Heterochiasmy and Sex Chromosome Evolution in Silene
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barton, N.H.; Charlesworth, B. Why sex and recombination? Science 1998, 281, 1986–1990. [Google Scholar] [CrossRef] [PubMed]
- Gaut, B.S.; Wright, S.I.; Rizzon, C.; Dvorak, J.; Anderson, L.K. Recombination: An underappreciated factor in the evolution of plant genomes. Nat. Rev. Genet. 2007, 8, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S. Sex. Chromosomes and Sex-Linked Genes; Springer: Berlin, Germany; New York, NY, USA, 1967. [Google Scholar]
- Wright, A.E.; Dean, R.; Zimmer, F.; Mank, J.E. How to make a sex chromosome. Nat. Commun. 2016, 7, 12087. [Google Scholar] [CrossRef]
- Charlesworth, B.; Charlesworth, D. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 1563–1572. [Google Scholar] [CrossRef] [Green Version]
- Bachtrog, D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013, 14, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, D. The timing of genetic degeneration of sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200093. [Google Scholar] [CrossRef]
- Bergero, R.; Charlesworth, D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 2009, 24, 94–102. [Google Scholar] [CrossRef]
- Charlesworth, D. Evolution of recombination rates between sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160456. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, D. When and how do sex-linked regions become sex chromosomes? Evolution 2021, 75, 569–581. [Google Scholar] [CrossRef]
- Charlesworth, D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 2015, 208, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, D. Sex chromosome origins and evolution. In Evolutionary Genomics and Proteomics; Pagel, M., Pomiankowski, A., Eds.; Sinauer Associates: Sunderland, UK, 2008; pp. 207–240. [Google Scholar]
- Howell, E.C.; Armstrong, S.J.; Filatov, D.A. Evolution of neo-sex chromosomes in Silene diclinis. Genetics 2009, 182, 1109–1115. [Google Scholar] [CrossRef] [Green Version]
- Bachtrog, D.; Charlesworth, B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature 2002, 416, 323–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicoso, B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat. Ecol. Evol. 2019, 3, 1632–1641. [Google Scholar] [CrossRef]
- Jeffries, D.L.; Lavanchy, G.; Sermier, R.; Sredl, M.J.; Miura, I.; Borzee, A.; Barrow, L.N.; Canestrelli, D.; Crochet, P.A.; Dufresnes, C.; et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 2018, 9, 4088. [Google Scholar] [CrossRef] [Green Version]
- Vicoso, B.; Bachtrog, D. Numerous transitions of sex chromosomes in Diptera. PLoS Biol. 2015, 13, e1002078. [Google Scholar] [CrossRef] [Green Version]
- El Taher, A.; Ronco, F.; Matschiner, M.; Salzburger, W.; Bohne, A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci. Adv. 2021, 7, eabe8215. [Google Scholar] [CrossRef]
- Ponnikas, S.; Sigeman, H.; Abbott, J.K.; Hansson, B. Why do sex chromosomes stop recombining? Trends Genet. 2018, 34, 492–503. [Google Scholar] [CrossRef]
- Vicoso, B.; Bachtrog, D. Reversal of an ancient sex chromosome to an autosome in Drosophila. Nature 2013, 499, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Barrett, S.C.H. The evolution of plant reproductive systems: How often are transitions irreversible? Proc. Biol. Sci. 2013, 280, 20130913. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, D. Young sex chromosomes in plants and animals. New Phytol. 2019, 224, 1095–1107. [Google Scholar] [CrossRef]
