An MPS-Based 50plex Microhaplotype Assay for Forensic DNA Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. MH Selection
2.2. Primer Design
2.3. Sample Collection
2.4. Sensitivity Design and Accuracy Verification
2.5. Library Preparation and Sequencing
2.6. Sequencing Data Analysis
2.7. Statistical Analysis
2.8. Mixture Design
2.9. Degradation Design
2.10. Species Specificity
3. Results
3.1. MH Selection and Primer Design
3.2. Sensitivity and Accuracy Analysis
3.3. Panel Performance
3.4. Polymorphism Information
3.5. Mixture Analysis
3.6. Analysis of Degraded Samples
3.7. Species-Specific Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACRs | Allele coverage ratios |
Ae | Effective number of alleles |
AF | Allele frequency |
ALFRED | ALelle FREquency Database |
CDP | Combined discrimination power |
CE | Capillary electrophoresis |
CHS | Chinese Southern Han |
CMP | Combined match probability |
CPE | Combined probability of exclusion |
DoCs | Depth of coverages |
DP | Discrimination power |
Het | Heterozygosity |
Hom | Homozygosity |
HWE | Hardy–Weinberg equilibrium |
IGV | Integrative Genomics Viewer |
LD | Linkage disequilibrium |
MAF | Minor allele frequency |
MHs | Microhaplotypes |
MicroHapDB | Microhaplotype Database |
MP | Match probability |
MPS | Massively parallel sequencing |
Multi-PCR | Multiple polymerase chain reaction |
NIPPT | Noninvasive prenatal paternity testing |
PE | Probability of exclusion |
PIC | Polymorphism information content |
POI | Person of interest |
SNPs | Single nucleotide polymorphisms |
STRs | Short tandem repeats |
TPI | Typical paternity index |
References
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagace, R.; Chang, J.; Wootton, S.; Ihuegbu, N. Microhaplotype loci are a powerful new type of forensic marker. Forensic Sci. Int. Genet. Suppl. 2013, 4, e123–e124. [Google Scholar] [CrossRef]
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagacé, R.; Kidd, J.R. Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci. Int. Genet. 2014, 12, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Qu, N.; Lin, S.; Gao, Y.; Liang, H.; Zhao, H.; Ou, X. A microhap panel for kinship analysis through massively parallel sequencing technology. Electrophoresis 2020, 41, 246–253. [Google Scholar] [CrossRef]
- Arnheim, N.; Calabrese, P.; Nordborg, M. Hot and cold spots of recombination in the human genome: The reason we should find them and how this can be achieved. Am. J. Hum. Genet. 2003, 73, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Gaag, K.J.; de Leeuw, R.H.; Laros, J.F.J.; den Dunnen, J.T.; de Knijff, P. Short hypervariable microhaplotypes: A novel set of very short high discriminating power loci without stutter artefacts. Forensic Sci. Int. Genet. 2018, 35, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Kidd, K.K.; Speed, W.C.; Pakstis, A.J.; Podini, D.S.; Lagacé, R.; Chang, J.; Wootton, S.; Haigh, E.; Soundararajan, U. Evaluating 130 microhaplotypes across a global set of 83 populations. Forensic Sci. Int. Genet. 2017, 29, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldoni, F.; Kidd, K.K.; Podini, D. Microhaplotypes in forensic genetics. Forensic Sci. Int. Genet. 2019, 38, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Bennett, L.; Oldoni, F.; Long, K.; Cisana, S.; Madella, K.; Wootton, S.; Chang, J.; Hasegawa, R.; Lagacé, R.; Kidd, K.K.; et al. Mixture deconvolution by massively parallel sequencing of microhaplotypes. Int. J. Leg. Med. 2019, 133, 719–729. [Google Scholar] [CrossRef]
