of Zeste and Trithorax) (SET) and SET-associated (SAC) domains that together
mediate the histone methyltransferase activity of NSD1; a C5HCH and five plant home-
odomains (PHDs), which are implicated in chromatin regulation and are zinc finger–like
motifs characterized by cysteine and histidine residues as well as two proline-tryptophan-
tryptophan-proline (PWWP) domains that may mediate protein–protein interactions and
that are often found in proteins that act at the chromatin level [17,18].

NSD1 also contains two nuclear receptor interaction domains, NID-L and NID+L,
which are typical of those found in nuclear receptor corepressors and coactivators, respec-
tively [19].

The presence of these distinctive domains suggests that NSD1 is a histone-lysine
N-methyltransferase that acts as a transcriptional intermediary factor capable of both
negatively and positively influencing transcription, depending on the cellular context [13].

The NSD1 protein is also involved in the transcriptional silencing of developmentally
regulated genes during embryogenesis [18].

Recently, gene set enrichment analysis showed that NSD1 mutations induce the altered
expression of long noncoding RNAs and genes controlling the G2/M checkpoint involved
in neoplastic differentiation [20].

SoS is caused by a wide spectrum of pathogenic variants (truncating, missense, splice-
site variants, partial gene deletions, and 5q35 microdeletions) that result in haploinsuffi-
ciency of the NSD1 gene [5,21].

More than 500 variants in the NSD1 gene are reported in the Human Gene Mutation
Database (HGMD) and in the Leiden Open Variation Database (LOVD).

The large majority of NSD1 abnormalities occur de novo and there are very few
familial cases with autosomal dominant inheritance [22].

It has further been shown that there are some ethnic differences in the prevalence of
different types of mutations. In particular, microdeletions involving the NSD1 gene are very
frequent in Japanese patients with SoS [23,24], and this finding is not frequently observed in
non-Japanese populations, where intragenic point mutations are highly prevalent [7,24–29].

In this study, we report on the molecular analysis of the NSD1 gene performed
for diagnostic purposes on 1530 unrelated patients enrolled from 2003 to 2021 at Galliera
Hospital (2003–2017) in the Human Genetics Laboratory, recently moved to Gaslini Institute
(2018–2021) in Genoa.

We explicate the evolution of over 18 years of diagnostic activity in SoS in our diagnos-
tic laboratory, describe 115 NSD1 new variants never previously reported in the literature,
detail the re-classification of 25 missense VUS, and identified nine patients carrying a
pathogenetic variants in different genes from NSD1.

2. Materials and Methods
2.1. Patients

A total of 1530 Caucasian subjects with molecular investigation performed between
June 2003 and June 2021 were recruited. This sample includes patients with clinical sus-
picion of Sotos syndrome, Sotos-like cases, and some cases of non-specific overgrowth
that did not meet all the classical Sotos clinical inclusion criteria, since the activity was
performed in the diagnostic laboratory part of the National Health System (NHS).

Informed consent and clinical data were obtained from all patients.
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Clinical inclusion criteria for NSD1 gene testing included the following conditions:

1. Typical facial “gestalt”;
2. Height above the 97th percentile (overgrowth);
3. Head circumference above the 97th percentile (macrocephaly);
4. Learning disability;
5. Congenital anomalies or malformations.

2.2. History of the Diagnostic Analysis Workflow

Considering the long time period in which this activity was performed, we would like
to specify the evolution of the diagnostic workflow over the last 18 years (Figure 1). Across
the years, fluorescent in situ hybridization (FISH) was replaced by array-comparative
genomic hybridization (a-CGH), denaturing high-performance liquid chromatography
(DHPLC) by Sanger analysis. Since 2017 to date, next generation sequencing (NGS) is
the first-tier test for variant identification in Sotos patients. Sanger sequencing and mul-
tiplex ligation-dependent probe amplification (MLPA) analysis are still used to confirm
pathogenetic variants identified by the NGS approach.
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Figure 1. Workflow analysis. We reported the schematic representation of the whole study strategy
used from 2003 to 2021. Several colors represent the different strategies of investigation in the
18 years of laboratory analysis.

