Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and 5-azaC Treatment
2.2. Samples Collection
2.3. RNA Isolation, Illumina Sequencing, Transcriptome Assembly, and Annotation
2.4. Acquisition of Sex-Related Genes in P. amurense
2.5. Differential Expression Analysis
2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis
3. Results
3.1. Generation of Induced Female Flowers
3.2. Transcriptome Characteristics of P. amurense Flower Organs
3.2.1. Results of Transcriptome Assembly and Annotation
3.2.2. Differential Expression Analysis of Transcriptome between Female and Male Flowers
3.2.3. Identification of Sex-Related Genes in Female and Male Flowers and Differential Expression Analysis
3.3. Identification of Key Genes Related to Female Flower Development
3.4. Verification of DEGs Using qRT-PCR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Huang, Y.; Fu, Z.; Xu, Q. Research Progress on the Epigenetic Mechanisms of Sex Determination in Horticultural Plants. Acta Hortic. Sin. 2022, 49, 1602–1610. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Gao, M.; Wu, L.; Zhao, Y.; Wang, Y. Research Progress in Sex Differentiation in Angiosperms. Sci. Silvae Sin. 2019, 55, 157–169. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Xie, L.N.; Li, Y.H. Research Progress in DNA Methylation in Plants. Plant Physiol. J. Lant Physiol. J. 2012, 48, 1027–1036. [Google Scholar] [CrossRef]
- Müller, N.A.; Kersten, B.; Leite Montalvão, A.P.; Mähler, N.; Bernhardsson, C.; Bräutigam, K.; Carracedo Lorenzo, Z.; Hoenicka, H.; Kumar, V.; Mader, M.; et al. A Single Gene Underlies the Dynamic Evolution of Poplar Sex Determination. Nat. Plants 2020, 6, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Troadec, C.; Boualem, A.; Rajab, M.; Fernandez, R.; Morin, H.; Pitrat, M.; Dogimont, C.; Bendahmane, A. A Transposon-Induced Epigenetic Change Leads to Sex Determination in Melon. Nature 2009, 461, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Akagi, T.; Esumi, T.; Tao, R. Epigenetic Flexibility Underlies Somaclonal Sex Conversions in Hexaploid Persimmon. Plant Cell Physiol. 2020, 61, 393–402. [Google Scholar] [CrossRef]
- Wang, L.; Han, W.; Diao, S.; Suo, Y.; Li, H.; Mai, Y.; Wang, Y.; Sun, P.; Fu, J. Study of Sexual-Linked Genes (OGI and MeGI) on the Performance of Androecious Persimmons (Diospyros Kaki Thunb.). Plants 2021, 10, 390. [Google Scholar] [CrossRef]
- Liu, J.; Chatham, L.; Aryal, R.; Yu, Q.; Ming, R. Differential Methylation and Expression of HUA1 Ortholog in Three Sex Types of Papaya. Plant Sci. 2018, 272, 99–106. [Google Scholar] [CrossRef]
- Lai, Y.-S.; Zhang, X.; Zhang, W.; Shen, D.; Wang, H.; Xia, Y.; Qiu, Y.; Song, J.; Wang, C.; Li, X. The Association of Changes in DNA Methylation with Temperature-Dependent Sex Determination in Cucumber. J. Exp. Bot. 2017, 68, 2899–2912. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-S.; Shen, D.; Zhang, W.; Zhang, X.; Qiu, Y.; Wang, H.; Dou, X.; Li, S.; Wu, Y.; Song, J.; et al. Temperature and Photoperiod Changes Affect Cucumber Sex Expression by Different Epigenetic Regulations. BMC Plant Biol. 2018, 18, 268. [Google Scholar] [CrossRef] [Green Version]
- Xian, Y.; Wang, L. The Researching of Germplasm Resource on Amur Corktree. North. Hortic. 2010, 20, 189–192. [Google Scholar]
- Zhou, Q.-Y.; Jin, X.-B.; Mu, X.-J. Embryological Studies on Phellodendron amurense. Acta Bot. Yunnanica 1999, 3, 51–56, 146–148. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, S.; Zhang, Z.; Yu, J.; Wei, X.; He, L. Monoecious Phellodendron amurense Rupr.: Sexual Reproduction Characteristics. Chin. Agric. Sci. Bull. 2021, 37, 26–32. [Google Scholar] [CrossRef]
- Klaas, M.; John, M.C.; Crowell, D.N.; Amasino, R.M. Rapid Induction of Genomic Demethylation and T-DNA Gene Expression in Plant Cells by 5-Azacytosine Derivatives. Plant Mol. Biol. 1989, 12, 413–423. [Google Scholar] [CrossRef]
- Bezděk, M.; Koukalová, B.; Brzobohatý, B.; Vyskot, B. 5-Azacytidine-Induced Hypomethylation of Tobacco HRS60 Tandem DNA Repeats in Tissue Culture. Planta 1991, 184, 487–490. [Google Scholar] [CrossRef]
- Sano, H.; Kamada, I.; Youssefian, S.; Katsumi, M.; Wabiko, H. A Single Treatment of Rice Seedlings with 5-Azacytidine Induces Heritable Dwarfism and Undermethylation of Genomic DNA. Mol. Gen. Genet. MGG 1990, 220, 441–447. [Google Scholar] [CrossRef]
- King, G.J. Morphological Development in Brassica oleracea Is Modulated by in Vivo Treatment with 5-Azacytidine. J. Hortic. Sci. 1995, 70, 333–342. [Google Scholar] [CrossRef]
- Li, S.F.; Zhang, G.J.; Yuan, J.H.; Deng, C.L.; Lu, L.D.; Gao, W.J. Effect of 5-AzaC on the Growth, Flowering Time and Sexual Phenotype of Spinach. Russ. J. Plant Physiol. 2015, 62, 670–675. [Google Scholar] [CrossRef]
- Janoušek, B.; Široký, J.; Vyskot, B. Epigenetic Control of Sexual Phenotype in a Dioecious Plant, Melandrium album. Mol. Gen. Genet. 1996, 250, 483–490. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Davidson, N.M.; Oshlack, A. Corset: Enabling Differential Gene Expression Analysis for de Novoassembled Transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A Universal Tool for Annotation, Visualization and Analysis in Functional Genomics Research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An Automatic Genome Annotation and Pathway Reconstruction Server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef] [Green Version]
- Yanofsky, M.F. Floral Meristems to Floral Organs: Genes Controlling Early Events in Arabidopsis Flower Development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1995, 46, 167–188. [Google Scholar] [CrossRef]
- Wen, C.K.; Smith, R.; Banks, J.A. ANI1: A Sex Pheromone–Induced Gene in Ceratopteris Gametophytes and Its Possible Role in Sex Determination. Plant Cell 1999, 11, 1307–1317. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yuan, Z.; Zhao, Z.; Li, C.; Zhang, X.; Liang, H.; Liu, Y.; Xu, Q.; Liu, H. Tasselseed5 Encodes a Cytochrome C Oxidase That Functions in Sex Determination by Affecting Jasmonate Catabolism in Maize. J. Integr. Plant Biol. 2020, 62, 247–255. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Cao, Y.; Wang, Z.; Zhang, H.; Wang, H. Research Progress of Sex Determination Genes in Castor. J. Shanxi Agric. Sci. 2020, 48, 1164–1167. [Google Scholar] [CrossRef]
- Fan, Y. The Discovery of Monoecious Phellodendron amurense Rupr. and Study of Sexual Reproduction. Master’s Thesis, Peking Union Medical College, Beijing China, June 2021. [Google Scholar]
- Zhou, G.; Chen, C.; Liu, X.H.; Lu, X.Y.; Tian, Y.; Chen, H.M. Research progress of sex determination in cucumber. Plant Physiol. J. 2019, 55, 902–914. [Google Scholar] [CrossRef]
- Zhang, B.; Su, X.; Zhou, X. Gene Regulation in Flower Development in the Forest. Chin. Bull. Bot. 2008, 25, 476–482. [Google Scholar] [CrossRef]
- Song, Y. Genetic Regulation of Floral Development in Populus tomentosa. Ph.D. Dissertation, Beijing Forestry University, Beijing, China, May 2013. [Google Scholar]
- Xu, J.; Xiang, T. Progress of Studies on Sex Determination in Three Model Plants. Subtrop. Plant Sci. 2007, 2, 68–72. [Google Scholar] [CrossRef]
- Zhang, M. Fine Localization of Sex Locus and Gene Screening Related to Sex Differentiation in Amur Grape. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, June 2019. [Google Scholar]