- Cheung, E.Y.Y.; Phillips, C.; Eduardoff, M.; Lareu, M.V.; McNevin, D. Performance of ancestry-informative SNP and microhaplotype markers. Forensic Sci. Int. Genet. 2019, 43, 102141. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, P.; Qu, S.; Wang, Y.; Jian, H.; Cao, S.; Liu, Y.; Zhang, R.; Lv, M.; Liang, W.; et al. Evaluation of the microhaplotype markers in kinship analysis. Electrophoresis 2019, 40, 1091–1095. [Google Scholar] [CrossRef]
- Zhu, J.; Lv, M.; Zhou, N.; Chen, D.; Jiang, Y.; Wang, L.; He, W.; Peng, D.; Li, Z.; Qu, S.; et al. Genotyping polymorphic microhaplotype markers through the Illumina (®) MiSeq platform for forensics. Forensic Sci. Int. Genet. 2019, 39, 1–7. [Google Scholar] [CrossRef]
- Tan, M.; Xue, J.; Zhrang, R.; Jian, H.; Xiao, Y.; Liu, G.; Zheng, Y.; Wu, Q.; Qu, S.; Liang, W. An NGS-based microhaplotype system with high polymorphism for forensic DNA mixtures analysis. Forensic Sci. Int. Genet. Suppl. Ser. 2022, 8, 330–332. [Google Scholar] [CrossRef]
- Butler, J.M. Overview and History of DNA Typing. In Fundamentals of Forensic DNA Typing; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–18. [Google Scholar]
- Oldoni, F.; Bader, D.; Fantinato, C.; Wootton, S.C.; Lagacé, R.; Kidd, K.K.; Podini, D. A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures. Forensic Sci. Int. Genet. 2020, 49, 102367. [Google Scholar] [CrossRef]
- Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Tan, Y.; Jian, H.; Qu, S.; Liu, Y.; Zhu, J.; Wang, L.; Lv, M.; Liao, M.; Zhang, L.; et al. A new approach to detect a set of SNP-SNP markers: Combining ARMS-PCR with SNaPshot technology. Electrophoresis 2020, 41, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tan, Y.; Wang, L.; Jian, H.; Zhu, J.; Xiao, Y.; Tan, M.; Xue, J.; Yang, F.; Liang, W. Set of 15 SNP-SNP Markers for Detection of Unbalanced Degraded DNA Mixtures and Noninvasive Prenatal Paternity Testing. Front. Genet. 2022, 12, 800598. [Google Scholar] [CrossRef]
- Kidd, K.K.; Speed, W.C. Criteria for selecting microhaplotypes: Mixture detection and deconvolution. Investig. Genet. 2015, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Deng, C.; Li, Z.; Pu, Y.; Yang, J.; Yu, Y.; Li, K.; Li, D.; Liang, W.; Zhang, L.; et al. A microhaplotypes panel for massively parallel sequencing analysis of DNA mixtures. Forensic Sci. Int. Genet. 2019, 40, 140–149. [Google Scholar] [CrossRef]
- Pang, J.B.; Rao, M.; Chen, Q.F.; Ji, A.Q.; Zhang, C.; Kang, K.L.; Wu, H.; Ye, J.; Nie, S.J.; Wang, L. A 124-plex Microhaplotype Panel Based on Next-generation Sequencing Developed for Forensic Applications. Sci. Rep. 2020, 10, 1945. [Google Scholar] [CrossRef] [Green Version]
- de la Puente, M.; Phillips, C.; Xavier, C.; Amigo, J.; Carracedo, A.; Parson, W.; Lareu, M.V. Building a custom large-scale panel of novel microhaplotypes for forensic identification using MiSeq and Ion S5 massively parallel sequencing systems. Forensic Sci. Int. Genet. 2020, 45, 102213. [Google Scholar] [CrossRef] [Green Version]
- Turchi, C.; Melchionda, F.; Pesaresi, M.; Tagliabracci, A. Evaluation of a microhaplotypes panel for forensic genetics using massive parallel sequencing technology. Forensic Sci. Int. Genet. 2019, 41, 120–127. [Google Scholar] [CrossRef]
- Gandotra, N.; Speed, W.C.; Qin, W.; Tang, Y.; Pakstis, A.J.; Kidd, K.K.; Scharfe, C. Validation of novel forensic DNA markers using multiplex microhaplotype sequencing. Forensic Sci. Int. Genet. 2020, 47, 102275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, J.M. Advanced Topics in Forensic DNA Typing: Interpretation; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Osier, M.V.; Cheung, K.H.; Kidd, J.R.; Pakstis, A.J.; Miller, P.L.; Kidd, K.K. ALFRED: An allele frequency database for diverse populations and DNA polymorphisms—An update. Nucleic Acids Res. 2001, 29, 317–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standage, D.S.; Mitchell, R.N. MicroHapDB: A Portable and Extensible Database of All Published Microhaplotype Marker and Frequency Data. Front. Genet. 