2.3. Genomic DNA Extraction

Genomic DNA (gDNA) was obtained from peripheral blood cells using the DNA Mini
Extraction Kit (Qiagen, Hilden, Germany), the EZ1 DNA Blood Kit on an EZ1 Advanced
XL automatic extractor (QIAGEN GmbH, Germany), or QIA symphony S (Qiagen, Hilden,
Germany) following the manufacturer’s instructions. DNA concentration was estimated
by the spectrophotometric method for Sanger sequencing and MLPA and with the Qubit®
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dsDNA HS Assay Kit (Thermo Fisher Foster City, CA, USA) on a Qubit® 2.0 Fluorometer
for NGS analysis.

2.4. Microdeletions and Intragenic Deletion Identification

The search for microdeletions and intragenic deletions was performed until 2017 with
different technical approaches:

• FISH;
• MLPA;
• DHPLC;
• Direct Sanger sequencing.

2.4.1. FISH

Since August 2008, the first step for the identification of microdeletions of the 5q35.3
region was represented by FISH analysis with PAC RP1-118M12 encompassing the NSD1
gene [30]. In the presence of a deletion, FISH analysis was extended to probes RP11-
147K7 and RP11-1006E8. FISH was performed as described by Lichter and Cremer (1992).
Post-hybridization washing was performed in 0.1× SSC at 60 ◦C for 15 min and 4× SSC,
Tween-20 0.1% at 42 ◦C for 15 min. Hybridization was detected by Avidina-Cy3 (Amer-
sham Biosciences, Little Chalfont, Buckinghamshire, UK). Slides were counterstained with
4′,6-diamidino-2-phenylindole (DAPI) (200 ng/mL) and analyzed by fluorescence micro-
scope Olympus BX70 equipped with a cooled CCD Video Camera Image Point, Photo-
metrics; image analysis was carried out with PSI MacProbe software (Applied Imaging,
Newcastle-Upon-Tyne, UK).

2.4.2. MLPA

MLPA analysis, unlike FISH, recognizes both the deletions of the entire NSD1 gene
and microdeletions of one or more exons.

The analysis was carried out on genomic DNA with the MLPA SALSA P026 Kit
(MRC-Holland, Amsterdam, The Netherlands). All reactions (denaturation, ligation, and
PCR) were performed following the manufacturer’s instructions. PCR products were run
on a 3130xl automated sequencer (Applied Biosystems, Foster City, CA, USA) and data
were analyzed using Genemapper v 3.2 and Coffalyser v.140721.1958 software (Applied
Biosystems, Foster City). In selected cases, Array-CGH analysis was carried out to define
the size and the breaking point of the deletions.

Array-CGH was performed using Superprint G3 CGH 8 × 60 K (Agilent Technolo-
gies, Santa Clara, CA, USA) according to the manufacturers’ protocol. Data were an-
alyzed by Agilent Cytogenomics 4.0.3.12 software (Agilent Technologies, Santa Clara,
CA, USA). All genomic positions were reported according to the human genome
assembly (GRCh37/hg19).

2.4.3. DHPLC

Eight hundred and fifteen patients were evaluated for intragenic mutations of NSD1
by DHPLC. The mutation analysis consisted of a first screening through DHPLC followed
by the sequencing of only the fragments that showed a mobility shift.

The 22 coding exons and intron–exon boundaries were screened in 37 fragments. Exons
longer than 470 bp were amplified using overlapping primer pairs. Aliquots of 50 ng of
genomic DNA were amplified in a 25 mL reaction mix including 1× PCR Buffer (Invitrogen
by Life Technologies Ltd., Paisley, UK), 1.5 mM MgCl2 (Invitrogen by Life Technologies
Ltd., Paisley, UK), 200 mM dNTPs, 0.4 mM primers, and 0.5 U of Taq Platinum (Invitrogen
by Life Technologies Ltd., Paisley, UK); all fragments were amplified using the following
PCR conditions: 94 ◦C for 4 min, followed by 40 cycles at 94 ◦C for 30 min, 58–60 ◦C for
30 s, 72 ◦C for 30 s, and 72 ◦C for 7 min. Patients were screened through the 37 fragments
by DHPLC on the WAVE Nucleic Acid Fragment Analysis System (Transgenomic); the
DHPLC analysis was performed using from one to three temperatures per fragment.
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2.4.4. Sanger Sequencing

Four hundred and seventy-six patients were evaluated for intragenic mutations by
Sanger sequencing. The sequencing was performed using the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems; Thermo Fisher Scientific, Inc.) and the ABI
3130xl and 3730 Automated Sequencers (Applied Biosystems, Foster City, CA, USA). The
sequencing results were interpreted using Sequencing Analysis software updated to the
last available version at the time of sequencing.