- Delporte, M.; Bernard, G.; Legrand, G.; Hielscher, B.; Lanoue, A.; Molinié, R.; Rambaud, C.; Mathiron, D.; Besseau, S.; Linka, N.; et al. A BAHD Neofunctionalization Promotes Tetrahydroxycinnamoyl Spermine Accumulation in the Pollen Coat of the Asteraceae Family. J. Exp. Bot. 2018, 69, 5355–5371. [Google Scholar] [CrossRef]
- Kianianmomeni, A.; Nematollahi, G.; Hallmann, A. A Gender-Specific Retinoblastoma-Related Protein in Volvox carteri Implies a Role for the Retinoblastoma Protein Family in Sexual Development. Plant Cell 2008, 20, 2399–2419. [Google Scholar] [CrossRef] [Green Version]
- Akagi, T.; Kawai, T.; Tao, R. A Male Determinant Gene in Diploid Dioecious Diospyros, OGI, Is Required for Male Flower Production in Monoecious Individuals of Oriental persimmon (D. Kaki). Sci. Hortic. 2016, 213, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Shimomura, K.; Komeda, Y.; Kamada, H.; Satoh, S. A Male-Associated DNA Sequence in a Dioecious Plant, Cannabis sativa L. Plant Cell Physiol. 1995, 36, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, Y.; Chen, Y.; Yin, H.; Wu, L.; Zhao, Y.; Wang, M.; Gao, M. A Model of Hormonal Regulation of Stamen Abortion during Pre-Meiosis of Litsea cubeba. Genes 2020, 11, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aamir, M.; Karmakar, P.; Singh, V.K.; Kashyap, S.P.; Pandey, S.; Singh, B.K.; Singh, P.M.; Singh, J. A Novel Insight into Transcriptional and Epigenetic Regulation Underlying Sex Expression and Flower Development in Melon (Cucumis melo L.). Physiol. Plant. 2021, 173, 1729–1764. [Google Scholar] [CrossRef]
- Lappin, F.M.; Medert, C.M.; Hawkins, K.K.; Mardonovich, S.; Wu, M.; Moore, R.C. A Polymorphic Pseudoautosomal Boundary in the Carica papaya Sex Chromosomes. Mol. Genet. Genom. 2015, 290, 1511–1522. [Google Scholar] [CrossRef]
- Pan, J.; Wen, H.; Chen, G.; Lin, W.-H.; Du, H.; Chen, Y.; Zhang, L.; Lian, H.; Wang, G.; Cai, R.; et al. A Positive Feedback Loop Mediated by CsERF31 Initiates Female Cucumber Flower Development. Plant Physiol. 2021, 186, 1088–1100. [Google Scholar] [CrossRef]
- Tsugama, D.; Matsuyama, K.; Ide, M.; Hayashi, M.; Fujino, K.; Masuda, K. A Putative MYB35 Ortholog Is a Candidate for the Sex-Determining Genes in Asparagus officinalis. Sci. Rep. 2017, 7, 41497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakull, B.; Kersten, B.; Lüneburg, J.; Fladung, M. A Simple PCR-Based Marker to Determine Sex in Aspen. Plant Biol. Stuttg. Ger. 2015, 17, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, A. A Small Cysteine-Rich Extracellular Protein, VCRP, Is Inducible by the Sex-Inducer of Volvox Carteri and by Wounding. Planta 2007, 226, 719–727. [Google Scholar] [CrossRef]
- Ballester, P.; Martínez-Godoy, M.A.; Ezquerro, M.; Navarrete-Gómez, M.; Trigueros, M.; Rodríguez-Concepción, M.; Ferrándiz, C. A Transcriptional Complex of NGATHA and BHLH Transcription Factors Directs Stigma Development in Arabidopsis. Plant Cell 2021, 33, 3645–3657. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-H.; Endo, A.; Zhou, L.; Penney, J.; Chen, H.-C.; Arroyo, A.; Leon, P.; Nambara, E.; Asami, T.; Seo, M.; et al. A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. Plant Cell 2002, 14, 2723–2743. [Google Scholar] [CrossRef]
- King, R.B.; Canfield, E.R. An Algorithm for Calculating the Roots of a General Quintic Equation from Its Coefficients. J. Math. Phys. 1991, 32, 823–825. [Google Scholar] [CrossRef]
- Cecchetti, V.; Celebrin, D.; Napoli, N.; Ghelli, R.; Brunetti, P.; Costantino, P.; Cardarelli, M. An Auxin Maximum in the Middle Layer Controls Stamen Development and Pollen Maturation in Arabidopsis. New Phytol. 2017, 213, 1194–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Li, M.; Zhang, S.; Yang, Q.; Zhu, E.; You, C.; Qi, J.; Ma, H.; Chang, F. Analyses of Functional Conservation and Divergence Reveal Requirement of BHLH010/089/091 for Pollen Development at Elevated Temperature in Arabidopsis. J. Genet. Genom. Yi Chuan Xue Bao 2020, 47, 477–492. [Google Scholar] [CrossRef]
- Jenkins, T.H.; Li, J.; Scutt, C.P.; Gilmartin, P.M. Analysis of Members of the Silene latifolia Cys2/His2 Zinc-Finger Transcription Factor Family during Dioecious Flower Development and in a Novel Stamen-Defective Mutant Ssf1. Planta 2005, 220, 559–571. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Abuahmad, A.; Franks, R.G.; Xie, D.-Y.; Xiang, Q.-Y. Analysis of Two TFL1 Homologs of Dogwood Species (Cornus L.) Indicates Functional Conservation in Control of Transition to Flowering. Planta 2016, 243, 1129–1141. [Google Scholar] [CrossRef]
- Juárez-Corona, Á.G.; de Folter, S. ANT and AIL6: Masters of the Master Regulators during Flower Development. J. Exp. Bot. 2021, 72, 5263–5266. [Google Scholar] [CrossRef] [PubMed]
- Ming, R.; Zhou, Y.; Fang, W.; Pang, Z.; Chen, L.-Y.; Cai, H.; Chang, M.-C. AP1G2 Affects Mitotic Cycles of Female and Male Gametophytes in Arabidopsis. Front. Plant Sci. 2022, 13, 924417. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, X.; Wang, L.; Wang, X.; Zhang, H.; Xie, H.; Ma, Y.; Qiu, Q.-S. Arabidopsis Antiporter CHX23 and Auxin Transporter PIN8 Coordinately Regulate Pollen Growth. J. Plant Physiol. 2021, 266, 153539. [Google Scholar] [CrossRef] [PubMed]
- Murmu, J.; Bush, M.J.; DeLong, C.; Li, S.; Xu, M.; Khan, M.; Malcolmson, C.; Fobert, P.R.; Zachgo, S.; Hepworth, S.R. Arabidopsis Basic Leucine-Zipper Transcription Factors TGA9 and TGA10 Interact with Floral Glutaredoxins ROXY1 and ROXY2 and Are Redundantly Required for Anther Development. Plant Physiol. 2010, 154, 1492–1504. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, B.; Xie, C.; Zhang, T.; Borassi, C.; Estevez, J.M.; Li, X.; Liu, X. Arabidopsis RAD23B Regulates Pollen Development by Mediating Degradation of KRP1. J. Exp. Bot. 2020, 71, 4010–4019. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Miao, L.; Huo, R.; Song, X.; Johnson, C.; Kong, L.; Sundaresan, V.; Yu, X. ARF2-ARF4 and ARF5 Are Essential for Female and Male Gametophyte Development in Arabidopsis. Plant Cell Physiol. 2018, 59, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wu, Y.; Ming, H.; Liu, H.; Liu, Z.; Li, H.; Zhang, G. AtENO2 Functions in the Development of Male Gametophytes in Arabidopsis thaliana. J. Plant Physiol. 2021, 263, 153417. [Google Scholar] [CrossRef]
- Pereira, P.A.; Boavida, L.C.; Santos, M.R.; Becker, J.D. AtNOT1 Is Required for Gametophyte Development in Arabidopsis. Plant J. 2020, 103, 1289–1303. [Google Scholar] [CrossRef]
- Serrazina, S.; Dias, F.V.; Malhó, R. Characterization of FAB1 Phosphatidylinositol Kinases in Arabidopsis Pollen Tube Growth and Fertilization. New Phytol. 2014, 203, 784–793. [Google Scholar] [CrossRef]