2020, 11, 781. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Qu, S.; Tan, M.; Xiao, Y.; Zhang, R.; Chen, D.; Lv, M.; Zhang, Y.; Zhang, L.; Liang, W. An overview of SNP-SNP microhaplotypes in the 26 populations of the 1000 Genomes Project. Int. J. Leg. Med. 2022, 136, 1211–1226. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Z.; Li, K.; Chen, P.; Chen, F. Forensic parameters and mutation analysis of 23 short tandem repeat (PowerPlex® Fusion System) loci in Fujian Han Chinese population. Leg. Med. 2019, 37, 33–36. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, X.; Zhao, Y.; Zhao, X.; Zhang, S.; Yang, Y.; Wang, Y.; Zhang, J. Forensic genetic informativeness of an SNP panel consisting of 19 multi-allelic SNPs. Forensic Sci. Int. Genet. 2018, 34, 49–56. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Li, J.; Yang, Z.; Wen, D.; Liang, W.; Yan, Y.; Yu, H.; Cai, J.; Zha, L. Development and application of a nonbinary SNP-based microhaplotype panel for paternity testing involving close relatives. Forensic Sci. Int. Genet. 2020, 46, 102255. [Google Scholar] [CrossRef]
- Tao, R.; Yang, Q.; Xia, R.; Zhang, X.; Chen, A.; Li, C.; Zhang, S. A sequence-based 163plex microhaplotype assay for forensic DNA analysis. Front. Genet. 2022, 13, 988223. [Google Scholar] [CrossRef]
- Qu, S.; Lv, M.; Xue, J.; Zhu, J.; Wang, L.; Jian, H.; Liu, Y.; Zhang, R.; Zha, L.; Liang, W.; et al. Multi-Indel: A Microhaplotype Marker Can Be Typed Using Capillary Electrophoresis Platforms. Front. Genet. 2020, 11, 567082. [Google Scholar] [CrossRef]
- Wang, K.; Li, H.; Xu, Y.; Shao, Q.; Yi, J.; Wang, R.; Cai, W.; Hang, X.; Zhang, C.; Cai, H.; et al. MFEprimer-3.0: Quality control for PCR primers. Nucleic Acids Res. 2019, 47, W610–W613. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wu, X.; Cai, G.; Xu, C. The application of Modified-Powerstates software in forensic biostatistics. Chin. J. Forensic Med. 2003, 18, 297–298. [Google Scholar]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Duke, K.R.; Myers, S.P. Systematic evaluation of STRmix™ performance on degraded DNA profile data. Forensic Sci. Int. Genet. 2020, 44, 102174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagace, R.; Wootton, S.; Chang, J. Selecting microhaplotypes optimized for different purposes. Electrophoresis 2018, 39, 2815–2823. [Google Scholar] [CrossRef]
- Jian, H.; Wang, L.; Lv, M.; Tan, Y.; Zhang, R.; Qu, S.; Wang, J.; Zha, L.; Zhang, L.; Liang, W. A Novel SNP-STR System Based on a Capillary Electrophoresis Platform. Front. Genet. 2021, 12, 636821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cao, Y.-D.; Song, J.-J.; Rao, M.; Nie, S.-J.; Zhang, G.-F.; Kang, K.-L.; Ji, A.-Q.; Ye, J.; Wang, L. MHTyper: A microhaplotype allele-calling pipeline for use with next generation sequencing data. Aust. J. Forensic Sci. 2019, 53, 283–290. [Google Scholar] [CrossRef]
- Ou, X.; Qu, N. Noninvasive prenatal paternity testing by target sequencing microhaps. Forensic Sci. Int. Genet. 2020, 48, 102338. [Google Scholar] [CrossRef]
- Kwon, Y.L.; Lee, E.Y.; Kim, B.M.; Joo, S.M.; Jeong, K.S.; Chun, B.W.; Lee, Y.H.; Park, K.W.; Shin, K.J. Application of a custom haplotype caller to analyze sequence-based data of 56 microhaplotypes. Forensic Sci. Int. Genet. 2022, 61, 102778. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Ji, Q.; Yu, Y.; Li, K.; Kong, X.; Xie, S.; Zhan, W.; Mao, Z.; Yu, Y.; et al. A highly polymorphic panel of 40-plex microhaplotypes for the Chinese Han population and its application in estimating the number of contributors in DNA mixtures. Forensic Sci. Int. Genet. 2022, 56, 102600. [Google Scholar] [CrossRef]