2.5. NGS

Since 2017, intragenic mutations and large genomic rearrangements (LGRs) have been
identified by NGS using a Sophia Custom Panel (ID: COMS_2346) (SOPHIA Genetics,
Saint-Sulpice, Switzerland).

The panel targets the entire coding region and the exon–intron boundaries (+/−5 bp)
of the NSD1 gene (NM_022455.4) and of another 29 genes associated with overgrowth:
AKT1 (NM_005163.5), AKT2 (NM_001626.5), AKT3 (NM_005465.4), APC2 (NM_005883.2),
BRWD3 (NM_153252.4), CCND2 (NM_001759.3), CHD8 (NM_001170629.1), DIS3L2 (NM_152383.4),
NMT3A (NM_022552.4), EED (NM_001308007.1), EZH2 (NM_004456.4), GPC3 (NM_001164617.1),
GPC4 (NM_001448.2), HERC1 (NM_003922.3), HIST1H1E (NM_005321.2), IGF2 (NM_000612.5),
MTOR (NM_004958.3), NFIX (NM_001271044.2), PDK1 (NM_001278549.1), PDK2 (NM_002611.4),
PIK3CA (NM_006218.2), PPP2R1A (NM_006243.3), PPP2R5D (NM_006245.3), PTCH1
(NM_000264.4), PTCH2 (NM_003738.4), PTEN (NM_000314.8), SETD2 (NM_014159.6),
SUFU (NM_016169.3), TCF20 (NM_005650.3).

The panel was validated on a total of 12 positive samples with known mutations
ranging from single base substitutions to microdeletions to deletions of whole exons.

Through NGS, 239 patients with clinical suspicion of SoS or childhood overgrowth
were evaluated.

2.5.1. Library Preparation and NGS Sequencing

Two hundred nanograms of genomic DNA of patients was enriched using the Sophia
Custom Panel according to the manufacturer’s instructions.

The capture-based target enrichment of 30 overgrowth related genes and the library
construction protocols were carried out exclusively with the automated procedure imple-
mented on the STARlet platform (Hamilton Company, Reno, NV, USA).

Library quantification was carried out with fluorometric quantitation using the Qubit
dsDNA High Sensitivity Kit (ThermoFisher Scientific, Waltham, MA, USA).

The sequencing process was performed on the Illumina MiSeq system (Illumina Inc.,
San Diego, CA, USA).

In the routine of our medium-throughput laboratory, the number of samples per
preparation was 24, which were run onto a 600-cycle format V3 flow-cell, sequenced via
the Illumina MiSeq platform according to the Illumina and SOPHiA GENETICS protocols.

2.5.2. NGS Data Analysis

The sequencing data were simultaneously processed for single nucleotide variants
(SNVs), indels, and copy number variations (CNVs) using the SOPHiA DDM software
(Sophia Genetics, Saint-Sulpice) updated with the last available version at the time
of sequencing.

Sequencing reads were filtered for low-quality reads, trimmed for adapter sequences,
and tagged as belonging to the specific patient according to the barcode.

Using the spectrum of the expected mutations in the training set, the parameters
for variant calling were established to minimize the number of false-positive results and
guarantee the characterization of all the true-positive calls. The following filter thresholds
were considered: minimum allele frequency for single-nucleotide polymorphism (SNP)
and indel (SNP% ≥ 20), phred-like quality score of the called variant (Qcall ≥ 20) and
depth of coverage (Depth ≥ 20).
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Variants were annotated according to nomenclature used by the Human Genome
Variation Society (http://www.hgvs.org), accessed on 30 May 2022.

2.6. Variant Classification and Database Repository

All the detected sequence variations were submitted to the following databases: Hu-
man reference Genome GRCh37-hg19, Human Gene Mutation Database (HGMD), db-
SNP151, ClinVar Database [31], Leiden Open Variation Database (LOVD) [32], Alamut
(v.2.15), Varsome Database, and were searched for in the literature data.

The evaluation of the novel variants was based on the location, type, and evolutionary
conservation of mutated amino acids, the biophysical and biochemical differences between
wild type and mutant amino acids, and the in-silico analysis of the mutant sequence protein
and inheritance pattern.

In silico analysis to predict the potential impact of the variants on the structure and
function of protein was performed using the following tools: PolyPhen2 [33], SIFT, and
Mutation Taster [34].