- Martin, H.; Carpentier, F.; Gallina, S.; Gode, C.; Schmitt, E.; Muyle, A.; Marais, G.A.B.; Touzet, P. Evolution of young sex chromosomes in two dioecious sister plant species with distinct sex determination systems. Genome Biol. Evol. 2019, 11, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Lahn, B.T.; Page, D.C. Four evolutionary strata on the human X chromosome. Science 1999, 286, 964–967. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhang, J.; Bachtrog, D.; An, N.; Huang, Q.; Jarvis, E.D.; Gilbert, M.T.P.; Zhang, G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014, 346, 1332. [Google Scholar] [CrossRef] [Green Version]
- Bergero, R.; Forrest, A.; Kamau, E.; Charlesworth, D. Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: Evidence from new sex-linked genes. Genetics 2007, 175, 1945–1954. [Google Scholar] [CrossRef] [Green Version]
- Jeffries, D.L.; Gerchen, J.F.; Scharmann, M.; Pannell, J.R. A neutral model for the loss of recombination on sex chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200096. [Google Scholar] [CrossRef]
- Lenormand, T.; Roze, D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science 2022, 375, 663–666. [Google Scholar] [CrossRef]
- Rice, W.R. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 1987, 41, 911–914. [Google Scholar] [CrossRef]
- Kirkpatrick, M.; Guerrero, R.F. Signatures of sex-antagonistic selection on recombining sex chromosomes. Genetics 2014, 197, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, B.; Jordan, C.Y.; Charlesworth, D. The evolutionary dynamics of sexually antagonistic mutations in pseudoautosomal regions of sex chromosomes. Evolution 2014, 68, 1339–1350. [Google Scholar] [CrossRef]
- Charlesworth, D. The guppy sex chromosome system and the sexually antagonistic polymorphism hypothesis for Y chromosome recombination suppression. Genes 2018, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, B.O.; Goodfellow, P.N. The effect of recombination between the X and Y chromosomes of mammals. Ann. Hum. Genet. 1987, 51, 57–64. [Google Scholar] [CrossRef]
- Ironside, J.E. No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. Bioessays 2010, 32, 718–726. [Google Scholar] [CrossRef]
- Olito, C.; Abbott, J.K. The evolution of suppressed recombination between sex chromosomes by chromosomal inversions. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, B.; Wall, J.D. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. R. Soc. Lond. B 1999, 266, 51–56. [Google Scholar] [CrossRef]
- Jay, P.; Tezenas, E.; Véber, A.; Giraud, T. Modeling the stepwise extension of recombination suppression on sex chromosomes and other supergenes through deleterious mutation sheltering. BioRxiv 2022. [Google Scholar] [CrossRef]
- Olito, C.; Ponnikas, S.; Hansson, B. Consequences of recessive deleterious genetic variation for the evolution of inversions suppressing recombination between sex chromosomes. Evolution 2022, in press. [Google Scholar] [CrossRef]
- Rifkin, J.L.; Hnatovska, S.; Yuan, M.; Sacchi, B.M.; Choudhury, B.I.; Gong, Y.; Rastas, P.; Barrett, S.C.H.; Wright, S.I. Recombination landscape dimorphism and sex chromosome evolution in the dioecious plant Rumex hastatulus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210226. [Google Scholar] [CrossRef]
- Bergero, R.; Gardner, J.; Bader, B.; Yong, L.; Charlesworth, D. Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc. Natl. Acad. Sci. USA 2019, 116, 6924–6931. [Google Scholar] [CrossRef] [Green Version]