- Jin, X.Y.; Cui, W.; Chen, C.; Guo, Y.X.; Zhang, X.R.; Xing, G.H.; Lan, J.W.; Zhu, B.F. Developing and population analysis of a new multiplex panel of 18 microhaplotypes and compound markers using next generation sequencing and its application in the Shaanxi Han population. Electrophoresis 2020, 41, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; He, G.; Liu, J.; Jiang, L.; Wang, M.; Chen, P.; Hou, Y.; Wang, Z. Screening and selection of 21 novel microhaplotype markers for ancestry inference in ten Chinese subpopulations. Forensic Sci. Int. Genet. 2022, 58, 102687. [Google Scholar] [CrossRef]
- Oldoni, F.; Yoon, L.; Wootton, S.C.; Lagacé, R.; Kidd, K.K.; Podini, D. Population genetic data of 74 microhaplotypes in four major U.S. population groups. Forensic Sci. Int. Genet. 2020, 49, 102398. [Google Scholar] [CrossRef]
- Alonso, A.; Barrio, P.A.; Müller, P.; Köcher, S.; Berger, B.; Martin, P.; Bodner, M.; Willuweit, S.; Parson, W.; Roewer, L.; et al. Current state-of-art of STR sequencing in forensic genetics. Electrophoresis 2018, 39, 2655–2668. [Google Scholar] [CrossRef]
- Kidd, K.K.; Pakstis, A.J. State of the Art for Microhaplotypes. Genes 2022, 13, 1322. [Google Scholar] [CrossRef] [PubMed]
- Neyra-Rivera, C.D.; Ticona Arenas, A.; Delgado Ramos, E.; Velasquez Reinoso, M.R.E.; Budowle, B. Allelic frequencies with 23 autosomic STRS in the Aymara population of Peru. Int. J. Leg. Med. 2021, 135, 779–781. [Google Scholar] [CrossRef]
- Srivastava, A.; Nath, S.; Das, K.K.; Kumar, A.; Kushwaha, P.; Kumar, A.; Srivastav, K.V.V.; Bhasney, V.; Rana, M.; Dixit, S.; et al. Forensic characterization and genomic diversity of Assam population viewed from 23 autosomal STRs. Int. J. Leg. Med. 2021, 135, 2307–2308. [Google Scholar] [CrossRef]
- Bae, S.; Won, S.; Kim, H. Selection and evaluation of bi-allelic autosomal SNP markers for paternity testing in Koreans. Int. J. Leg. Med. 2021, 135, 1369–1374. [Google Scholar] [CrossRef]
- Wen, D.; Xing, H.; Liu, Y.; Li, J.; Qu, W.; He, W.; Wang, C.; Xu, R.; Liu, Y.; Jia, H.; et al. The application of short and highly polymorphic microhaplotype loci in paternity testing and sibling testing of temperature-dependent degraded samples. Front. Genet. 2022, 13, 983811. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zhang, L.; Bai, P.; Li, Z.; Zhang, R.; Yang, F.; Wang, L.; Liang, W. Detection of cell-free fetal DNA in maternal plasma using two types of compound markers. Electrophoresis 2021, 42, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.M.; Chan, K.C.; Sun, H.; Chen, E.Z.; Jiang, P.; Lun, F.M.; Zheng, Y.W.; Leung, T.Y.; Lau, T.K.; Cantor, C.R.; et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2010, 2, 61ra91. [Google Scholar] [CrossRef] [PubMed]
Chr | Length ≤ 80 & SNP ≥ 2 | Ae a ≥ 3 | Ae ≥ 4 | MHs with the Largest Ae from All Overlapping Sequences in Each Group | Remove the MHs with Obvious Repeat Motifs in the Base Sequence | MHs with Physical Position ≥ 10 Mb as an Interval | MHs with Successful Primer Design | MHs Retained after Six Rounds of Optimization |
---|---|---|---|---|---|---|---|---|
1 | 381,886 | 4969 | 781 | 177 | 150 | 16 | 12 | 5 |
2 | 395,095 | 3944 | 493 | 139 | 118 | 17 | 13 | 5 |
3 | 332,581 | 3286 | 373 | 93 | 79 | 10 | 6 | 1 |
4 | 374,323 | 5527 | 1038 | 186 | 172 | 11 | 8 | 5 |
5 | 295,470 | 3066 | 305 | 98 | 88 | 10 | 8 | 3 |
6 | 411,469 | 19,040 | 3065 | 538 | 523 | 12 | 10 | 3 |