Starting from 2015, the variants identified were classified into five categories: pathogenic
(5), likely pathogenic (4), variant of uncertain significance (3), likely benign (2), and benign
(1), according to the guidelines provided by European Journal of Human Genetics [35] and
interpreted using the guidelines provided by the American College of Medical Genetics
and Genomics (ACMG) [36].

All of the novel variants detected by NGS and classified as pathogenic or likely
pathogenic were confirmed by bidirectional Sanger sequencing. Novel NSD1 variants have
been deposited in the LOVD (https://grenada.lumc.nl/LOVD2/mendelian_genes/home.
php?select_db=NSD1), accessed on 6 June 2020.

2.7. Reclassification of VUS Variants

Novel VUS out of 115 NSD1 variants not reported in the literature were reviewed and
reclassified according to their familial segregation, where available, and to the ACMG/AMP
guidelines [36] based on the literature, public databases such as LOVD, VarSome [37], and
ClinVar. At the end, the initial VUS interpretation and the new classification were compared.
Statistical analysis was performed with GraphPad Prism software version 9.0. Categorical
variables, given as a percentage of group totals, were analyzed through chi-square with
rate correction. A p-value less than 0.05 was considered statistically significant.

3. Results

The molecular analysis allowed for the identification of 292 patients (281 with clinical
suspicion of SoS and 11 with not-specific-overgrowth) with one NSD1 variant out of
1530 patients analyzed, with a detection rate of 19.1% (N = 292/1530).

Over the years, the detection rate has changed according to the molecular method used.
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3.1. Intragenic Novel Variants of NSD1 Gene

The present study was particularly focused on 115 intragenic novel variants in the
NSD1 gene, never previously described in the literature and reported for the first time in
119 patients of the study here discussed (7.8%; N = 119/1530).

Among the new identified variants, 42% (N = 48/115) were insertions and/or deletions
with frameshift consequences; 30% (N = 35/115) were missense; 15% (N = 17/115) were
nonsense; 6% (N = 7/115) were splice site alterations; 3.5% (N = 4/115) were intronic; 1.7%
(N = 2/115) were non-frameshift deletion; 1.7% (N = 2/115) were synonymous variants.

From our data, variants were spread fairly evenly throughout the gene between exons
4 and 23; nevertheless, in exon 5, there was a cluster of truncating variations (43.07%;
N = 28/65) and between exons 13 and 23 in the C-terminal half of NSD1, there were
missense variations in highly conserved functional domains (77.1%; N = 27/35) (Figure 3).
The above results are aligned with the data reported in Douglas et al. (2003) [7].
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Segregation analysis was performed by the direct sequencing of parents when available.
In three cases (Sotos 916, Sotos 924, Sotos 526), we identified a familial variant, in

particular two paternal inheritance and one maternal inheritance. We also identified a de
novo variant in two monozygotic twins (Sotos 590 and Sotos 591).

Moreover, five variants (three frameshift, one missense, and one synonymous) were
identified in more than one patient, in non-consanguineous families, as already reported in
the literature for other variants [38].

The genotypic characteristics of the 119 patients in which a NSD1 novel variant was
identified are reported in Table S1 in the Supplementary Materials.

3.2. Reclassification of VUS in NSD1 Gene

Out of the 115 NSD1 new variants identified, 32 variants were classified as VUS in the
original records.

After genotyping the parents and re-analysis, 25/32 (78.1%) missense variants changed
pathogenicity class: 5/32 (15.6%) were reclassified as likely benign because it was inherited
from not affected parents and 20/32 (62.5%) as likely pathogenic because identified as
de novo in proband. This shift toward classes was considered as statistically significant
(p < 0.01). We found that only missense variants classified as VUS changed their classification
across the years (Table 1). Finally, we observed that two variants (c.914A > G; c.947C > A),
previously classified as VUS following the segregation analysis and re-interpretation,
changed in class−2 because it was inherited from not affected parents.

Table 1. Missense VUS reclassification.

Unchanged
N/T (%)

Reclassified
N/T (%)

p-Value
(Chi-Square)

New
Class−2

New
Class−4 Unchanged

7/32 (21.8%) 25/32 (78.1%) <0.01 5 20 7

3.3. Microdeletion of the 5q35 Region and Intragenic Deletion

Considering all the 1530 total patients with suspected Sos or overgrowth, we identified
13 subjects with 5q35 de novo microdeletions encompassing the entire NSD1 gene.

In all patients, NSD1 is present in a single copy (haploinsufficiency), showing a
deletion of the gene in the heterozygous state.