- De Moura, S.M.; Rossi, M.L.; Artico, S.; Grossi-de-Sa, M.F.; Martinelli, A.P.; Alves-Ferreira, M. Characterization of Floral Morphoanatomy and Identification of Marker Genes Preferentially Expressed during Specific Stages of Cotton Flower Development. Planta 2020, 252, 71. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, C.; Li, Q.; Qiao, X.; Li, X.; Cai, Y.; Wang, P.; Sun, Y.; Zhang, H.; Zhang, S.; et al. Characterization of the Pectin Methylesterase Inhibitor Gene Family in Rosaceae and Role of PbrPMEI23/39/41 in Methylesterified Pectin Distribution in Pear Pollen Tube. Planta 2021, 253, 118. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Granados, N.Y.; Ramirez-Prado, J.S.; Brik-Chaouche, R.; An, J.; Manza-Mianza, D.; Sircar, S.; Troadec, C.; Hanique, M.; Soulard, C.; Costa, R.; et al. CmLHP1 Proteins Play a Key Role in Plant Development and Sex Determination in Melon (Cucumis melo). Plant J. 2021, 109, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.-J.; Li, S.-F.; Zhang, G.-J.; Wang, N.-N.; Deng, C.-L.; Lu, L.-D. Comparative Analysis of Gene Expression by Microarray Analysis of Male and Female Flowers of Asparagus officinalis. Biosci. Biotechnol. Biochem. 2013, 77, 1193–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.-X.; Gan, Z.-M.; Wang, W.-F.; Ai, X.-Y.; Xie, Z.-Z.; Hu, C.-G.; Zhang, J.-Z. Comparative Analysis of the Transcriptome, Methylome, and Metabolome during Pollen Abortion of a Seedless Citrus Mutant. Plant Mol. Biol. 2020, 104, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Adal, A.M.; Doshi, K.; Holbrook, L.; Mahmoud, S.S. Comparative RNA-Seq Analysis Reveals Genes Associated with Masculinization in Female Cannabis sativa. Planta 2021, 253, 17. [Google Scholar] [CrossRef]
- Zhao, M.-L.; Chen, M.-S.; Ni, J.; Xu, C.-J.; Yang, Q.; Xu, Z.-F. Comparative Transcriptome Analysis of Gynoecious and Monoecious Inflorescences Reveals Regulators Involved in Male Flower Development in the Woody Perennial Plant Jatropha curcas. Plant Reprod. 2020, 33, 191–204. [Google Scholar] [CrossRef]
- Li, N.; Meng, Z.; Tao, M.; Wang, Y.; Zhang, Y.; Li, S.; Gao, W.; Deng, C. Comparative Transcriptome Analysis of Male and Female Flowers in Spinacia oleracea L. BMC Genom. 2020, 21, 850. [Google Scholar] [CrossRef]
- Li, S.-F.; Zhang, G.-J.; Zhang, X.-J.; Yuan, J.-H.; Deng, C.-L.; Gao, W.-J. Comparative Transcriptome Analysis Reveals Differentially Expressed Genes Associated with Sex Expression in Garden Asparagus (Asparagus officinalis). BMC Plant Biol. 2017, 17, 143. [Google Scholar] [CrossRef] [Green Version]
- Pawełkowicz, M.; Pryszcz, L.; Skarzyńska, A.; Wóycicki, R.K.; Posyniak, K.; Rymuszka, J.; Przybecki, Z.; Pląder, W. Comparative Transcriptome Analysis Reveals New Molecular Pathways for Cucumber Genes Related to Sex Determination. Plant Reprod. 2019, 32, 193–216. [Google Scholar] [CrossRef] [Green Version]
- Hardenack, S.; Ye, D.; Saedler, H.; Grant, S. Comparison of MADS Box Gene Expression in Developing Male and Female Flowers of the Dioecious Plant White Campion. Plant Cell 1994, 6, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Liu, Z.; Bai, J.; Yuan, S.; Li, Y.; Lu, F.; Zhang, T.; Sun, J.; Zhang, F.; Zhao, C.; et al. Comprehensive Analysis of Formin Gene Family Highlights Candidate Genes Related to Pollen Cytoskeleton and Male Fertility in Wheat (Triticum aestivum L.). BMC Genom. 2021, 22, 570. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bu, Y.; Niu, F.; Cun, Y.; Zhang, L.; Song, X. Comprehensive Analysis of LIM Gene Family in Wheat Reveals the Involvement of TaLIM2 in Pollen Development. Plant Sci. 2022, 314, 111101. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; He, T.; Ding, X.; Zhang, Q.; Yang, L.; Nie, Z.; Zhao, T.; Gai, J.; Yang, S. Confirmation of GmPPR576 as a Fertility Restorer Gene of Cytoplasmic Male Sterility in Soybean. J. Exp. Bot. 2021, 72, 7729–7742. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, J.; Liu, Y.; Yang, J.; Tan, X. CoNPR1 and CoNPR3.1 Are Involved in SA- and MeSA- Mediated Growth of the Pollen Tube in Camellia oleifera. Physiol. Plant. 2021, 172, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
- Lebel-Hardenack, S.; Ye, D.; Koutnikova, H.; Saedler, H.; Grant, S.R. Conserved Expression of a TASSELSEED2 Homolog in the Tapetum of the Dioecious Silene latifolia and Arabidopsis thaliana. Plant J. 1997, 12, 515–526. [Google Scholar] [CrossRef]
- Okada, S.; Fujisawa, M.; Sone, T.; Nakayama, S.; Nishiyama, R.; Takenaka, M.; Yamaoka, S.; Sakaida, M.; Kono, K.; Takahama, M.; et al. Construction of Male and Female PAC Genomic Libraries Suitable for Identification of Y-Chromosome-Specific Clones from the Liverwort, Marchantia Polymorpha. Plant J. 2000, 24, 421–428. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, T.; Linstroth, L.; Tillman, Z.; Otegui, M.S.; Owen, H.A.; Zhao, D. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis. PLoS Genet. 2016, 12, e1006147. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-Y.; Lin, H.-J.; Viswanath, K.K.; Lin, C.-P.; Chang, B.C.-H.; Chiu, P.-H.; Chiu, C.-T.; Wang, R.-H.; Chin, S.-W.; Chen, F.-C. Correction: The Development of Functional Mapping by Three Sex-Related Loci on the Third Whorl of Different Sex Types of Carica papaya L. PLoS ONE 2018, 13, e0196789. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Niu, L.; Chen, M.-S.; Tao, Y.-B.; Wang, X.; He, H.; Pan, B.-Z.; Xu, Z.-F. De Novo Transcriptome Assembly and Comparative Analysis between Male and Benzyladenine-Induced Female Inflorescence Buds of Plukenetia volubilis. J. Plant Physiol. 2018, 221, 107–118. [Google Scholar] [CrossRef]
- Devani, R.S.; Sinha, S.; Banerjee, J.; Sinha, R.K.; Bendahmane, A.; Banerjee, A.K. De Novo Transcriptome Assembly from Flower Buds of Dioecious, Gynomonoecious and Chemically Masculinized Female Coccinia grandis Reveals Genes Associated with Sex Expression and Modification. BMC Plant Biol. 2017, 17, 241. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.J.N.; Coito, J.L.; Fino, J.; Cunha, J.; Silva, H.; de Almeida, P.G.; Costa, M.M.R.; Amâncio, S.; Paulo, O.S.; Rocheta, M. Deep Analysis of Wild Vitis Flower Transcriptome Reveals Unexplored Genome Regions Associated with Sex Specification. Plant Mol. Biol. 2017, 93, 151–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-K.; Kim, H.; Cho, J.-I.; Nguyen, C.D.; Moon, S.; Park, J.E.; Park, H.R.; Huh, J.H.; Jung, K.-H.; Guiderdoni, E.; et al. Deficiency of Rice Hexokinase HXK5 Impairs Synthesis and Utilization of Starch in Pollen Grains and Causes Male Sterility. J. Exp. Bot. 2020, 71, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Gehring, M.; Johnson, L.; Hannon, M.; Harada, J.J.; Goldberg, R.B.; Jacobsen, S.E.; Fischer, R.L. DEMETER, a DNA Glycosylase Domain Protein, Is Required for Endosperm Gene Imprinting and Seed Viability in Arabidopsis. Cell 2002, 110, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Koppolu, R.; Schnurbusch, T. Developmental Pathways for Shaping Spike Inflorescence Architecture in Barley and Wheat. J. Integr. Plant Biol. 2019, 61, 278–295. [Google Scholar] [CrossRef] [Green Version]
- Paxson-Sowders, D.M.; Dodrill, C.H.; Owen, H.A.; Makaroff, C.A. DEX1, a Novel Plant Protein, Is Required for Exine Pattern Formation during Pollen Development in Arabidopsis. Plant Physiol. 2001, 127, 1739–1749. [Google Scholar] [CrossRef]
- Mátyás, K.K.; Hegedűs, G.; Taller, J.; Farkas, E.; Decsi, K.; Kutasy, B.; Kálmán, N.; Nagy, E.; Kolics, B.; Virág, E. Different Expression Pattern of Flowering Pathway Genes Contribute to Male or Female Organ Development during Floral Transition in the Monoecious Weed Ambrosia artemisiifolia L. (Asteraceae). PeerJ 2019, 7, e7421. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Christensen, S.; Isakeit, T.; Engelberth, J.; Meeley, R.; Hayward, A.; Emery, R.J.N.; Kolomiets, M.V. Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. Plant Cell 2012, 24, 1420–1436. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Takahashi, F.; Nozaki, H.; Nagasato, C.; Motomura, T.; Kataoka, H. Distribution and Phylogeny of the Blue Light Receptors Aureochromes in Eukaryotes. Planta 2009, 230, 543–552. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, X.; Fatima, M.; Ma, X.; Fang, H.; Yan, H.; Ming, R. DNA Methylome and Transcriptome Landscapes Revealed Differential Characteristics of Dioecious Flowers in Papaya. Hortic. Res. 2020, 7, 81. [Google Scholar] [CrossRef]
