Metagenomics Provides a Deeper Assessment of the Diversity of Bacterial Communities in Polar Soils Than Metabarcoding
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Sites
2.2. DNA Isolation, Sequencing, and Bioinformatic Analyses
3. Results and Discussion
4. General Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomson, A.M.; Calvin, K.v.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef] [Green Version]
- Henry, H.A.L. Soil Freezing Dynamics in a Changing Climate: Implications for Agriculture. In Plant and Microbe Adaptations to Cold in a Changing World; Springer: Berlin, Germany, 2013. [Google Scholar]
- Balser, T.C.; Gutknecht, J.L.M.; Liang, C. How Will Climate Change Impact Soil Microbial Communities? In Soil Microbiology and Sustainable Crop Production; Springer: Berlin, Germany, 2010. [Google Scholar]
- Printzen, C. Uncharted Terrain: The Phylogeography of Arctic and Boreal Lichens. Plant Ecol. Divers. 2008, 1, 265–271. [Google Scholar] [CrossRef]
- Friedmann, E.I. Lichens of Antarctica and South Georgia: A Guide to Their Identification and Ecology. Arct. Antarct. Alp. Res. 2003, 35, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.; Borchhardt, N.; Colesie, C.; Baum, C.; Komsic-Buchmann, K.; Rippin, M.; Becker, B.; Karsten, U.; Büdel, B. Biological Soil Crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biol. 2017, 40, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Torsvik, V.; Øvreås, L. Microbial Diversity and Function in Soil: From Genes to Ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, Present, and Future Perspectives of Environmental DNA (EDNA) Metabarcoding: A Systematic Review in Methods, Monitoring, and Applications of Global EDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Joos, L.; Beirinckx, S.; Haegeman, A.; Debode, J.; Vandecasteele, B.; Baeyen, S.; Goormachtig, S.; Clement, L.; de Tender, C. Daring to Be Differential: Metabarcoding Analysis of Soil and Plant-Related Microbial Communities Using Amplicon Sequence Variants and Operational Taxonomical Units. BMC Genom. 2020, 21, 733. [Google Scholar] [CrossRef]
- Rippin, M.; Lange, S.; Sausen, N.; Becker, B. Biodiversity of Biological Soil Crusts from the Polar Regions Revealed by Metabarcoding. FEMS Microbiol. Ecol. 2018, 94, fiy036. [Google Scholar] [CrossRef] [PubMed]
- Pushkareva, E.; Elster, J.; Holzinger, A.; Niedzwiedz, S.; Becker, B. Biocrusts from Iceland and Svalbard: Does Microbial Community Composition Differ Substantially? Front. Microbiol. 2022, 13, 1048522. [Google Scholar] [CrossRef]
- Alberdi, A.; Aizpurua, O.; Gilbert, M.T.P.; Bohmann, K. Scrutinizing Key Steps for Reliable Metabarcoding of Environmental Samples. Methods Ecol. Evol. 2018, 9, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Clarke, L.J.; Baker, S.C.; Jordan, G.J.; Burridge, C.P. A Practical Guide to DNA Metabarcoding for Entomological Ecologists. Ecol. Entomol. 2020, 45, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Gevers, D.; Westcott, S.L. Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16s RRNA-Based Studies. PLoS ONE 2011, 6, e27310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, A.; Jost, S.; Heider, D.; Bock, C.; Budeus, B.; Schilling, E.; Strittmatter, A.; Boenigk, J.; Hoffmann, D. AmpliconDuo: A Split-Sample Filtering Protocol for High-Throughput Amplicon Sequencing of Microbial Communities. PLoS ONE 2015, 10, e0141590. [Google Scholar] [CrossRef] [PubMed]
- Stoeck, T.; Bass, D.; Nebel, M.; Christen, R.; Jones, M.D.M.; Breiner, H.W.; Richards, T.A. Multiple Marker Parallel Tag Environmental DNA Sequencing Reveals a Highly Complex Eukaryotic Community in Marine Anoxic Water. Mol. Ecol. 2010, 19, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Fiore-Donno, A.M.; Rixen, C.; Rippin, M.; Glaser, K.; Samolov, E.; Karsten, U.; Becker, B.; Bonkowski, M. New Barcoded Primers for Efficient Retrieval of Cercozoan Sequences in High-Throughput Environmental Diversity Surveys, with Emphasis on Worldwide Biological Soil Crusts. Mol. Ecol. Resour. 2018, 18, 229–239. [Google Scholar] [CrossRef]
- Rybalka, N.; Wolf, M.; Andersen, R.A.; Friedl, T. Congruence of Chloroplast- and Nuclear-Encoded DNA Sequence Variations Used to Assess Species Boundaries in the Soil Microalga Heterococcus (Stramenopiles, Xanthophyceae). BMC Evol. Biol. 2013, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenov, M.V. Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects. Biol. Bull. Rev. 2021, 11, 40–53. [Google Scholar] [CrossRef]
- Armbrecht, L.; Eisenhofer, R.; Utge, J.; Sibert, E.C.; Rocha, F.; Ward, R.; José, J.; Karlusich, P.; Tirichine, L.; Norris, R.; et al. Paleo-Diatom Composition from Santa Barbara Basin Deep-Sea Sediments: A Comparison of 18S-V9 and Diat-RbcL Metabarcoding vs Shotgun Metagenomics. ISME Commun. 2021, 1, 66. [Google Scholar] [CrossRef]
- Rieder, J.; Kapopoulou, A.; Bank, C.; Adrian-Kalchhauser, I. Metagenomics and Metabarcoding Experimental Choices and Their Impact on Microbial Community Characterization in Freshwater Recirculating Aquaculture Systems. Environ. Microbiome 2023, 18, 8. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- BioBam Bioinformatics OmicsBox—Bioinformatics Made Easy. Available online: https://www.biobam.com/omicsbox (accessed on 8 January 2023).