For four patients with 5q35 microdeletion, FISH was the only analysis performed,
while nine patients were analyzed by MLPA and array−CGH to precisely define the size of
the deletions, as reported in Table 2.

Table 2. Chromosomal arrangement in SoS patients.

Case Chromosomal
Arrangement Size Locations Inheritance

Sotos 764 357 Kb 5q35.2 (176,378,453–176,735,244)del De novo

Sotos 780 1.8 Mb 5q35.2 (175,576,602–177,422,760)del De novo

Sotos 840 1.8 Mb 5q35.2 (175,509,208–177,355,366)del De novo

Sotos 646 2.2 Mb 5q35.3 (175,243,487–177,501,801)del De novo

Sotos 753 1.1 Mb 5q35.3 (175,719,197–176,883,275)del De novo

Sotos 848 1.98 Mb 5q35.2 (175,437,847–177,422,760)del De novo

Sotos 703 1.3 Mb 5q35.3 (175,509,208–176,837,404)del De novo

Sotos 859 2.2 Mb 5q35.3 (175,347,741–177,587,471)del De novo

Sotos 912 1.8 Mb 5q35.2q35.3 (175,576,602–177,422,760)del De novo
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The deletion size resulted in being very variable, ranging from 0.37 to 2.2 Mb as
reported in the Japanese population [29,38].

In 10 patients, we identified nine different exonic deletions, as reported in Table 3.

Table 3. Intragenic deletions.

Intragenic Deletion (hg19) Case Bibliography

deletion exon 4 Sotos 1285 -

deletion 5′UTR to exon 15 Sotos 800 -

deletion 5′UTR to exon 3 Sotos 1236 -

deletion exon 2–3 Sotos 122 [38]

deletion exon 5–15 Sotos 118 -

deletion exon 7 and exon 18 Sotos 432 -

deletion exon 11 to exon 14 Sotos 658 -

deletion exon 15 Sotos 530/Sotos 1372 [39]

deletion exon 20 Sotos 1003 -

The deletion of exons 2 and 3 was already described by Tatton Brown K et al. in
2005 [39].

The deletion of exon 15 was recurrent in two different patients (Sotos 530 and
Sotos 1372) and was published in 2011 in the India Academy of Sciences Journal by
Piccione M et al. [40].

3.4. Intragenic Variants Identified in NFIX, PTEN, EZH2, TCF20, BRWD3, and PPP2R5D Genes
in Patients with Overgrowth

Since 2017, we have screened the patients by NGS on 29 genes implicated in over-
growth, in addition to NSD1. Nine patients out of 239, referred as overgrowth syndrome,
were analyzed through NGS, which resulted in carrying a mutation in a different gene than
NSD1 (Table 4).

We identified five novel variants neither previously described in the literature nor
reported in common databases and four mutations already present in the public database.

In detail, we detected two novel frameshift variants in the NFIX gene (c.664del;
p.Val222Tyrfs*30 and c.1021del; p.His341Thrfs*52), one missense novel variant in the
EZH2 gene (c.449T > C; p.Ile150Thr), one novel nonsense in the BRWD3 gene (c.4252C > T;
p.Arg1418*), and one novel nonsense in the TCF20 gene (c.3274C > T; p. Gln1092*).

Based on the ACMG criteria, these variants were classified as class 5-pathogenic or
class 4-likely pathogenic variants.

Among the four already described mutations, the nonsense variant c.1003C > T;
p.Arg335* in the PTEN gene was present in dbSNP (rs121909231) with an allelic frequency
of 0.0007%, and in the HGMD-(CM971278- Cowden 1 Syndrome) and was described as
class 4-likely pathogenic; the missense variant c.83T > C; p. Ile28Thr was in a func-
tional domain, reported in the dbSNP database (rs1355570425) with an allelic frequency of
0.00040% and was classified as class 4-likely pathogenic. Two missense de novo variants
(758G > A; p.Arg253Gln and c.1258G > A; p.Glu420Lys) in the PPP2R5D gene were
present in the dbSNP database (respectively, rs1131691266 with an allelic frequency of
0.0008%, and rs863225080 with no frequency reported) and were classified as class
5-pathogenic. The c.1258G > A was also described in HGMD (CM1513245-Disease
Mutation-Intellectual Disability).
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Table 4. Nine pathogenic or likely pathogenic variants identified in other genes in the present study.