- Sardell, J.M.; Kirkpatrick, M. Sex differences in the recombination landscape. Am. Nat. 2020, 195, 361–379. [Google Scholar] [CrossRef]
- Giraut, L.; Falque, M.; Drouaud, J.; Pereira, L.; Martin, O.C.; Mezard, C. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet. 2011, 7, e1002354. [Google Scholar] [CrossRef] [Green Version]
- Lagercrantz, U.; Lydiate, D.J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. Genome 1995, 38, 255–264. [Google Scholar] [CrossRef]
- Phillips, D.; Jenkins, G.; Macaulay, M.; Nibau, C.; Wnetrzak, J.; Fallding, D.; Colas, I.; Oakey, H.; Waugh, R.; Ramsay, L. The effect of temperature on the male and female recombination landscape of barley. New Phytol. 2015, 208, 421–429. [Google Scholar] [CrossRef]
- Krasovec, M.; Chester, M.; Ridout, K.; Filatov, D.A. The mutation rate and the age of the sex chromosomes in Silene latifolia. Curr. Biol. 2018, 28, 1832–1838. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, K.B. Sex chromosomes in plants. Nature 1923, 112, 687–688. [Google Scholar] [CrossRef]
- Warmke, H.E. Sex determination and sex balance in Melandrium. Am. J. Bot. 1946, 33, 648–660. [Google Scholar] [CrossRef]
- Westergaard, M. Aberrant Y chromosomes and sex expression in Melandrium album. Hereditas 1946, 32, 419–443. [Google Scholar] [CrossRef]
- Armstrong, S.J.; Filatov, D.A. A cytogenetic view of sex chromosome evolution in plants. Cytogenet. Genome Res. 2008, 120, 241–246. [Google Scholar] [CrossRef]
- Liu, Z.; Moore, P.H.; Ma, H.; Ackerman, C.M.; Ragiba, M.; Yu, Q.; Pearl, H.M.; Kim, M.S.; Charlton, J.W.; Stiles, J.I.; et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 2004, 427, 348–352. [Google Scholar] [CrossRef]
- Akagi, T.; Henry, I.M.; Tao, R.; Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 2014, 346, 646–650. [Google Scholar] [CrossRef]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; McNeilage, M.A.; Douglas, M.J.; Wang, T.; et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef]
- Harkess, A.; Huang, K.; van der Hulst, R.; Tissen, B.; Caplan, J.L.; Koppula, A.; Batish, M.; Meyers, B.C.; Leebens-Mack, J. Sex determination by two Y-linked genes in garden asparagus. Plant Cell 2020, 32, 1790–1796. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Filatov, D.A. Evolution of the sex-determining region in Ginkgo biloba. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210229. [Google Scholar] [CrossRef]
- Veltsos, P.; Ridout, K.E.; Toups, M.A.; Gonzalez-Martinez, S.C.; Muyle, A.; Emery, O.; Rastas, P.; Hudzieczek, V.; Hobza, R.; Vyskot, B.; et al. Early sex-chromosome evolution in the diploid dioecious plant Mercurialis annua. Genetics 2019, 212, 815–835. [Google Scholar] [CrossRef] [Green Version]
- Oxelman, B.; Lidén, M. Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. Taxon 1995, 44, 525–542. [Google Scholar] [CrossRef]
- Casimiro-Soriguer, I.; Buide, M.L.; Narbona, E. Diversity of sexual systems within different lineages of the genus Silene. AoB Plants 2015, 7, plv037. [Google Scholar] [CrossRef] [Green Version]
- Marais, G.A.B.; Forrest, A.; Kamau, E.; Kafer, J.; Daubin, V.; Charlesworth, D. Multiple nuclear gene phylogenetic analysis of the evolution of dioecy and sex chromosomes in the genus Silene. PLoS ONE 2011, 6, e21915. [Google Scholar] [CrossRef] [Green Version]
- Desfeux, C.; Maurice, S.; Henry, J.P.; Lejeune, B.; Gouyon, P.H. Evolution of reproductive systems in the genus Silene. Proc. R. Soc. Lond. Ser. B 1996, 263, 409–414. [Google Scholar]