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeks, J.C.; Elhai, J.; Thiel, T.; Potts, M.; Larimer, F.; Lamerdin, J.; Predki, P.; Atlas, R. An Overview of the Genome of Nostoc Punctiforme, a Multicellular, Symbiotic Cyanobacterium. Photosynth. Res. 2001, 70, 85–106. [Google Scholar] [CrossRef] [PubMed]
Site | Total Tags | Tags after Filtering (1) | Diff. Abundant Tags | Overrepresented in Metagenomes | Underrepresented in Metagenomes |
---|---|---|---|---|---|
Amu8 | 6410 | 5716 | 1409 | 1402 (24.5%) | 7 (0.1%) |
Amu14 | 7055 | 3788 | 2277 | 2254 (59.5%) | 23 (0.6%) |
Lang37 | 5487 | 4014 | 739 | 734 (18.2%) | 5 (0.1%) |
Pad2 | 7482 | 3558 | 2196 | 2187 (61.5%) | 9 (0.1%) |
Skar18 | 5031 | 4496 | 753 | 737 (16.4%) | 16 (0.3%) |
Syo6 | 5342 | 4333 | 615 | 585 (13.5%) | 30 (0.7%) |
NA3_ R2C | n/a | n/a | n/a | n/a | n/a |
S1 | 7103 | 3552 | 2040 | 2015 (56.7%) | 25 (0.7%) |
S3 | 5206 | 5206 | 509 | 497 (9.5%) | 12 (0.2%) |
S7 (2) | n/a | n/a | n/a | n/a | n/a |
S8 | 5443 | 5443 | 1681 | 1661 (30.5%) | 20 (0.4%) |
S11 | 6338 | 3585 | 1658 | 1641 (45.7%) | 17 (0.5%) |
Metagenome 1 | Metagenome 2 | Metabarcoding 1 | Metabarcoding 2 | Metabarcoding 3 | Metabarcoding 4 | |
---|---|---|---|---|---|---|
Total cyanobacterial reads | 965759 | 1279813 | 20809 | 1440 | 19568 | 14344 |
Percentage of cyanobacterial reads | ||||||
Anabaena | 0.22 | 0.25 | n.d | n.d | 0.01 | n.d |
Calothrix | 2.34 | 2.60 | 0.03 | 0.14 | 0.05 | 0.09 |
Chroococcidiopsis | 6.42 | 6.92 | 0.11 | n.d | n.d | n.d |
Fischerella | 0.51 | 0.57 | n.d. | n.d. | n.d. | n.d. |
Gloeobacter | 0.07 | 0.12 | 0.10 | 0.07 | 0.09 | 0.10 |
Gloeocapsa | 0.53 | 0.61 | 0.01 | 0.14 | 0.01 | 0.01 |
Gloeomargarita | 0.02 | 0.03 | n.d. | n.d. | n.d. | n.d. |
Gloeothece | 0.03 | 0.06 | n.d. | n.d. | n.d. | n.d. |
Leptolyngbya | 1.09 | 1.26 | 36.27 | 66.81 | 26.14 | 47.11 |
Microcystis | 0.09 | 0.10 | n.d. | n.d. | n.d. | n.d. |
Nostoc | 25.90 | 25.11 | 2.03 | 1.46 | 2.29 | 1.46 |
Oscillatoria | 0.20 | 0.22 | 0.02 | n.d. | 0.01 | 0.01 |
Parasynechococcus | p. | p. | n.d. | n.d. | n.d. | n.d. |
Phormidium | 0.02 | 0.03 | n.d. | n.d. | n.d. | n.d. |
Pseudanabaena | 0.04 | 0.05 | n.d. | n.d. | n.d. | 0.01 |
Scytonema | 1.38 | 1.50 | 0.09 | n.d. | 0.12 | n.d. |
Synechococcus | 0.32 | 0.50 | 0.00 | n.d. | 0.04 | n.d. |
Synechocystis | 0.04 | 0.05 | n.d. | n.d. | n.d. | n.d. |
Thermoleptolyngbya | 0.09 | 0.11 | n.d. | n.d. | n.d. | n.d. |
Thermosynechococcus | 0.05 | 0.08 | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, B.; Pushkareva, E. Metagenomics Provides a Deeper Assessment of the Diversity of Bacterial Communities in Polar Soils Than Metabarcoding. Genes 2023, 14, 812. https://doi.org/10.3390/genes14040812
Becker B, Pushkareva E. Metagenomics Provides a Deeper Assessment of the Diversity of Bacterial Communities in Polar Soils Than Metabarcoding. Genes. 2023; 14(4):812. https://doi.org/10.3390/genes14040812
Chicago/Turabian StyleBecker, Burkhard, and Ekaterina Pushkareva. 2023. "Metagenomics Provides a Deeper Assessment of the Diversity of Bacterial Communities in Polar Soils Than Metabarcoding" Genes 14, no. 4: 812. https://doi.org/10.3390/genes14040812
APA StyleBecker, B., & Pushkareva, E. (2023). Metagenomics Provides a Deeper Assessment of the Diversity of Bacterial Communities in Polar Soils Than Metabarcoding. Genes, 14(4), 812. https://doi.org/10.3390/genes14040812