Case Clinical
Suspicion NM Gene Nucleotide

Change Protein Change Location hg19 Type of
Mutation Inheritance Protein

Domain Varsome/ACMG Criteria

OG008 OG NM_001271043.2 NFIX c.664del p.Val222Tyrfs*30 ex 4 FS de novo / Pathogenic
(PVS1−PM2-PP3)

19-MOG-0052 OG NM_001271043.2 NFIX c.1021del p.His341Thrfs*52 ex 7 FS de novo / Pathogenic
(PVS1−PM2-PP3)

20-MOG-0048 sWS NM_004456.4 EZH2 c.449T > C p.Ile150Thr ex 5 MS de novo / Likely Pathogenic
(PM2−PM1-PP2-PP3)

OG30 OG NM_153252.4 BRWD3 c.4252C > T p.Arg1418* ex 38 NS n.p. Bromodomain Pathogenic
(PVS1−PM2-PP3)

19-MOG-0041 OG NM_005650.3 TCF20 c.3274C > T p.Gln1092* ex 1 NS de novo / Pathogenic
(PVS1−PM2-PP3)

20-MOG-0002 sSoS NM_000314.8 PTEN c.83T > C p.Ile28Thr ex 2 MS n.p. PTP Likely pathogenic
(PM1−PM2-PP2−PP3)

20-MOG-0021 OG NM_000314.8 PTEN c.1003C > T p.Arg335* ex 8 NS n.p. / Pathogenic
(PS3−PVS1−PP5−PM2−PP3)

OG41 OG NM_006245.3 PPP2R5D c.758G > A p.Arg253Gln ex 7 MS de novo B56 Pathogenic
(PM2−PM5−PM1-PP2-PP3)

21-MOG-0010 OG NM_006245.3 PPP2R5D c.1258G > A p.Glu420Lys ex 12 MS de novo B56 Pathogenic
(PP5-PM2-PP2-PP3)

Abbreviations: n.p. = not performed; ex = exon; MS = missense; NS = nonsense; FS = frameshift; sSoS = suspected Sotos syndrome; sWS = suspected Weaver syndrome; OG = overgrowth.
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4. Discussion

This work reports on the results, over the years, of the molecular analysis of the NSD1
gene in a cohort of 1530 probands with clinical suspicion of SoS or overgrowth.

Briefly, out of the 1530 patients in our cohort, 815 were analyzed by DHPLC; 476 by
Sanger sequencing; and 239 by NGS. This approach allowed for the identification of a
NSD1 variant in 292 patients, with a detection rate of 19.1%. Our detection rate was much
lower than the one described in the literature (85%) by Tatton Brown [5].

It is important to emphasize that the selection of cases based on a good clinical
diagnosis is crucial in determining the detection rate. For this reason, in a referral diagnostic
laboratory, the detection rate is significantly lower (13%) [41] compared to that in strictly
diagnosed patient groups (90–93%) [28,39].

Later on, the introduction of the NGS technique lowered the costs of diagnostic tests,
allowing for the introduction of gene panels associated with overgrowth and intellectual
disability (OGID), which, on one hand, have increased the sensitivity of the test, but have
also lowered the stringency of the clinical criteria to undergo molecular testing, keeping
the detection rate of NSD1 still low (around 20%).

In order to facilitate and speed up the diagnosis, we underline the utility of shar-
ing variant classification and we report 115 intragenic variants of the NSD1 gene not
yet described.

However, this implies a continuous effort to establish a direct communication between
the laboratory and the referring physician.

The mutational spectrum observed in our study mainly consisted of single nucleotide
variants spread fairly evenly throughout the gene. Nevertheless, a clustering of truncating
mutations in exon 5 (41.5%) and of missense variants in highly conserved functional
domains between exons 13 and 23 of the NSD1 protein (77%) were present. Half of the
identified variants are protein truncation variants (PTVs) (56.5%) and 30% are missense, of
which a third involves a cysteine residue that plays an important role in correct protein
refolding [42].

Overall, only six variants were recurrent in more than one patient, further confirming
the almost “private” nature of the NSD1 mutations.

Out of the 115 NSD1 new variants identified, the laboratory records showed the
presence of 32 VUS. After genotyping the parents and after the re-analysis, 25/32 VUS
changed pathogenicity class and were re-classified and re-interpreted as class 2 or class 4,
while seven of them did not change the classification level.

The identification of VUS is common and remains a challenge in clinical practice,
mostly because of the possibility of changing into the phatogenic class, as reported in 62.5%
of our cases (20/32). These data confirm the importance of periodical reinterpretation of
VUS with the intent of recontacting patients and their physician to inform them during
a follow-up.