- Zhai, H.; Ning, W.; Wu, H.; Zhang, X.; Lü, S.; Xia, Z. DNA-Binding Protein Phosphatase AtDBP1 Acts as a Promoter of Flowering in Arabidopsis. Planta 2016, 243, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Yamanouchi, U.; Nonoue, Y.; Sugimoto, K.; Wang, Z.-X.; Minobe, Y.; Yano, M. Ehd3, Encoding a Plant Homeodomain Finger-Containing Protein, Is a Critical Promoter of Rice Flowering. Plant J. Cell Mol. Biol. 2011, 66, 603–612. [Google Scholar] [CrossRef]
- Khadka, J.; Yadav, N.S.; Guy, M.; Grafi, G.; Golan-Goldhirsh, A. Epigenetic Aspects of Floral Homeotic Genes in Relation to Sexual Dimorphism in the Dioecious Plant Mercurialis annua. J. Exp. Bot. 2019, 70, 6245–6259. [Google Scholar] [CrossRef] [PubMed]
- Goodman, K.; Paez-Valencia, J.; Pennington, J.; Sonntag, A.; Ding, X.; Lee, H.N.; Ahlquist, P.G.; Molina, I.; Otegui, M.S. ESCRT Components ISTL1 AndLIP5 Are Required for Tapetal Function and Pollen Viability. Plant Cell 2021, 33, 2850–2868. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Niu, H.; Wang, Z.; Zhang, W.; Wang, H.; Wang, S.; Zhang, X.; Li, Z. Ethylene Responsive Factor ERF110 Mediates Ethylene-Regulated Transcription of a Sex Determination-Related Orthologous Gene in Two Cucumis Species. J. Exp. Bot. 2018, 69, 2953–2965. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Wu, H.; Chen, Y.; Li, X.; Hou, J.; Lu, J.; Wei, S.; Dai, X.; Olson, M.S.; Liu, J.; et al. Evidences for a Role of Two Y-Specific Genes in Sex Determination in Populus deltoides. Nat. Commun. 2020, 11, 5893. [Google Scholar] [CrossRef] [PubMed]
- Marković, V.; Cvrčková, F.; Potocký, M.; Kulich, I.; Pejchar, P.; Kollárová, E.; Synek, L.; Žárský, V. EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development. Plant Physiol. 2020, 184, 1823–1839. [Google Scholar] [CrossRef] [PubMed]
- Bloch, D.; Pleskot, R.; Pejchar, P.; Potocký, M.; Trpkošová, P.; Cwiklik, L.; Vukašinović, N.; Sternberg, H.; Yalovsky, S.; Žárský, V. Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth. Plant Physiol. 2016, 172, 980–1002. [Google Scholar] [CrossRef] [Green Version]
- She, Z.; Huang, X.; Aslam, M.; Wang, L.; Yan, M.; Qin, R.; Chen, Y.; Qin, Y.; Niu, X. Expression Characterization and Cross-Species Complementation Uncover the Functional Conservation of YABBY Genes for Leaf Abaxial Polarity and Carpel Polarity Establishment in Saccharum spontaneum. BMC Plant Biol. 2022, 22, 124. [Google Scholar] [CrossRef]
- Kahana, A.; Silberstein, L.; Kessler, N.; Goldstein, R.S.; Perl-Treves, R. Expression of ACC Oxidase Genes Differs among Sex Genotypes and Sex Phases in Cucumber. Plant Mol. Biol. 1999, 41, 517–528. [Google Scholar] [CrossRef]
- Osnato, M. Fantastic Four: BHLH Factors and the Making of the Pollen. Plant Cell 2022, 34, 1151–1152. [Google Scholar] [CrossRef]
- Cui, J.; You, C.; Zhu, E.; Huang, Q.; Ma, H.; Chang, F. Feedback Regulation of DYT1 by Interactions with Downstream BHLH Factors Promotes DYT1 Nuclear Localization and Anther Development. Plant Cell 2016, 28, 1078–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hultquist, J.F.; Dorweiler, J.E. Feminized Tassels of Maize Mop1 and Ts1 Mutants Exhibit Altered Levels of MiR156 and Specific SBP-Box Genes. Planta 2008, 229, 99–113. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, M.-C.J.; Kita, D.; Jordan, S.S.; Yeh, F.-L.J.; Yvon, R.; Carpenter, H.; Federico, A.N.; Garcia-Valencia, L.E.; Eyles, S.J.; et al. FERONIA Controls Pectin- and Nitric Oxide-Mediated Male-Female Interaction. Nature 2020, 579, 561–566. [Google Scholar] [CrossRef]
- Gu, B.-W.; Tan, L.-M.; Zhang, C.-J.; Hou, X.-M.; Cai, X.-W.; Chen, S.; He, X.-J. FHA2 Is a Plant-Specific ISWI Subunit Responsible for Stamen Development and Plant Fertility. J. Integr. Plant Biol. 2020, 62, 1703. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xue, J.-S.; Yu, Y.-H.; Liu, S.-Q.; Zhang, J.-X.; Yao, X.-Z.; Liu, Z.-X.; Xu, X.-F.; Yang, Z.-N. Fine Regulation of ARF17 for Anther Development and Pollen Formation. BMC Plant Biol. 2017, 17, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ming, X.; Tao, Y.-B.; Fu, Q.; Tang, M.; He, H.; Chen, M.-S.; Pan, B.-Z.; Xu, Z.-F. Flower-Specific Overproduction of Cytokinins Altered Flower Development and Sex Expression in the Perennial Woody Plant Jatropha curcas L. Int. J. Mol. Sci. 2020, 21, 640. [Google Scholar] [CrossRef] [Green Version]
- Tian, A.; Zhang, E.; Cui, Z. Full-Length Transcriptome Analysis Reveals the Differences between Floral Buds of Recessive Genic Male-Sterile Line (RMS3185A) and Fertile Line (RMS3185B) of Cabbage. Planta 2021, 253, 21. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Yang, L.; Cai, G.; Chen, H.; Gao, D.; Lin, T.; Cui, Q.; Wang, D.; Li, Z.; et al. Gain-of-Function of the 1-Aminocyclopropane-1-Carboxylate Synthase Gene ACS1G Induces Female Flower Development in Cucumber Gynoecy. Plant Cell 2021, 33, 306–321. [Google Scholar] [CrossRef]
- Gao, P.; Xiang, D.; Quilichini, T.D.; Venglat, P.; Pandey, P.K.; Wang, E.; Gillmor, C.S.; Datla, R. Gene Expression Atlas of Embryo Development in Arabidopsis. Plant Reprod. 2019, 32, 93–104. [Google Scholar] [CrossRef]
- Li, D.; Sheng, Y.; Niu, H.; Li, Z. Gene Interactions Regulating Sex Determination in Cucurbits. Front. Plant Sci. 2019, 10, 1231. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-W.; Akagi, T.; Kawakatsu, T.; Tao, R. Gene Networks Orchestrated by MeGI: A Single-Factor Mechanism Underlying Sex Determination in Persimmon. Plant J. 2019, 98, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Dong, F.; Liu, J.; Xu, L.; Marshall-Colon, A.; Ming, R. Gene Regulation Network Analyses of Pistil Development in Papaya. BMC Genom. 2022, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Saraf-Levy, T.; Kahana, A.; Kessler, N.; Silberstein, L.; Wang, Y.; Gal-On, A.; Perl-Treves, R. Genes involved in ethylene synthesis and perception in cucumber. Acta Hortic. 2000, 510, 463–470. [Google Scholar] [CrossRef]
- Li, Q.; Liu, B. Genetic Regulation of Maize Flower Development and Sex Determination. Planta 2017, 245, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wellmer, F.; Alves-Ferreira, M.; Dubois, A.; Riechmann, J.L.; Meyerowitz, E.M. Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development. PLoS Genet. 2006, 2, e117. [Google Scholar] [CrossRef] [Green Version]
- Hazzouri, K.M.; Gros-Balthazard, M.; Flowers, J.M.; Copetti, D.; Lemansour, A.; Lebrun, M.; Masmoudi, K.; Ferrand, S.; Dhar, M.I.; Fresquez, Z.A.; et al. Genome-Wide Association Mapping of Date Palm Fruit Traits. Nat. Commun. 2019, 10, 4680. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Feng, B.-E.; Liu, Y.-J.; Gong, J.; Tang, Y.-M.; Zhang, L.-P.; Pang, B.-S.; Sun, R.-W.; Zhang, F.-T.; Chen, Z.-B.; et al. Genome-Wide Identification and Transcriptional Characterization of DNA Methyltransferases Conferring Temperature-Sensitive Male Sterility in Wheat. BMC Genom. 2021, 22, 310. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Z.; Hu, L.; Yue, Z. Genome-Wide Identification of PIP5K in Wheat and Its Relationship with Anther Male Sterility Induced by High Temperature. BMC Plant Biol. 2021, 21, 598. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Yu, M.; Mao, B.; Zhao, B.; Wang, J. Genome-Wide Transcriptome Analysis of Female-Sterile Rice Ovule Shed Light on Its Abortive Mechanism. Planta 2016, 244, 1011–1028. [Google Scholar] [CrossRef]