7 | 301,403 | 4717 | 774 | 173 | 163 | 8 | 5 | 1 |
8 | 289,723 | 4002 | 463 | 136 | 126 | 8 | 4 | 1 |
9 | 224,267 | 2473 | 231 | 75 | 67 | 8 | 5 | 2 |
10 | 258,278 | 3442 | 550 | 122 | 113 | 11 | 7 | 2 |
11 | 242,660 | 2826 | 416 | 94 | 83 | 6 | 4 | 1 |
12 | 230,769 | 2935 | 381 | 104 | 90 | 7 | 5 | 2 |
13 | 175,580 | 1922 | 183 | 63 | 55 | 9 | 7 | 3 |
14 | 161,185 | 1768 | 163 | 65 | 55 | 7 | 7 | 4 |
15 | 151,799 | 1823 | 212 | 45 | 41 | 5 | 3 | 1 |
16 | 182,431 | 3049 | 436 | 92 | 85 | 6 | 3 | 3 |
17 | 137,595 | 2229 | 489 | 90 | 80 | 6 | 4 | 2 |
18 | 142,572 | 1908 | 315 | 78 | 66 | 6 | 5 | 3 |
19 | 141,666 | 2361 | 343 | 87 | 83 | 3 | 3 | 1 |
20 | 104,470 | 1072 | 95 | 40 | 37 | 5 | 4 | 1 |
21 | 74,494 | 1212 | 175 | 38 | 36 | 5 | 5 | 1 |
22 | 63,641 | 494 | 60 | 18 | 18 | 2 | 0 | 0 |
Total | 5,073,357 | 78,065 | 11,341 | 2551 | 2328 | 178 | 128 | 50 |
Non-Degraded | ||||||||||
Input DNA | Ratio a | Maximum Individual Alleles | Total Observed Alleles | Total Observed Alleles/Expected Alleles % | Maximum Individual Alleles Minor Donor | Observed Alleles Minor Donor | Observed Alleles/Maximum Alleles Minor Donor % | Unique Alleles Minor Donor | Reportable Unique Alleles Minor Donor | Reportable Unique Alleles Minor Donor % |
1 μL | 1:1 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 |
1:3 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 | |
1:5 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 | |
1:10 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 | |
1:20 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 | |
1:40 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 | |
Degraded | ||||||||||
Input DNA | Ratio a-Time | Maximum Individual Alleles | Total Observed Alleles | Total Observed Alleles/Expected Alleles % | Maximum Individual Alleles Minor Donor | Observed Alleles Minor Donor | Observed Alleles/Maximum Alleles Minor Donor % | Unique Alleles Minor Donor | Reportable Unique Alleles Minor Donor | Reportable Unique Alleles Minor Donor % |
1 μL | 1:10–2.5 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 |
1:10–5 | 132 | 110 | 83 | 84 | 55 | 65 | 61 | 39 | 64 | |
1:10–10 | 132 | 128 | 97 | 84 | 79 | 94 | 61 | 57 | 93 | |
1:10–15 | 132 | 127 | 96 | 84 | 79 | 94 | 61 | 57 | 93 | |
3 μL | 1:10–2.5 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 |
1:10–5 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 | |
1:10–10 | 132 | 131 | 99 | 84 | 83 | 99 | 61 | 60 | 98 | |
5 μL | 1:10–2.5 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 |
1:10–5 | 132 | 132 | 100 | 84 | 84 | 100 | 61 | 61 | 100 | |
1:10–10 | 132 | 128 | 97 | 84 | 79 | 94 | 61 | 57 | 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Xue, J.; Tan, M.; Chen, D.; Xiao, Y.; Liu, G.; Zheng, Y.; Wu, Q.; Liao, M.; Lv, M.; et al. An MPS-Based 50plex Microhaplotype Assay for Forensic DNA Analysis. Genes 2023, 14, 865. https://doi.org/10.3390/genes14040865
Zhang R, Xue J, Tan M, Chen D, Xiao Y, Liu G, Zheng Y, Wu Q, Liao M, Lv M, et al. An MPS-Based 50plex Microhaplotype Assay for Forensic DNA Analysis. Genes. 2023; 14(4):865. https://doi.org/10.3390/genes14040865
Chicago/Turabian StyleZhang, Ranran, Jiaming Xue, Mengyu Tan, Dezhi Chen, Yuanyuan Xiao, Guihong Liu, Yazi Zheng, Qiushuo Wu, Miao Liao, Meili Lv, and et al. 2023. "An MPS-Based 50plex Microhaplotype Assay for Forensic DNA Analysis" Genes 14, no. 4: 865. https://doi.org/10.3390/genes14040865
APA StyleZhang, R., Xue, J., Tan, M., Chen, D., Xiao, Y., Liu, G., Zheng, Y., Wu, Q., Liao, M., Lv, M., Qu, S., & Liang, W. (2023). An MPS-Based 50plex Microhaplotype Assay for Forensic DNA Analysis. Genes, 14(4), 865. https://doi.org/10.3390/genes14040865