For this scope, we underline the utility of sharing variants to facilitate reclassification
and possible re-interpretation to also speed up the diagnosis in other centers, with a
continuous effort to establish a direct communication between the laboratory and the
referring physician.

The reclassification may have a potential crucial impact on families, ensuring a deeper
understanding of the outcome of genetic testing. For this reason, the possibility that
a variant can be reclassified over time should be raised with patients during pre-test
counseling and consent.

Our results, in agreement with other European studies, confirm that the intragenic
point mutations of the NSD1 gene are the main cause of SoS in Western patients and that
the condition appears as a haploinsufficiency syndrome [7,24–28].

About 9% of individuals with a SoS of European ancestry and 50% of Japanese ancestry
have a specific deletion of the chromosomal region flanking the NSD1 gene [43].
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In our series of patients, the deletions of the whole gene occurred in only 1%
(13 subjects) of patients with suspected SoS, confirming that the microdeletions are rare in
non-Japanese patients.

Partial NSD1 deletions were also present in 10 individuals, representing only 1% of
our subjects, a slightly lower value than the 5% reported in the literature [44].

SoS usually arises from NSD1 de novo mutations in the affected subject, as also
confirmed by 26.9% (32/119) of the cases in the present study. Less than 2% of subjects in
familial cases (2.6% in our clinical cases) with autosomal dominant transmission have been
reported [45].

It has been suggested that this lack of family cases could be related to the presence of
intellectual disability and a underlying defect in fertility associated with NSD1 mutations,
which can affect the possibility of having offspring [22].

Furthermore, the literature data demonstrate that familial cases generally present
missense mutations.

In the present study, two familial cases were caused by missense mutations and only
one by a splice site mutation.

Sotos syndrome is the most common syndrome within the overgrowth with intellec-
tual disability (OGID) category [21]. However, a sharp differential diagnosis with other
syndromes in this category including Weaver syndrome (OMIM*277590), Bannayan–Riley–
Ruvalcaba syndrome (OMIM 138350), Malan syndrome (OMIM #614753), and BRWD3-
related disorder (MIM: 300553) is mandatory.

The introduction of NGS in the molecular diagnosis of human overgrowth syndromes
allowed us to identify nine intragenic novel mutations in six different genes associated
with OGID and to explain about 4% (9/239) of cases of this cohort (analyzed with NGS),
which resulted in being negative for mutations in the NSD1 gene. To note, eight of
these nine patients had been referred with clinical suspicion of overgrowth and not as
suspected Sotos.

In particular, we identified two novel mutations in the NFIX gene on chromosome
19p13 in two patients. NFIX encodes nuclear factor I/X and was reported as a causative
gene for Sotos-like phenotypes (known as Sotos syndrome 2 or Malan syndrome (OMIM
#614753) [46]. Additionally, mutations in this gene can cause Marshall–Smith syndrome
(OMIM 602535), a syndrome of advanced bone age and increase length at birth. Malan and
Marshall–Smith are two syndromes that present a different phenotype, with mutation in
the same NFIX gene [4,47].

Moreover, we observed in one patient with clinical suspicion of SoS and in one
with overgrowth, two novel mutations in PTEN. This gene is a tumor suppressor that is
implicated in the phosphoinositol 3-kinase (PI3K/AKT) pathway, and is involved in the
regulation of growth, associated with Cowden-1 syndrome (OMIM 15835) and Bannayan–
Riley–Ruvalcaba syndrome (OMIM 15348) [48].

These two syndromes are characterized by multiple hamartomas and have many
overlapping features with SoS and overgrowth such as learning difficulties, macrocephaly,
and tall stature.

Furthermore, we identified, in a patient with clinical suspicion of Weaver syndrome, a
heterozygous de novo mutation in the enhancer of zeste homolog 2 (EZH2) gene, a histone
methyltransferase responsible for histone H3 at lysine 27 (H3K27) trimethylation.

This result is consistent with studies showing de novo germline heterozygous muta-
tions in EZH2 in Weaver syndrome [49,50].

We identified two novel mutations, c.4252C > T (p.Arg1418*) in Bromodomain And
WD Repeat Domain Containing 3 (BRWD3) and c.3274C > T (p.Gln1092*) in transcription
factor 20 (TCF20) in patients with suspected overgrowth. The BRWD3 gene (MIM 300553),
located at Xq21.1, is associated with X-linked mental retardation and macrocephaly, while
TCF20 (MIM *603107) variants with intellectual disability and postnatal overgrowth [51].
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The use of the panel of genes associated with OGID therefore allowed us to formulate
a differential molecular diagnosis among the overlapping phenotypes in nine patients in
our cohort.