- Liu, C.; Fu, W.; Xu, W.; Liu, X.; Wang, S. Genome-Wide Transcriptome Analysis of Microspore Abortion Initiation in Radish (Raphanus sativus L.). Gene 2021, 794, 145753. [Google Scholar] [CrossRef]
- Torres, M.F.; Mathew, L.S.; Ahmed, I.; Al-Azwani, I.K.; Krueger, R.; Rivera-Nuñez, D.; Mohamoud, Y.A.; Clark, A.G.; Suhre, K.; Malek, J.A. Genus-Wide Sequencing Supports a Two-Locus Model for Sex-Determination in Phoenix. Nat. Commun. 2018, 9, 3969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves-Ferreira, M.; Wellmer, F.; Banhara, A.; Kumar, V.; Riechmann, J.L.; Meyerowitz, E.M. Global Expression Profiling Applied to the Analysis of Arabidopsis Stamen Development. Plant Physiol. 2007, 145, 747–762. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Kim, M.-H.; Hong, W.-J.; Moon, S.; Kim, E.-J.; Silva, J.; Lee, J.; Lee, S.; Kim, S.T.; Park, S.K.; et al. GORI, Encoding the WD40 Domain Protein, Is Required for Pollen Tube Germination and Elongation in Rice. Plant J. 2021, 105, 1645–1664. [Google Scholar] [CrossRef] [PubMed]
- Genau, A.C.; Li, Z.; Renzaglia, K.S.; Fernandez Pozo, N.; Nogué, F.; Haas, F.B.; Wilhelmsson, P.K.I.; Ullrich, K.K.; Schreiber, M.; Meyberg, R.; et al. HAG1 and SWI3A/B Control of Male Germ Line Development in P. Patens Suggests Conservation of Epigenetic Reproductive Control across Land Plants. Plant Reprod. 2021, 34, 149–173. [Google Scholar] [CrossRef]
- Golenberg, E.M.; West, N.W. Hormonal Interactions and Gene Regulation Can Link Monoecy and Environmental Plasticity to the Evolution of Dioecy in Plants. Am. J. Bot. 2013, 100, 1022–1037. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, S.; Liu, Y.; Ling, S.; Chen, C.; Yao, J. HOTHEAD-Like HTH1 Is Involved in Anther Cutin Biosynthesis and Is Required for Pollen Fertility in Rice. Plant Cell Physiol. 2017, 58, 1238–1248. [Google Scholar] [CrossRef] [Green Version]
- Selva, C.; Shirley, N.J.; Houston, K.; Whitford, R.; Baumann, U.; Li, G.; Tucker, M.R. HvLEAFY Controls the Early Stages of Floral Organ Specification and Inhibits the Formation of Multiple Ovaries in Barley. Plant J. 2021, 108, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Moreira, D.; Coimbra, S.; Showalter, A.M. Hydroxyproline-O-Galactosyltransferases Synthesizing Type II Arabinogalactans Are Essential for Male Gametophytic Development in Arabidopsis. Front. Plant Sci. 2022, 13, 935413. [Google Scholar] [CrossRef]
- Yang, X.; Ye, J.; Niu, F.; Feng, Y.; Song, X. Identification and Verification of Genes Related to Pollen Development and Male Sterility Induced by High Temperature in the Thermo-Sensitive Genic Male Sterile Wheat Line. Planta 2021, 253, 83. [Google Scholar] [CrossRef]
- Girma, G.; Natsume, S.; Carluccio, A.V.; Takagi, H.; Matsumura, H.; Uemura, A.; Muranaka, S.; Takagi, H.; Stavolone, L.; Gedil, M.; et al. Identification of Candidate Flowering and Sex Genes in White Guinea Yam (D. Rotundata Poir.) by SuperSAGE Transcriptome Profiling. PLoS ONE 2019, 14, e0216912. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ali, S.; Zhang, T.; Wang, W.; Xie, L. Identification, Evolutionary and Expression Analysis of PYL-PP2C-SnRK2s Gene Families in Soybean. Plants 2020, 9, 1356. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, M.A.; O’Leary, S.J.B.; Wu, S.; Chabot, D.; Gleddie, S.; Laroche, A.; Eudes, F.; Robert, L.S. Investigating Triticeae Anther Gene Promoter Activity in Transgenic Brachypodium Distachyon. Planta 2017, 245, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Pei, Y.; Tian, Y.; Zhang, Z.; Li, K.; Liu, J.; Xiao, S.; Chen, H.; Liu, J. IRREGULAR POLLEN EXINE2 Encodes a GDSL Lipase Essential for Male Fertility in Maize. Plant Physiol. 2020, 184, 1438–1454. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Kawano, S.; Takano, H.; Uchida, H.; Sakai, A.; Kuroiwa, T. Isolation and Developmental Expression of Male Reproductive Organ-Specific Genes in a Dioecious Campion, Melandrium Album (Silene latifolia). Plant J. 1996, 10, 679–689. [Google Scholar] [CrossRef]
- Ando, S.; Sakai, S. Isolation of an Ethylene-Responsive Gene (ERAF16) for a Putative Methyltransferase and Correlation of ERAF16 Gene Expression with Female Flower Formation in Cucumber Plants (Cucumis sativus). Physiol. Plant. 2002, 116, 213–222. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Yang, X.-X.; Li, W.-C.; Zhao, S.-Q. Knockdown of the DUF647 Family Member RUS4 Impairs Stamen Development and Pollen Maturation in Arabidopsis. Plant Sci. 2020, 301, 110645. [Google Scholar] [CrossRef]
- Peng, X.; Wang, M.; Li, Y.; Yan, W.; Chang, Z.; Chen, Z.; Xu, C.; Yang, C.; Deng, X.W.; Wu, J.; et al. Lectin Receptor Kinase OsLecRK-S.7 Is Required for Pollen Development and Male Fertility. J. Integr. Plant Biol. 2020, 62, 1227. [Google Scholar] [CrossRef] [PubMed]
- Scutt, C.P.; Jenkins, T.; Furuya, M.; Gilmartin, P.M. Male Specific Genes from Dioecious White Campion Identified by Fluorescent Differential Display. Plant Cell Physiol. 2002, 43, 563–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczyk, B.J.; Fernandez, D.E. MIKC* MADS Domain Heterodimers Are Required for Pollen Maturation and Tube Growth in Arabidopsis. Plant Physiol. 2009, 149, 1713–1723. [Google Scholar] [CrossRef] [Green Version]
- Ingle, E.K.S.; Gilmartin, P.M. Molecular Characterisation of Four Double-Flowered Mutants of Silene Dioica Representing Four Centuries of Variation. J. Exp. Bot. 2015, 66, 3297–3307. [Google Scholar] [CrossRef] [Green Version]
- Khadka, D.K.; Nejidat, A.; Tal, M.; Golan-Goldhirsh, A. Molecular Characterization of a Gender-Linked DNA Marker and a Related Gene in Mercurialis annua L. Planta 2005, 222, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yuan, G.; Sun, H.; Zhao, P.; Liu, Y.; Guo, D. Molecular Cloning and Expression Analysis of Spermidine Synthase Gene during Sex Reversal Induced by Ethrel in Cucumber (Cucumis sativus L.). Plant Sci. 2005, 169, 768–775. [Google Scholar] [CrossRef]
- Zhong, S.; Li, H.; Bodi, Z.; Button, J.; Vespa, L.; Herzog, M.; Fray, R.G. MTA Is an Arabidopsis Messenger RNA Adenosine Methylase and Interacts with a Homolog of a Sex-Specific Splicing Factor. Plant Cell 2008, 20, 1278–1288. [Google Scholar] [CrossRef] [Green Version]
- Ishizaki, K.; Shimizu-Ueda, Y.; Okada, S.; Yamamoto, M.; Fujisawa, M.; Yamato, K.T.; Fukuzawa, H.; Ohyama, K. Multicopy Genes Uniquely Amplified in the Y Chromosome-specific Repeats of the Liverwort Marchantia Polymorpha. Nucleic Acids Res. 2002, 30, 4675–4681. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Massonnet, M.; Minio, A.; Patel, S.; Llaca, V.; Karn, A.; Gouker, F.; Cadle-Davidson, L.; Reisch, B.; Fennell, A.; et al. Multiple Independent Recombinations Led to Hermaphroditism in Grapevine. Proc. Natl. Acad. Sci. USA 2021, 118, e2023548118. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Zhang, J.; Zhang, H.; Sun, H.; Gong, G.; Shi, J.; Tian, S.; Guo, S.; Ren, Y.; Shen, H.; et al. Mutation in the Gene Encoding 1-Aminocyclopropane-1-Carboxylate Synthase 4 (CitACS4) Led to Andromonoecy in Watermelon. J. Integr. Plant Biol. 2016, 58, 762–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, K.; Han, J.; Zhang, Z.; Li, H.; Zhao, Y.; Zhu, Q.; Xie, Y.; Liu, Y.; Chen, L. OsEDM2L Mediates M6A of EAT1 Transcript for Proper Alternative Splicing and Polyadenylation Regulating Rice Tapetal Degradation. J. Integr. Plant Biol. 2021, 63, 1982–1994. [Google Scholar] [CrossRef]