- Filatov, D.A. Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics 2005, 170, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Kazama, Y.; Ishii, K.; Aonuma, W.; Ikeda, T.; Kawamoto, H.; Koizumi, A.; Filatov, D.A.; Chibalina, M.; Bergero, R.; Charlesworth, D.; et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 2016, 6, 18917. [Google Scholar] [CrossRef] [Green Version]
- Kazama, Y.; Kitoh, M.; Kobayashi, T.; Ishii, K.; Krasovec, M.; Yasui, Y.; Abe, T.; Kawano, S.; Filatov, D.A. A CLAVATA3-like gene acts as a gynoecium suppression function in White campion. Mol. Biol. Evol. 2022, 39, msac195. [Google Scholar] [CrossRef]
- Papadopulos, A.S.; Chester, M.; Ridout, K.; Filatov, D.A. Rapid Y degeneration and dosage compensation in plant sex chromosomes. Proc. Natl. Acad. Sci. USA 2015, 112, 13021–13026. [Google Scholar] [CrossRef] [Green Version]
- Chibalina, M.V.; Filatov, D.A. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 2011, 21, 1475–1479. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Rastas, P. Lep-MAP3: Robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 2017, 33, 3726–3732. [Google Scholar] [CrossRef] [Green Version]
- Bergero, R.; Qiu, S.; Charlesworth, D. Gene loss from a plant sex chromosome system. Curr. Biol. 2015, 25, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Bergero, R.; Qiu, S.; Forrest, A.; Borthwick, H.; Charlesworth, D. Expansion of the pseudo-autosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 2013, 194, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Stephan, W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 2002, 160, 765–777. [Google Scholar] [CrossRef]
- Baack, E.J.; Rieseberg, L.H. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 2007, 17, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Turner, T.L.; Hahn, M.W.; Nuzhdin, S.V. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 2005, 3, e285. [Google Scholar] [CrossRef]
- Filatov, D.A. Recent expansion of the non-recombining sex-linked region on Silene latifolia sex chromosomes. J. Evol. Biol. 2022, 35, 1696–1708. [Google Scholar] [CrossRef]
- Guirao-Rico, S.; Sanchez-Gracia, A.; Charlesworth, D. Sequence diversity patterns suggesting balancing selection in partially sex-linked genes of the plant Silene latifolia are not generated by demographic history or gene flow. Mol. Ecol. 2017, 26, 1357–1370. [Google Scholar] [CrossRef]
- Hu, X.S.; Filatov, D.A. The large-X effect in plants: Increased species divergence and reduced gene flow on the Silene X-chromosome. Mol. Ecol. 2016, 25, 2609–2619. [Google Scholar] [CrossRef]
- Liu, X.; Glemin, S.; Karrenberg, S. Evolution of putative barrier loci at an intermediate stage of speciation with gene flow in campions (Silene). Mol. Ecol. 2020, 29, 3511–3525. [Google Scholar] [CrossRef]
- Bernasconi, G.; Antonovics, J.; Biere, A.; Charlesworth, D.; Delph, L.F.; Filatov, D.; Giraud, T.; Hood, M.E.; Marais, G.A.; McCauley, D.; et al. Silene as a model system in ecology and evolution. Heredity 2009, 103, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp, T.; Chowdhary, B.P. The eutherian pseudoautosomal region. Cytogenet. Genome Res. 2015, 147, 81–94. [Google Scholar] [CrossRef]
- Hinch, A.G.; Altemose, N.; Noor, N.; Donnelly, P.; Myers, S.R. Recombination in the human pseudoautosomal region PAR1. PLoS Genet. 2014, 10, e1004503. [Google Scholar] [CrossRef] [Green Version]
- Otto, S.P.; Pannell, J.R.; Peichel, C.L.; Ashman, T.L.; Charlesworth, D.; Chippindale, A.K.; Delph, L.F.; Guerrero, R.F.; Scarpino, S.V.; McAllister, B.F. About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet. 2011, 27, 358–367. [Google Scholar] [CrossRef]
