Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Layout
2.3. Traits Scoring
- Number of roots (NR) was scored on the last day of the experiment to determine the NR for each germinated genotype.
- Root length (RL) was manually measured using a scaled or graduated ruler (cm) from the bottom of the seed tip to the end of the root.
- Shoot length (SL) was manually measured using a scaled or graduated ruler (cm) from the top of the seed tip to the end of the shoot.
- Shoot–root length ratio (SRR) was calculated as the ratio for each genotype by dividing SL by RL.
- Fresh biomass weight (FBW) was scored by weighing (g) germinated seeds (including root and shoot) using a balance (0.0001 g—Sartorius AC 1215, Germany)
- Dry biomass weight (DBW) was estimated by drying the germinated seeds in an aerated oven at 70 °C for 72 h and then measuring their weight (g). The fresh and dry biomass weight for each genotype under both treatments was used for assessing the water content.
- Water content (WC) was calculated by:
2.4. Statistical Analysis of Phenotypic Data
2.5. DNA Extraction and KASP Genotyping
3. Results
3.1. Genetic Variation in Drought Tolerance at the Germination Stage
3.2. Correlation among Germination and Seedling Growth Parameters
3.3. The Effect of TaDreb-B1 and Fehw3 via KASP Technology on Germination Traits under Drought Stress
4. Discussion
4.1. Genetic Variation in Drought Tolerance at the Germination Stage
4.2. Correlation among Traits
4.3. Fehw3 and TaDreb-B1 KASP Markers for Improving Drought Tolerance at the Germination Stage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WCC | Wheat Core Collection |
PEG-6000 | Polyethylene Glycol |
G% | Germination Percentage |
GP | Germination Pace |
NR | Number of Roots |
SL | Shoot Length |
RL | Root Length |
SRR | Shoot–Root Length Ratio |
FBW | Fresh Biomass Weight |
DBW | Dry Biomass Wight |
DTI | Drought tolerance index |
WC | Water content |
H2 | Heritability |
TaDreb-B1 | Dehydration Responsive Element Binding Proteins |
1-Fehw3 | Fructan 1-exohydrolase w3 |
PCR | Polymerase Chain Reaction |
KASP | Kompetitive Allele Specific PCR |
SNP | Single nucleotide polymorphism |
References
- Maulan, F.; Huang, W.; Anderson, D.; Ma, X.-F. Genome-Wide Association Mapping of Seedling Drought Tolerance in Winter Wheat. Front. Plant Breed. 2020, 11, 573786. [Google Scholar] [CrossRef] [PubMed]
- Moursi, Y.; Esmail, S.; Amro, A.; Dawood, M.; Sallam, A. Detailed Genetic Analysis for Identifying QTLs Associated with Drought Tolerance at Seed Germination and Seedling Stages in Barley. Plants 2020, 9, 1425. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Mohamed, E.A.; Hussein, M.Y.; Sallam, A. Genomic Regions Associated with Leaf Wilting Traits under Drought Stress in Spring Wheat at the Seedling Stage Revealed by GWAS. Environ. Exp. Bot. 2021, 184, 104393. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Chen, W.; Dell, B.; Vergauwen, R.; Biddulph, B.; Khan, N.; Luo, H.; Appels, R.; Van den Ende, W. A Wheat 1-FEH W3 Variant Underlies Enzyme Activity for Stem WSC Remobilization to Grain under Drought. New Phytol. 2015, 205, 293–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and Genomic Tools to Improve Drought Tolerance in Wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef] [Green Version]