- Shi, Q.-S.; Wang, K.-Q.; Li, Y.-L.; Zhou, L.; Xiong, S.-X.; Han, Y.; Zhang, Y.-F.; Yang, N.-Y.; Yang, Z.-N.; Zhu, J. OsPKS1 Is Required for Sexine Layer Formation, Which Shows Functional Conservation between Rice and Arabidopsis. Plant Sci. Int. J. Exp. Plant Biol. 2018, 277, 145–154. [Google Scholar] [CrossRef]
- Manzano, S.; Megías, Z.; Martínez, C.; García, A.; Aguado, E.; Chileh, T.; López-Alonso, D.; García-Maroto, F.; Kejnovský, E.; Široký, J.; et al. Overexpression of a Flower-Specific Aerolysin-like Protein from the Dioecious Plant Rumex acetosa Alters Flower Development and Induces Male Sterility in Transgenic Tobacco. Plant J. 2017, 89, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Sheng, O.; Dong, T.; Yang, Q.; Dou, T.; Li, C.; He, W.; Gao, H.; Yi, G.; Deng, G.; et al. Overexpression of MaTPD1A Impairs Fruit and Pollen Development by Modulating Some Regulators in Musa itinerans. BMC Plant Biol. 2020, 20, 402. [Google Scholar] [CrossRef]
- Qian, M.; Xu, L.; Tang, C.; Zhang, H.; Gao, H.; Cao, P.; Yin, H.; Wu, L.; Wu, J.; Gu, C.; et al. PbrPOE21 Inhibits Pear Pollen Tube Growth in Vitro by Altering Apical Reactive Oxygen Species Content. Planta 2020, 252, 43. [Google Scholar] [CrossRef] [PubMed]
- Uzair, M.; Xu, D.; Schreiber, L.; Shi, J.; Liang, W.; Jung, K.-H.; Chen, M.; Luo, Z.; Zhang, Y.; Yu, J.; et al. PERSISTENT TAPETAL CELL2 Is Required for Normal Tapetal Programmed Cell Death and Pollen Wall Patterning1 [OPEN]. Plant Physiol. 2020, 182, 962–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Wang, T.; Liu, L. Pollen Germination Is Impaired by Disruption of a Shaker K+ Channel OsAKT1.2 in Rice. J. Plant Physiol. 2020, 248, 153140. [Google Scholar] [CrossRef] [PubMed]
- Roodt, D. Pollen Protection: TEX2 Plays an Important Role in the Formation of Pollen Grain Exine. Plant Physiol. 2021, 187, 9–11. [Google Scholar] [CrossRef]
- Zhang, M.J.; Zhao, T.Y.; Ouyang, X.K.; Zhao, X.-Y.; Dai, X.; Gao, X.-Q. Pollen-Specific Gene SKU5-SIMILAR 13 Enhances Growth of Pollen Tubes in the Transmitting Tract in Arabidopsis. J. Exp. Bot. 2022, 73, 696–710. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Wang, Y.; Wang, Y.-C.; Wang, N.-N.; Lu, R.; Wu, Y.-W.; Li, X.-B. Pollen-Specific Protein PSP231 Activates Callose Synthesis to Govern Male Gametogenesis and Pollen Germination. Plant Physiol. 2020, 184, 1024–1041. [Google Scholar] [CrossRef]
- Moffatt, B.; Somerville, C. Positive Selection for Male-Sterile Mutants of Arabidopsis Lacking Adenine Phosphoribosyl Transferase Activity. Plant Physiol. 1988, 86, 1150–1154. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zheng, K.; Zeng, L.; Xu, D.; Zhu, T.; Yin, Y.; Zhan, H.; Wu, Y.; Yang, D.-L. Reinforcement of CHH Methylation through RNA-Directed DNA Methylation Ensures Sexual Reproduction in Rice. Plant Physiol. 2022, 188, 1189–1209. [Google Scholar] [CrossRef]
- Tennessen, J.A.; Wei, N.; Straub, S.C.K.; Govindarajulu, R.; Liston, A.; Ashman, T.-L. Repeated Translocation of a Gene Cassette Drives Sex-Chromosome Turnover in Strawberries. PLoS Biol. 2018, 16, e2006062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wu, D.; Shi, J.; He, Y.; Pinot, F.; Grausem, B.; Yin, C.; Zhu, L.; Chen, M.; Luo, Z.; et al. Rice CYP703A3, a Cytochrome P450 Hydroxylase, Is Essential for Development of Anther Cuticle and Pollen Exine: CYP703A3 Controls Male Reproductive Development. J. Integr. Plant Biol. 2014, 56, 979–994. [Google Scholar] [CrossRef]
- Hasegawa, K.; Kamada, S.; Takehara, S.; Takeuchi, H.; Nakamura, A.; Satoh, S.; Iwai, H. Rice Putative Pectin Methyltransferase Gene OsPMT10 Is Required for Maintaining the Cell Wall Properties of Pistil Transmitting Tissues via Pectin Modification. Plant Cell Physiol. 2021, 62, 1902–1911. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, L.; Jia, R.; Liang, W.; Zhang, X.; Xu, J.; Chen, X.; Lu, D.; Chen, M.; Luo, Z.; et al. Rice Transcription Factor MADS32 Regulates Floral Patterning through Interactions with Multiple Floral Homeotic Genes. J. Exp. Bot. 2021, 72, 2434–2449. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lin, Y.; Jin, Q.; Yao, C.; Zhong, Y.; Wu, T. RNA-Seq Analysis of Gynoecious and Weak Female Cucumber Revealing the Cell Cycle Pathway May Regulate Sex Determination in Cucumber. Gene 2019, 687, 289–297. [Google Scholar] [CrossRef]
- Tao, Y.; Zou, T.; Zhang, X.; Liu, R.; Chen, H.; Yuan, G.; Zhou, D.; Xiong, P.; He, Z.; Li, G.; et al. Secretory Lipid Transfer Protein OsLTPL94 Acts as a Target of EAT1 and Is Required for Rice Pollen Wall Development. Plant J. 2021, 108, 358–377. [Google Scholar] [CrossRef] [PubMed]
- Albertini, E.; Marconi, G.; Reale, L.; Barcaccia, G.; Porceddu, A.; Ferranti, F.; Falcinelli, M. SERK and APOSTART. Candidate Genes for Apomixis in Poa Pratensis. Plant Physiol. 2005, 138, 2185–2199. [Google Scholar] [CrossRef] [Green Version]
- Koehler, A.D.; Irsigler, A.S.T.; Carneiro, V.T.C.; Cabral, G.B.; Rodrigues, J.C.M.; Gomes, A.C.M.M.; Togawa, R.C.; Costa, M.M.C.; Martinelli, A.P.; Dusi, D.M. de A. SERK Genes Identification and Expression Analysis during Somatic Embryogenesis and Sporogenesis of Sexual and Apomictic Brachiaria Brizantha (Syn. Urochloa Brizantha). Planta 2020, 252, 39. [Google Scholar] [CrossRef]
- Harkess, A.; Huang, K.; van der Hulst, R.; Tissen, B.; Caplan, J.L.; Koppula, A.; Batish, M.; Meyers, B.C.; Leebens-Mack, J. Sex Determination by Two Y-Linked Genes in Garden Asparagus. Plant Cell 2020, 32, 1790–1796. [Google Scholar] [CrossRef] [Green Version]
- Scutt, C.P.; Li, Y.; Robertson, S.E.; Willis, M.E.; Gilmartin, P.M. Sex Determination in Dioecious Silene Iatifolia (Effects of the Y Chromosome and the Parasitic Smut Fungus (Ustilago Violacea) on Gene Expression during Flower Development). Plant Physiol. 1997, 114, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Harkess, A.; Mercati, F.; Shan, H.-Y.; Sunseri, F.; Falavigna, A.; Leebens-Mack, J. Sex-Biased Gene Expression in Dioecious Garden Asparagus (Asparagus officinalis). New Phytol. 2015, 207, 883–892. [Google Scholar] [CrossRef]
- Chawla, A.; Stobdan, T.; Srivastava, R.B.; Jaiswal, V.; Chauhan, R.S.; Kant, A. Sex-Biased Temporal Gene Expression in Male and Female Floral Buds of Seabuckthorn (Hippophae rhamnoides). PLoS ONE 2015, 10, e0124890. [Google Scholar] [CrossRef] [Green Version]
- Tanurdzic, M. Sex-Determining Mechanisms in Land Plants. Plant Cell 2004, 16, S61–S71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsunaga, S.; Uchida, W.; Kawano, S. Sex-Specific Cell Division during Development of Unisexual Flowers in the Dioecious Plant Silene latifolia. Plant Cell Physiol. 2004, 45, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Chae, T.; Harkess, A.; Moore, R.C. Sex-linked Gene Expression and the Emergence of Hermaphrodites in Carica papaya. Am. J. Bot. 2021, 108, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, X.; Guo, L.; Qi, T.; Liu, G.; Feng, J.; Shahzad, K.; Zhang, B.; Li, X.; Wang, H.; et al. Single-Base Resolution Methylome of Cotton Cytoplasmic Male Sterility System Reveals Epigenomic Changes in Response to High-Temperature Stress during Anther Development. J. Exp. Bot. 2020, 71, 951–969. [Google Scholar] [CrossRef]