- Brazier, T.; Glemin, S. Diversity and determinants of recombination landscapes in flowering plants. PLoS Genet. 2022, 18, e1010141. [Google Scholar] [CrossRef]
- Haenel, Q.; Laurentino, T.G.; Roesti, M.; Berner, D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 2018, 27, 2477–2497. [Google Scholar] [CrossRef] [Green Version]
- Otto, S.P.; Payseur, B.A. Crossover interference: Shedding light on the evolution of recombination. Annu. Rev. Genet. 2019, 53, 19–44. [Google Scholar] [CrossRef]
Female Map | Male Map | Sex-Average Map | ||||
---|---|---|---|---|---|---|
LGs | Genes | Length | Genes | Length | Genes | Length |
LG1 | 385 | 94.61 | 373 | 82.36 | 219 | 92.29 |
LG2 | 416 | 80.64 | 432 | 85.05 | 207 | 91.24 |
LG3 | 428 | 73.05 | 426 | 96.33 | 185 | 99.94 |
LG4 | 488 | 77.48 | 507 | 80.73 | 163 | 81.35 |
LG5 | 332 | 51.64 | 339 | 73.05 | 165 | 68.70 |
LG6 | 479 | 75.86 | 407 | 103.64 | 169 | 75.71 |
LG7 | 218 | 87.71 | 204 | 106.53 | 152 | 86.93 |
LG8 | 469 | 71.17 | 413 | 71.42 | 142 | 79.61 |
LG9 | 410 | 51.07 | 402 | 59.16 | 143 | 53.95 |
LG10 | 673 | 88.41 | 659 | 80.48 | 134 | 98.14 |
LG11 | 477 | 91.27 | 505 | 116.59 | 108 | 67.97 |
X | 872 | 85.35 | 868 | 49.11 | 327 | 121.25 |
All | 5647 | 928.26 | 5535 | 1004.45 | 2114 | 1017.08 |
Gene Name | S. lat. (This Study) | S. lat. Sex-Avrg. Maps | S. vulgaris LG12 | |||||
---|---|---|---|---|---|---|---|---|
This Study | [69,70] | Female | Male | [63] | [69] | [70] | [69] | [70] |
Contig4232 | E707 | 85.348 | 49.106 | 4.26 | 0.2 | 0 | 32.1 | 29.7 |
Contig18305 | E378 | 82.113 | 49.106 | 0 | 0.3 | 28.8 | 26.9 | |
Contig13157 | E758 | 82.113 | 49.106 | 13.36 | 10.4 | 45.7 | ||
Contig8519 | SlX4 | 82.113 | 49.106 | 14.49 | 5.4 | |||
Contig9453 | E750 | 82.113 | 49.106 | 13.74 | 10 | 10 | 31.5 | |
Contig842 | SlX7 | 80.483 | 49.106 | 18.22 | 7.8 | 4.8 | 41.5 | 40.1 |
Contig4853 | E766 | 70.678 | 49.106 | 35.7 | 18.1 | 38.4 | ||
Contig1807 | DD44 | 62.834 | 49.106 | 23.5 | 24.5 | 36.8 | 37.4 | |
Contig4971 | E330 | 56.951 | 49.106 | 46.14 | 39.1 | |||
Contig2851 | E754 | 56.951 | 49.106 | 42.92 | 25.9 | 37.1 | ||
Contig8805 | SlXcyp | 49.106 | 49.106 | 52.55 | 41.2 | 46.8 | 47.9 | 47.5 |
Contig4251 | E702 | 49.106 | 49.106 | 47.3 | 40.9 | |||
Contig3001 | E777 | 39.221 | 49.106 | 60.88 | 46 | |||
Contig1564 | E817 | 39.221 | 49.106 | 62.69 | 40.9 | 51.8 | ||
Contig9553 | E784 | 39.221 | 49.106 | 62.69 | 50 | |||
Contig255 | E757 | 39.221 | 49.106 | 62.72 | 48.4 | 52.4 | 18.7 | 17.6 |
Contig9591 | E799 | 39.221 | 49.106 | 48.9 | 55.2 | 24.7 | 23.6 | |
Contig8488 | E780 | 39.221 | 49.106 | 62.69 | 49.2 | 55.9 | 14.8 | 12.4 |
Contig4305 | E316 | 39.221 | 49.106 | 56 | ||||
Contig18190 | E523 | 39.221 | 49.106 | 56 | ||||
Contig9077 | E247 | 39.221 | 49.106 | 57.3 | ||||
Contig17205 | E219 | 27.455 | 29.496 | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filatov, D.A. Heterochiasmy and Sex Chromosome Evolution in Silene. Genes 2023, 14, 543. https://doi.org/10.3390/genes14030543
Filatov DA. Heterochiasmy and Sex Chromosome Evolution in Silene. Genes. 2023; 14(3):543. https://doi.org/10.3390/genes14030543
Chicago/Turabian StyleFilatov, Dmitry A. 2023. "Heterochiasmy and Sex Chromosome Evolution in Silene" Genes 14, no. 3: 543. https://doi.org/10.3390/genes14030543
APA StyleFilatov, D. A. (2023). Heterochiasmy and Sex Chromosome Evolution in Silene. Genes, 14(3), 543. https://doi.org/10.3390/genes14030543