- Kerepesi, I.; Galiba, G. Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Sci. 2000, 40, 482–487. [Google Scholar] [CrossRef]
- Liu, W.J.; Yuan, S.; Zhang, N.H.; Lei, T.; Duan, H.G.; Liang, H.G.; Lin, H.H. Effect of Water Stress on Photosystem 2 in Two Wheat Cultivars. Biol. Plant. 2006, 50, 597–602. [Google Scholar] [CrossRef]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.A.; Baenziger, P.S.; Börner, A. Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef] [Green Version]
- Landjeva, S.; Neumann, K.; Lohwasser, U.; Börner, A. Molecular Mapping of Genomic Regions Associated with Wheat Seedling Growth under Osmotic Stress. Biol. Plant. 2008, 52, 259–266. [Google Scholar] [CrossRef]
- Mahpara, S.; Aleena, Z.; Ullah, R.; Kausar, S.; Bilal, M.; Latif, M.I.; Arif, M.; Akhtar, I.; Al-hashimi, A.; Elshikh, M.S. The Impact of PEG-Induced Drought Stress on Seed Germination and Seedling Growth of Different Bread Wheat (Triticum aestivum L.) Genotypes. PLoS ONE 2022, 17, e0262937. [Google Scholar] [CrossRef]
- Lin, Y.; Yi, X.; Tang, S.; Chen, W.; Wu, F.; Yang, X.; Jiang, X.; Shi, H.; Ma, J.; Chen, G. Dissection of Phenotypic and Genetic Variation of Drought- Related Traits in Diverse Chinese Wheat Landraces. Plant Genome 2019, 12, 190025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maulana, F.; Ayalew, H.; Anderson, J.D.; Kumssa, T.T.; Huang, W.; Ma, X.F. Genome-Wide Association Mapping of Seedling Heat Tolerance in Winter Wheat. Front. Plant Sci. 2018, 9, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidokoro, S.; Watanabe, K.; Ohori, T.; Moriwaki, T.; Maruyama, K.; Mizoi, J.; Myint Phyu Sin Htwe, N.; Fujita, Y.; Sekita, S.; Shinozaki, K.; et al. Soybean DREB1/CBF-Type Transcription Factors Function in Heat and Drought as Well as Cold Stress-Responsive Gene Expression. Plant J. 2015, 81, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kumar, A.; Chaudhary, A.; Mishra, A.; Rawat, S.; Shami, V.; Kaushik, P. Response of Wheat Genotypes to Drought Stress Stimulated by PEG. Stresses 2022, 2, 26–51. [Google Scholar] [CrossRef]
- Pellegrineschi, A.; Reynolds, M.; Pacheco, M.; Brito, R.M.; Almeraya, R.; Yamaguchi-Shinozaki, K.; Hoisington, D. Stress-Induced Expression in Wheat of the Arabidopsis Thaliana DREB1A Gene Delays Water Stress Symptoms under Greenhouse Conditions. Genome 2004, 47, 493–500. [Google Scholar] [CrossRef]
- Wei, B.; Jing, R.; Wang, C.; Jibao, C. Dreb1 Genes in Wheat (Triticum aestivum L.): Development of Functional Markers and Gene Mapping Based on SNPs. Mol. Breed. 2009, 23, 13–22. [Google Scholar] [CrossRef]
- Rasheed, A.; Wen, W.; Gao, F.; Zhai, S.; Jin, H.; Liu, J.; Guo, Q.; Zhang, Y.; Dreisigacker, S.; Xia, X. Development and Validation of KASP Assays for Genes Underpinning Key Economic Traits in Bread Wheat. Theor. Appl. Genet. 2016, 129, 1843–1860. [Google Scholar] [CrossRef]