- Robertson, S.E.; Li, Y.; Scutt, C.P.; Willis, M.E.; Gilmartin, P.M. Spatial Expression Dynamics of Men-9 Delineate the Third Floral Whorl in Male and Female Flowers of Dioecious Silene latifolia. Plant J. 1997, 12, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, S.; Salinas, M.; Garcia-Molina, A.; Höhmann, S.; Berndtgen, R.; Huijser, P. SPL8 and MiR156-Targeted SPL Genes Redundantly Regulate Arabidopsis Gynoecium Differential Patterning. Plant J. Cell Mol. Biol. 2013, 75, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.E.; Basham, C.; Hammond, R.; Ding, Q.; Kakrana, A.; Lee, T.-F.; Simon, S.A.; Meeley, R.; Meyers, B.C.; Hake, S. The Dicer-Like1 Homolog Fuzzy Tassel Is Required for the Regulation of Meristem Determinacy in the Inflorescence and Vegetative Growth in Maize. Plant Cell 2014, 26, 4702–4717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-Y.; Hsiao, Y.-Y.; Li, C.-I.; Yeh, C.-M.; Mitsuda, N.; Yang, H.-X.; Chiu, C.-C.; Chang, S.-B.; Liu, Z.-J.; Tsai, W.-C. The Ancestral Duplicated DL/CRC Orthologs, PeDL1 and PeDL2, Function in Orchid Reproductive Organ Innovation. J. Exp. Bot. 2021, 72, 5442–5461. [Google Scholar] [CrossRef]
- Steinbach, Y. The Arabidopsis thaliana CONSTANS-LIKE 4 (COL4)—A Modulator of Flowering Time. Front. Plant Sci. 2019, 10, 651. [Google Scholar] [CrossRef] [Green Version]
- Gusti, A.; Baumberger, N.; Nowack, M.; Pusch, S.; Eisler, H.; Potuschak, T.; De Veylder, L.; Schnittger, A.; Genschik, P. The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development. PLoS ONE 2009, 4, e4780. [Google Scholar] [CrossRef] [Green Version]
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The Asparagus Genome Sheds Light on the Origin and Evolution of a Young Y Chromosome. Nat. Commun. 2017, 8, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hord, C.L.H.; Chen, C.; Deyoung, B.J.; Clark, S.E.; Ma, H. The BAM1/BAM2 Receptor-like Kinases Are Important Regulators of Arabidopsis Early Anther Development. Plant Cell 2006, 18, 1667–1680. [Google Scholar] [CrossRef] [Green Version]
- Leite Montalvão, A.P.; Kersten, B.; Fladung, M.; Müller, N.A. The Diversity and Dynamics of Sex Determination in Dioecious Plants. Front. Plant Sci. 2021, 11, 580488. [Google Scholar] [CrossRef] [PubMed]
- Carey, S.; Yu, Q.; Harkess, A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes 2021, 12, 381. [Google Scholar] [CrossRef]
- Manzano, S.; Aguado, E.; Martínez, C.; Megías, Z.; García, A.; Jamilena, M. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus Lanatus). PLoS ONE 2016, 11, e0154362. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Pan, H.; Tang, Q.; Woolard, C.; Xu, G. The Extracellular Domain of Pollen Receptor Kinase 3 Is Structurally Similar to the SERK Family of Co-Receptors. Sci. Rep. 2018, 8, 2796. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Du, R.; Gou, J.; Guo, L.; Shen, H.; Liu, H.; Nguyen, J.K.; Ming, R.; Yin, T.; Huang, S.; et al. The Genomic Architecture of the Sex-determining Region and Sex-related Metabolic Variation in Ginkgo biloba. Plant J. 2020, 104, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Eleblu, J.S.Y.; Haraghi, A.; Mania, B.; Camps, C.; Rashid, D.; Morin, H.; Dogimont, C.; Boualem, A.; Bendahmane, A. The Gynoecious CmWIP1 Transcription Factor Interacts with CmbZIP48 to Inhibit Carpel Development. Sci. Rep. 2019, 9, 15443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierocka, I.; Alaba, S.; Jarmolowski, A.; Karlowski, W.M.; Szweykowska-Kulinska, Z. The Identification of Differentially Expressed Genes in Male and Female Gametophytes of Simple Thalloid Liverwort Pellia Endiviifolia Sp. B Using an RNA-Seq Approach. Planta 2020, 252, 21. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.E.; Williams, S.K.; Taylor, Z.; DeBlasio, S.; Goldshmidt, A.; Hall, D.H.; Schmidt, R.J.; Jackson, D.P.; Whipple, C.J. The Maize PI/GLO Ortholog Zmm16/Sterile Tassel Silky Ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development. Plant Cell 2015, 27, 3081–3098. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Qin, M.; Yao, L.; Li, Y.; Han, R.; Ma, L. The N-terminal Acetyltransferase Naa50 Regulates Tapetum Degradation and Pollen Development in Arabidopsis. Plant Sci. 2022, 316, 111180. [Google Scholar] [CrossRef]
- Yanofsky, M.F.; Ma, H.; Bowman, J.L.; Drews, G.N.; Feldmann, K.A.; Meyerowitz, E.M. The Protein Encoded by the Arabidopsis Homeotic Gene Agamous Resembles Transcription Factors. Nature 1990, 346, 35–39. [Google Scholar] [CrossRef]
- Costanzo, E.; Trehin, C.; Vandenbussche, M. The Role of WOX Genes in Flower Development. Ann. Bot. 2014, 114, 1545–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Liu, W.; Xu, J.; Liu, Z.; Li, C.; Feng, H. The SAP Function in Pistil Development Was Proved by Two Allelic Mutations in Chinese Cabbage (Brassica rapa L. Ssp. Pekinensis). BMC Plant Biol. 2020, 20, 538. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.E.; Mayer, U.; Capron, A.; Ngo, Q.A.; Surendrarao, A.; McClinton, R.; Jürgens, G.; Sundaresan, V. The TORMOZ Gene Encodes a Nucleolar Protein Required for Regulated Division Planes and Embryo Development in Arabidopsis. Plant Cell 2007, 19, 2246–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Hao, Z.; Long, X.; Wang, Z.; Zheng, X.; Ye, D.; Peng, Y.; Wu, W.; Hu, X.; Wang, G.; et al. The Transcriptome of Cunninghamia Lanceolata Male/Female Cone Reveal the Association between MIKC MADS-Box Genes and Reproductive Organs Development. BMC Plant Biol. 2020, 20, 508. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Yu, X.; Yuan, Y.; Zhang, Y.; Zhang, Z.; Zhang, J.; Zhang, M.; Ji, C.; Liu, Q.; Tao, J. The VviMYB80 Gene Is Abnormally Expressed in Vitis vinifera L. Cv. “Zhong Shan Hong” and Its Expression in Tobacco Driven by the 35S Promoter Causes Male Sterility. Plant Cell Physiol. 2016, 57, 540–557. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Yang, Y.; Li, H.; Liu, Z.; Fu, R.; Feng, H.; Li, C. The Xyloglucan Galactosylation Modulates the Cell Wall Stability of Pollen Tube. Planta 2021, 254, 133. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J.; Bartholomew, E.S.; Dong, M.; Chen, S.; Yin, S.; Zhai, X.; Feng, Z.; Ren, H.; Liu, X. TINY BRANCHED HAIR Functions in Multicellular Trichome Development through an Ethylene Pathway in Cucumis sativus L. Plant J. 2021, 106, 753–765. [Google Scholar] [CrossRef]
- Xu, G.; Huang, J.; Yang, Y.; Yao, Y. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing. PLoS ONE 2016, 11, e0145613. [Google Scholar] [CrossRef] [Green Version]
- Osnato, M.; Lacchini, E.; Pilatone, A.; Dreni, L.; Grioni, A.; Chiara, M.; Horner, D.; Pelaz, S.; Kater, M.M. Transcriptome Analysis Reveals Rice MADS13 as an Important Repressor of the Carpel Development Pathway in Ovules. J. Exp. Bot. 2021, 72, 398–414. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Z.; Zhou, X.; Feng, Z.; Du, Y. Transcriptome Profile Analysis of Floral Sex Determination in Cucumber. J. Plant Physiol. 2010, 167, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.N.; Nayak, S.; Jha, S.; Joshi, R.K. Transcriptome Profiling of the Floral Buds and Discovery of Genes Related to Sex-Differentiation in the Dioecious Cucurbit Coccinia grandis (L.) Voigt. Gene 2017, 626, 395–406. [Google Scholar] [CrossRef]
- Hu, X.; Liao, Z.; Zhang, B.; Yue, J.; Wang, Z.; Jie, X.; Liu, J. Transcriptome Sequencing and Screening of Genes Related to Sex Determination of Trichosanthes Kirilowii Maxim. PLoS ONE 2020, 15, e0239230. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, L.; Pan, F.; Guo, W.; Chen, B.; Yang, H.; Wang, G.; Li, X. Transcriptomic Analysis Reveals Ethylene Signal Transduction Genes Involved in Pistil Development of Pumpkin. PeerJ 2020, 8, e9677. [Google Scholar] [CrossRef]