Thus, considering the significant phenotypic variability and the importance of an
adequate early multidisciplinary therapeutic program, the diagnosis of SoS inevitably
requires molecular confirmation.

Confirmation of a diagnosis is extremely important for the psychosocial health of a
family, and it also signifies the end of the stressful search for diagnosis with different, often
invasive, methods. The natural history of SoS is fairly well-known and recommendations
for follow-up exist, which are important issues in the counseling of the family [52].

In the future, it will be important to arrange consensus conferences to bring together
international experts with the aim to standardize the clinical criteria for the diagnosis of
SoS and to better define epidemiology, pathogenesis, and management of the disease.

We believe that efforts toward the creation of international registers of SoS are needed,
as recently carried out for other overgrowth syndromes such as Malan syndrome (https:
//www.malansyndrome.org/global-patient-registry (accessed on 6 June 2020)) to improve
the clinical, epidemiological, etiopathogenic, and natural history knowledge of the disease.

In light of this, the continuous update and reports of variants detected in Sotos patients,
are crucial to improve the diagnostic criteria of the guidelines.

In conclusion, our study reports the results of 18 years of diagnostic activity in different
workflow settings, underlying the utility of sharing the variant classification and possible
re-interpretation to facilitate and speed up the diagnosis in other centers. However, this
implies a continuous effort to establish a direct communication between the laboratory and
the referring physician.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14020295/s1, Table S1: One hundred and fifteen NSD1
variants were identified in the present study.
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NSD1_00302572, NSD1_00302573, NSD1_00302574, NSD1_00302679, NSD1_00302843, NSD1_00302844,
NSD1_00302845, NSD1_00302846, NSD1_00302847, NSD1_00302848, NSD1_00302850, NSD1_00302851,
NSD1_00302852, NSD1_00302855, NSD1_00302856, NSD1_00302857, NSD1_00302858, NSD1_00302859,
NSD1_00302860, NSD1_00302861, NSD1_00302862, NSD1_00302863, NSD1_00302864, NSD1_00302865,
NSD1_00302867, NSD1_00302868, NSD1_00302869, NSD1_00303567, NSD1_00303569, NSD1_00303570,
NSD1_00303571, NSD1_00303572, NSD1_00303573, NSD1_00303574, NSD1_00303575, NSD1_00303576,
NSD1_00303577, NSD1_00303578, NSD1_00303579, NSD1_00303580, NSD1_00303581, NSD1_00303582,
NSD1_00303583, NSD1_00303584, NSD1_00303607, NSD1_00303608, NSD1_00303609, NSD1_00303610,
NSD1_00303611, NSD1_00303612, NSD1_00303613, NSD1_00303614, NSD1_00303615, NSD1_00303616,
NSD1_00303617, NSD1_00303082, NSD1_00303083, NSD1_00302823, NSD1_00303084, NSD1_00303085,
NSD1_00303086, NSD1_00303091, NSD1_00303092, NSD1_00303363, NSD1_00303365, NSD1_00303366,

https://www.malansyndrome.org/global-patient-registry
https://www.malansyndrome.org/global-patient-registry
https://www.mdpi.com/article/10.3390/genes14020295/s1
https://www.mdpi.com/article/10.3390/genes14020295/s1
https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=NSD1
https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=NSD1
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NSD1_00303966, NSD1_00303368, NSD1_00303367, NSD1_00302834, NSD1_00303522, NSD1_00303523,
NSD1_00303524, NSD1_00303525, NSD1_00303526, NSD1_00303967, NSD1_00303968, NSD1_00303969,
NSD1_00303970, NSD1_00303971, NSD1_00303972, NSD1_00303973, NSD1_00303974, NSD1_00303975,
NSD1_00303978, NSD1_00303979, NSD1_00303980, NSD1_00303981, NSD1_00303982, NSD1_00303983,
NSD1_00303984, NSD1_00303985, NSD1_00303986, NSD1_00303987, NSD1_00303988, NSD1_00303989,
NSD1_00303990, NSD1_00303991, NSD1_00303992, NSD1_00303993, NSD1_00303994, NSD1_00303996,
NSD1_00303995).
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