- Sheng, S.; Guo, X.; Wu, C.; Xiang, Y.; Duan, S.; Yang, W.; Le, W.; Cao, F.; Liu, L. Genome-Wide Identification and Expression Analysis of DREB Genes in Alfalfa (Medicago sativa) in Response to Cold Stress. Plant Signal. Behav. 2022, 17, 2081420. [Google Scholar] [CrossRef]
- Chen, J.; Jing, R.; Yuan, H.; Wei, B.; Chang, X. Single Nucleotide Polymorphism of TaDREB1 Gene in Wheat Germplasm. Agric. Sci. 2005, 38, 2387–2394. [Google Scholar]
- Yang, Y.; Hussein, H.; Al-Baidhani, J.; Harris, J.; Riboni, M.; Li, Y.; Mazonka, I.; Bazanova, N.; Chirkova, L.; Sarfraz Hussain, S.; et al. DREB/CBF Expression in Wheat and Barley Using the Stress-Inducible Promoters of HD-Zip I Genes: Impact on Plant Development, Stress Tolerance and Yield. Plant Biotechnol. J. 2020, 18, 829–844. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A.M.; Dawood, M.F.A.; Elfrash, A.; Mohamed, E.A.; Hussein, M.Y.; Börner, A.; Sallam, A. Genetic and Morpho-Physiological Analyses of the Tolerance and Recovery Mechanisms in Seedling Stage Spring Wheat under Drought Stress. Front. Genet. 2022, 13, 1010272. [Google Scholar] [CrossRef] [PubMed]
- Thabet, S.G.; Moursi, Y.S.; Karam, M.A.; Graner, A.; Alqudah, A.M. Genetic Basis of Drought Tolerance during Seed Germination in Barley. PLoS ONE 2018, 13, e0206682. [Google Scholar] [CrossRef] [PubMed]
- Hasseb, N.M.; Sallam, A.; Karam, M.A.; Gao, L.; Wang, R.R.C.; Moursi, Y.S. High-LD SNP Markers Exhibiting Pleiotropic Effects on Salt Tolerance at Germination and Seedlings Stages in Spring Wheat. Plant Mol. Biol. 2022, 108, 585–603. [Google Scholar] [CrossRef] [PubMed]
- ISTA. Introduction, i-1-6 (10). The International Seed Testing Association. In International Rules for Seed Testing; ISTA: Bassersdorf, Switzerland, 2015; Volume 215, p. 7. [Google Scholar]
- Utz, H. PLABSTAT: A Computer Program for the Statistical Analysis of Plant Breeding Experiments; Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim: Stuttgart, Gernamy, 1997. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation Statistical Computing: Vienna, Austria, 2014; Volume 8, p. 9. [Google Scholar]
- Julkowska, M.M.; Saade, S.; Agarwal, G.; Gao, G.; Pailles, Y.; Morton, M.; Awlia, M.; Tester, M. MV App-Multivariate Analysis Application for Streamlined Data Analysis and Curation. Plant Physiol. 2019, 180, 1261–1276. [Google Scholar] [CrossRef] [Green Version]
- Mourad, A.M.I.; Sallam, A.; Belamkar, V.; Wegulo, S.; Bowden, R.; Jin, Y.; Mahdy, E.; Bakheit, B.; El-Wafaa, A.A.; Poland, J.; et al. Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for Sr6 Stem Rust Resistance Gene in Bread Wheat. Front Plant Sci. 2018, 9, 380. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, J.N.; Biscoe, P.V.; Hunter, B. Effects of Drought on Grain Growth. Nature 1976, 264, 541–542. [Google Scholar] [CrossRef]
- Sallam, A.; Mourad, A.M.I.; Hussain, W.; Baenziger, P.S. Genetic Variation in Drought Tolerance at Seedling Stage and Grain Yield in Low Rainfall Environments in Wheat (Triticum aestivum L.). Euphytica 2018, 214, 169. [Google Scholar] [CrossRef]