- Feng, X.; Yang, Z.; Xiu-Rong, W.; Ying, W. Transcriptomic Differences between Male and Female Trachycarpus Fortunei. Sci. Rep. 2020, 10, 12338. [Google Scholar] [CrossRef]
- García, A.; Aguado, E.; Garrido, D.; Martínez, C.; Jamilena, M. Two Androecious Mutations Reveal the Crucial Role of Ethylene Receptors in the Initiation of Female Flower Development in Cucurbita pepo. Plant J. 2020, 103, 1548–1560. [Google Scholar] [CrossRef]
- Liu, H.; Sun, M.; Pan, H.; Cheng, T.; Wang, J.; Zhang, Q. Two Cyc2CL Transcripts (Cyc2CL-1 and Cyc2CL-2) May Play Key Roles in the Petal and Stamen Development of Ray Florets in Chrysanthemum. BMC Plant Biol. 2021, 21, 105. [Google Scholar] [CrossRef]
- Lee, H.K.; Goring, D.R. Two Subgroups of Receptor-like Kinases Promote Early Compatible Pollen Responses in the Arabidopsis thaliana Pistil. J. Exp. Bot. 2021, 72, 1198–1211. [Google Scholar] [CrossRef]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; McNeilage, M.A.; Douglas, M.J.; Wang, T.; et al. Two Y-Chromosome-Encoded Genes Determine Sex in Kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Iocco-Corena, P.; Chaïb, J.; Torregrosa, L.; Mackenzie, D.; Thomas, M.R.; Smith, H.M. VviPLATZ1 Is a Major Factor That Controls Female Flower Morphology Determination in Grapevine. Nat. Commun. 2021, 12, 6995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, S.; Niu, C.; Liu, D.; Yan, T.; Tian, Y.; Liu, S.; Xie, K.; Li, Z.; Wang, Y.; et al. ZmMs25 Encoding a Plastid-Localized Fatty Acyl Reductase Is Critical for Anther and Pollen Development in Maize. J. Exp. Bot. 2021, 72, 4298–4318. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Mangalam, A.K.; Dwivedi, S.; Naik, S. Primer Premier: Program for Design of Degenerate Primers from a Protein Sequence. BioTechniques 1998, 24, 318–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Chen, L.-Y.; Zhou, P.; Liao, Z.; Lin, H.; Yu, Q.; Ming, R. Sex Biased Expression of Hormone Related Genes at Early Stage of Sex Differentiation in Papaya Flowers. Hortic. Res. 2021, 8, 147. [Google Scholar] [CrossRef]
- Song, Y.; Ma, K.; Bo, W.; Zhang, Z.; Zhang, D. Sex-Specific DNA Methylation and Gene Expression in Andromonoecious Poplar. Plant Cell Rep. 2012, 31, 1393–1405. [Google Scholar] [CrossRef]
- Chen, M.-S.; Pan, B.-Z.; Fu, Q.; Tao, Y.-B.; Martínez-Herrera, J.; Niu, L.; Ni, J.; Dong, Y.; Zhao, M.-L.; Xu, Z.-F. Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas. Front. Plant Sci. 2017, 7, 1953. [Google Scholar] [CrossRef] [Green Version]
- Klucher, K.M.; Chow, H.; Reiser, L.; Fischer, R.L. The AINTEGUMENTA Gene of Arabidopsis Required for Ovule and Female Gametophyte Development Is Related to the Floral Homeotic Gene APETALA2. Plant Cell 1996, 8, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Krizek, B.A.; Blakley, I.C.; Ho, Y.; Freese, N.; Loraine, A.E. The Arabidopsis Transcription Factor AINTEGUMENTA Orchestrates Patterning Genes and Auxin Signaling in the Establishment of Floral Growth and Form. Plant J. 2020, 103, 752–768. [Google Scholar] [CrossRef]
- Krizek, B.A.; Bantle, A.T.; Heflin, J.M.; Han, H.; Freese, N.H.; Loraine, A.E. AINTEGUMENTA and AINTEGUMENTA-LIKE6 Directly Regulate Floral Homeotic, Growth, and Vascular Development Genes in Young Arabidopsis Flowers. J. Exp. Bot. 2021, 72, 5478–5493. [Google Scholar] [CrossRef] [PubMed]
- Wynn, A.N.; Seaman, A.A.; Jones, A.L.; Franks, R.G. Novel Functional Roles for PERIANTHIA and SEUSS during Floral Organ Identity Specification, Floral Meristem Termination, and Gynoecial Development. Front. Plant Sci. 2014, 5, 130. [Google Scholar] [CrossRef] [Green Version]
- Nain, V.; Verma, A.; Kumar, N.; Sharma, P.; Ramesh, B.; Kumar, P.A. Cloning of an Ovule Specific Promoter from Arabidopsis thaliana and Expression of β-Glucuronidase. Indian J. Exp. Biol. 2008, 46, 207–211. [Google Scholar]
- Chen, L.; Zhang, J.; Niu, J.; Li, H.; Xue, H.; Liu, B.; Xia, X.; Zhang, F.; Zhao, D.; Cao, S. Cloning and Functional Verification of Gene PgAGL11 Associated with the Development of Flower Organs in Pomegranate Plant. Acta Hortic. Sin. 2017, 44, 2089–2098. [Google Scholar] [CrossRef]
- Gangwar, M.; Sood, H.; Chauhan, R.S. Genomics and Relative Expression Analysis Identifies Key Genes Associated with High Female to Male Flower Ratio in Jatropha curcas L. Mol. Biol. Rep. 2016, 43, 305–322. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, M.; Jiang, L.; Ding, L.; Yan, S.S.; Zhang, J.; Dong, Z.; Ren, H.; Zhang, X. Cucumber SUPERMAN Has Conserved Function in Stamen and Fruit Development and a Distinct Role in Floral Patterning. PLoS ONE 2014, 9, e86192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durán-Medina, Y.; Serwatowska, J.; Reyes-Olalde, J.I.; de Folter, S.; Marsch-Martínez, N. The AP2/ERF Transcription Factor DRNL Modulates Gynoecium Development and Affects Its Response to Cytokinin. Front. Plant Sci. 2017, 8, 1841. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K.; Ikeda, Y.; Matsuura, T.; Kawakatsu, T.; Tao, R.; Kubo, Y.; Ushijima, K.; Henry, I.M.; Akagi, T. Reinvention of Hermaphroditism via Activation of a RADIALIS-like Gene in Hexaploid Persimmon. Nat. Plants 2022, 8, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Springer, P.S.; McCombie, W.R.; Sundaresan, V.; Martienssen, R.A. Gene Trap Tagging of PROLIFERA, an Essential MCM2-3-5 -Like Gene in Arabidopsis. Science 1995, 268, 877–880. [Google Scholar] [CrossRef]
- Ferrario, S.; Immink, R.G.H.; Shchennikova, A.; Busscher-Lange, J.; Angenent, G.C. The MADS Box Gene FBP2 Is Required for SEPALLATA Function in Petunia. Plant Cell 2003, 15, 914–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azhakanandam, S.; Nole-Wilson, S.; Bao, F.; Franks, R.G. SEUSS and AINTEGUMENTA Mediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development. Plant Physiol. 2008, 146, 1165–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
F | M | Fi | M5-azaC | Mck | |
---|---|---|---|---|---|
Sex regulatory genes (Group A) | 44 | 43 | 45 | 45 | 44 |
Genes related to floral initiation and development (Group B) | 250 | 239 | 255 | 251 | 248 |
Genes related to biochemical metabolic pathways (Group C) | 177 | 177 | 180 | 180 | 183 |
Plant hormones-related genes (Group D) | 133 | 127 | 132 | 135 | 131 |
Total | 604 | 586 | 612 | 611 | 606 |
Expression | log2 FC | FDR | Number of DEGs | |
---|---|---|---|---|
F vs. M | Fi vs. Mck | |||
Up-regulated | ≥ 1 | ≤0.05 ≤0.05 | 166 | 129 |
1 > log2 FC > 0 | 6 | 13 | ||
Down-regulated | 0 > log2 FC > −1 | ≤0.05 | 3 | 16 |
≤−1 | ≤0.05 | 157 | 138 | |
Total | 332 | 296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Fan, Y.; Zhang, Z.; Wei, X.; Yu, J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes 2023, 14, 661. https://doi.org/10.3390/genes14030661
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes. 2023; 14(3):661. https://doi.org/10.3390/genes14030661
Chicago/Turabian StyleHe, Lihong, Yongfang Fan, Zhao Zhang, Xueping Wei, and Jing Yu. 2023. "Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach" Genes 14, no. 3: 661. https://doi.org/10.3390/genes14030661
APA StyleHe, L., Fan, Y., Zhang, Z., Wei, X., & Yu, J. (2023). Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes, 14(3), 661. https://doi.org/10.3390/genes14030661