- Mourad, A.M.I.; Alomari, D.Z.; Alqudah, A.M.; Sallam, A.; Salem, K.F.M. Recent Advances in Wheat (Triticum spp.) Breeding. Adv. Plant Breed. Strateg. Cereals 2019, 5, 559–593. [Google Scholar] [CrossRef]
- Falconer, D.S. Introduction to Quantitative Genetics; Pearson Education India: Bangalore, India, 1996; Volume 17. [Google Scholar] [CrossRef] [Green Version]
- Othmani, A.; Ayed, S.; Chamekh, Z.; Slama-Ayed, O.; Teixeira Da Silva, J.A.; Rezgui, M.; Slim-Amara, H.; Younes, M.B. Screening of Seedlings of Durum Wheat (Triticum Durum Desf.) Cultivars for Tolerance to Peg-Induced Drought Stress. Pak. J. Bot. 2021, 53, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Rauf, M.; Munir, M.; Hassan, M.; Ahmad, M.; Afzal, M. Performance of Wheat Genotypes under Osmotic Stress at Germination and Early Seedling Growth Stage. Afr. J. Biotechnol. 2007, 6, 971–975. [Google Scholar]
- Khan, M.Q.; Anwar, S.; Khan, M.I. Genetic Variability for Seedling Traits in Wheat (Triticum aestivum L.) under Moisture Stress Conditions. Asian J. Plant Sci. 2002, 1, 588–590. [Google Scholar] [CrossRef]
- Ahmed, H.G.M.D.; Sajjad, M.; Li, M.; Azmat, M.A.; Rizwan, M.; Maqsood, R.H.; Khan, S.H. Selection Criteria for Drought-Tolerant Bread Wheat Genotypes at Seedling Stage. Sustainability 2019, 11, 2584. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Gonzalez, R.H.; Uauy, C.; Caccamo, M. PolyMarker: A Fast Polyploid Primer Design Pipeline. Bioinformatics 2015, 31, 2038–2039. [Google Scholar] [CrossRef] [Green Version]
- Ur Rehman, S.; Ali Sher, M.; Saddique, M.A.B.; Ali, Z.; Khan, M.A.; Mao, X.; Irshad, A.; Sajjad, M.; Ikram, R.M.; Naeem, M. Development and Exploitation of KASP Assays for Genes Underpinning Drought Tolerance Among Wheat Cultivars from Pakistan. Front. Genet. 2021, 12, 684702. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Z.; Xiao, H.; Yang, Y. Characterization of TaDREB1 in Wheat Genotypes with Different Seed Germination under Osmotic Stress. Hereditas 2018, 155, 26. [Google Scholar] [CrossRef] [PubMed]
Gene. | Chr. | Allele | Phenotype | Forward Primer | Reverse Primer | Reference |
---|---|---|---|---|---|---|
TaDreb-B1 | 3BS | Dreb-B1a | Tolerant | GAAGGTGACCAAGTTCATGCTCCTGCGCACTTTCTTCTTCCTGT | TTTCACCTTGTGATATGGATTGCCTTGAT | Wei et al. [16] |
Dreb-B1b | Susceptible | GAAGGTCGGAGTCAACGGATTCTGCGCACTTTCTTCTTCCTGG | ||||
1-Fehw3 | 6BS | Westonia type | High expression | GAAGGTGACCAAGTTCATGCTCTCCCCCCTTCCTTCTGTCC | AGGAAGACGGCCCGAGCTTT | Zhang et al. [4] |
Kauz type | Low expression | GAAGGTCGGAGTCAACGGATTCTCCCCCCTTCCTTCTGTCT |
Source of Variance | GP | G% | NR | SL | RL | SRR | FBW | DBW | WC |
---|---|---|---|---|---|---|---|---|---|
Treatments (concentration 25%, 30%) | 2111.60 ** | 580.81 ** | 980.07 ** | 842.35 ** | 3029.21 ** | 4.65 * | 1427.63 ** | 136.83 ** | 797.67 ** |
Replications (R) | 7.28 ** | 1.04 ns | 1.06 ns | 0.16 ns | 2.23 ns | 0.2 ns | 0.48 ns | 5.06 ** | 0.72 ns |
Genotypes (G) | 41.75 ** | 25.07 ** | 53.27 ** | 23.89 ** | 28.81 ** | 23.76 ** | 26.48 ** | 47.25 ** | 8.26 ** |
Treatment (T) × Genotypes(G) | 15.15 ** | 19.22 ** | 16.99 ** | 20.12 ** | 16.70 ** | 32.70 ** | 12.58 ** | 26.66 ** | 6.17 ** |
Heritability (H2) | 97.6 | 96.01 | 98.12 | 95.81 | 96.53 | 95.79 | 96.22 | 97.88 | 87.9 |
Tait | Concentration | Min | Max | Mean | CV | SD | LSD | F-Value | H2 |
---|---|---|---|---|---|---|---|---|---|
Germination percentage (G%) | 25% | 86.67 | 100 | 98.39 | 3.25 | 3.19 | 2.93 | 9.41 ** | 89.4 |
30% | 45 | 100 | 85.23 | 18.64 | 8.94 | 10.01 | 19.94 ** | 94.9 | |
germination pace (GP) | 25% | 34.87 | 97.62 | 57.65 | 26.19 | 15.09 | 8.15 | 27.19 ** | 96.3 |
30% | 19.58 | 66.74 | 33.93 | 26.35 | 15.89 | 4.53 | 30.89 ** | 96.8 | |
Number of roots (NR) | 25% | 1.27 | 5.67 | 3.62 | 24.53 | 0.89 | 0.63 | 15.85 ** | 93.7 |
30% | 0.78 | 5 | 2.38 | 47.48 | 1.13 | 0.32 | 79.92 ** | 98.7 | |
Shoot length (SL) | 25% | 0.18 | 2.82 | 0.74 | 82.68 | 0.61 | 0.37 | 21.71 ** | 95.4 |
30% | 0 | 0.41 | 0.14 | 73.10 | 0.10 | 0.07 | 16.52 ** | 93.9 | |
Root length (RL) | 25% | 1.93 | 8.17 | 4.98 | 35.41 | 1.76 | 1.13 | 19.21 ** | 94.8 |
30% | 0.16 | 3.81 | 1.20 | 81.88 | 0.98 | 0.51 | 29.13 ** | 96.6 | |
Shoot/root length ratio (SRR) | 25% | 0.04 | 0.39 | 0.15 | 61.50 | 0.90 | 0.06 | 18.16 ** | 94.5 |
30% | 0 | 0.68 | 0.14 | 103.89 | 0.16 | 0.07 | 3.43 ** | 70.8 | |
Fresh biomass weight (FBW) | 25% | 1.29 | 4.14 | 2.39 | 31.42 | 0.75 | 0.48 | 19.40 ** | 94.8 |
30% | 0.6 | 2.15 | 1.22 | 34.38 | 0.42 | 0.3 | 15.37 ** | 93.5 | |
Dry biomass weight (DBW) | 25% | 0.42 | 2.67 | 0.71 | 48.74 | 0.34 | 0.1 | 87.50 ** | 98.9 |
30% | 0.38 | 0.94 | 0.6 | 22.80 | 0.14 | 0.14 | 8.06 ** | 87.6 | |
Water content (WC) | 25% | 38.51 | 84.03 | 69.63 | 11.86 | 8.26 | 6.66 | 12.20 ** | 91.8 |
30% | 32.52 | 67.24 | 47.65 | 21.31 | 10.15 | 12.74 | 5.03 ** | 80.1 |
Traits | Concentration PEG25% | Concentration PEG30% |
---|---|---|
GP | 0.244 | −0.171 |
G% | 0.067 | −0.275 |
NR | 0.238 | −0.087 |
RL | 0.289 | −0.249 |
SL | 0.256 | −0.308 |
SRR | 0.001 | −0.123 |
FBW | −0.350 * | −0.396 * |
DBW | −0.549 ** | −0.406 ** |
WC | 0.187 | −0.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, E.A.; Ahmed, A.A.M.; Schierenbeck, M.; Hussein, M.Y.; Baenziger, P.S.; Börner, A.; Sallam, A. Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology. Genes 2023, 14, 373. https://doi.org/10.3390/genes14020373
Mohamed EA, Ahmed AAM, Schierenbeck M, Hussein MY, Baenziger PS, Börner A, Sallam A. Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology. Genes. 2023; 14(2):373. https://doi.org/10.3390/genes14020373
Chicago/Turabian StyleMohamed, Elsayed A., Asmaa A. M. Ahmed, Matías Schierenbeck, Mohamed Y. Hussein, P. Stephen Baenziger, Andreas Börner, and Ahmed Sallam. 2023. "Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology" Genes 14, no. 2: 373. https://doi.org/10.3390/genes14020373
APA StyleMohamed, E. A., Ahmed, A. A. M., Schierenbeck, M., Hussein, M. Y., Baenziger, P. S., Börner, A., & Sallam, A. (2023). Screening Spring Wheat Genotypes for TaDreb-B1 and Fehw3 Genes under Severe Drought Stress at the Germination Stage Using KASP Technology. Genes, 14(2), 373. https://doi.org/10.3390/genes14020373