Comparison of Genetic Susceptibility to Coronary Heart Disease in the Hungarian Populations: Risk Prediction Models for Coronary Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Variables Formulated from the Questionnaire Data
2.3. SNPs Selection Procedure and Genotyping
2.4. Weighted and Unweighted Genetic Risk Score (GRS, wGRS) Constructions
2.5. Statistical Analysis and Software Used
3. Results
3.1. Demographic Characteristics of the Study Population
3.2. Frequencies and Associations of the Individual Genetic Variants Related to CHD Risk
3.3. Multivariable Regression Analyses for CHD/AMI
3.4. ROC Curve Analyses
3.5. Marginal Plot Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the receiver operating characteristics |
BMI | Body Mass Index |
CHD | Coronary Heart Disease |
CHD/AMI | Coronary Heart Disease and Acute Myocardial Infarction |
CRFs | Conventional Risk Factors |
DBP | Diastolic Blood Pressure |
GRS | Unweighted Genetic Risk Score |
GRSs | Genetic Risk Scores |
GWAS | Genome-Wide Association Studies. |
HDL-C | High-Density Lipoprotein Cholesterol |
HTC-Med | Medication Against High Total Cholesterol |
HTN-Med | Hypertensive Medication. |
HWE | Hardy-Weinberg Equilibrium. |
LD | Linkage Disequilibrium |
LDL-C | Low Density Lipoprotein Cholesterol |
OR | Odds Ratio |
SBP | Systolic Blood Pressure |
SCORE | Systematic Coronary Risk Evaluation |
SD | Standard Deviation |
SNPs | Single Nucleotide Polymorphisms. |
TC | Total Cholesterol |
TG | Triglycerides |
wGRS | Weighted Genetic Risk Score |
References
- World Health Organization. WHO Reveals Leading Causes of Death and Disability Worldwide 2000–2019; WHO: Geneva, Switzerland, 2020; Available online: https://www.paho.org/en/news/9-12-2020-who-reveals-leading-causes-death-and-disability-worldwide-2000-2019 (accessed on 17 June 2022).
- Gui, L.; Wu, F.; Han, X.; Dai, X.; Qiu, G.; Li, J.; Wang, J.; Zhang, X.; Wu, T.; He, M. A multilocus genetic risk score predicts coronary heart disease risk in a Chinese Han population. Atherosclerosis 2014, 237, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Nowbar, A.N.; Gitto, M.; Howard, J.P.; Francis, D.P.; Al-Lamee, R. Mortality From Ischemic Heart Disease. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005375. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Timmis, A.; Townsend, N.; Gale, C.; Grobbee, R.; Maniadakis, N.; Flather, M.; Wilkins, E.; Wright, L.; Vos, R.; Bax, J.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur. Heart J. 2017, 39, 508–579. [Google Scholar] [CrossRef] [Green Version]
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2019, 41, 12–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstrom, M.; DeCleene, N.; Dorsey, H.; Fuster, V.; Johnson, C.O.; LeGrand, K.E.; Mensah, G.A.; Razo, C.; Stark, B.; Varieur Turco, J.; et al. Global Burden of Cardiovascular Diseases and Risks Collaboration, 1990–2021. J. Am. Coll. Cardiol. 2022, 80, 2372–2425. [Google Scholar] [CrossRef] [PubMed]
- OECD. State of Health in the EU Hungary: Country Health Profile; OECD: Paris, France, 2019. [Google Scholar]
- OECD. State of Health in the EU Hungary: Country Health Profile; OECD: Paris, France, 2021. [Google Scholar]
- Park, K. Park’s Textbook of Preventive and Social. Medicine, 18th ed.; Banarasidas Bhanot: Jabalpur, India, 2005. [Google Scholar]
- Park, K. Park’s Textbook of Preventive and Social. Medicine, 25th ed.; Banarasidas Bhanot: Jabalpur, India, 2019. [Google Scholar]
- Themistocleous, I.C.; Stefanakis, M.; Douda, H. Coronary Heart Disease Part I: Pathophysiology and Risk Factors. J. Phys. Act. Nutr. Rehabil. 2017, 3, 167–175. [Google Scholar]
- McPherson, R.; Tybjaerg-Hansen, A. Genetics of Coronary Artery Disease. Circ. Res. 2016, 118, 564–578. [Google Scholar] [CrossRef]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors For Coronary Artery Disease. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Karunathilake, S.P.; Ganegoda, G.U. Secondary Prevention of Cardiovascular Diseases and Application of Technology for Early Diagnosis. Biomed. Res. Int. 2018, 2018, 5767864. [Google Scholar] [CrossRef]
- Brown, T.M.; Voeks, J.H.; Bittner, V.; Safford, M.M. Variations in prevalent cardiovascular disease and future risk by metabolic syndrome classification in the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. Am. Heart J. 2010, 159, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Dent, T.H. Predicting the risk of coronary heart disease I. The use of conventional risk markers. Atherosclerosis 2010, 213, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Dent, T.H. Predicting the risk of coronary heart disease. II: The role of novel molecular biomarkers and genetics in estimating risk, and the future of risk prediction. Atherosclerosis 2010, 213, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.; Smyth, A.; Rangarajan, S.; Ramasundarahettige, C.; Bangdiwala, S.I.; AlHabib, K.F.; Avezum, A.; Bengtsson Bostrom, K.; Chifamba, J.; Gulec, S.; et al. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: The Prospective Urban Rural Epidemiologic (PURE) study. Lancet Glob. Health 2019, 7, e748–e760. [Google Scholar] [CrossRef] [Green Version]
- Gillum, R.F.; Mehari, A.; Curry, B.; Obisesan, T.O. Racial and geographic variation in coronary heart disease mortality trends. BMC Public. Health 2012, 12, 410. [Google Scholar] [CrossRef] [Green Version]
- Kandaswamy, E.; Zuo, L. Recent Advances in Treatment of Coronary Artery Disease: Role of Science and Technology. Int. J. Mol. Sci. 2018, 19, 424. [Google Scholar] [CrossRef] [Green Version]
- Timmer, A.D. Working with “Problem Populations”: Participatory Interventions for the Roma in Hungary. Human. Organ. 2013, 72, 302–311. [Google Scholar] [CrossRef]
- Zeljko, H.M.; Skaric-Juric, T.; Narancic, N.S.; Baresic, A.; Tomas, Z.; Petranovic, M.Z.; Milicic, J.; Salihovic, M.P.; Janicijevic, B. Age trends in prevalence of cardiovascular risk factors in Roma minority population of Croatia. Econ. Hum. Biol. 2013, 11, 326–336. [Google Scholar] [CrossRef]
- Soltész, B.; Pikó, P.; Sándor, J.; Kósa, Z.; Ádány, R.; Fiatal, S. The genetic risk for hypertension is lower among the Hungarian Roma population compared to the general population. PLoS ONE 2020, 15, e0234547. [Google Scholar] [CrossRef]
- Piko, P.; Kosa, Z.; Sandor, J.; Adany, R. Comparative risk assessment for the development of cardiovascular diseases in the Hungarian general and Roma population. Sci. Rep. 2021, 11, 3085. [Google Scholar] [CrossRef]
- Fedacko, J.; Pella, D.; Jarcuska, P.; Siegfried, L.; Janicko, M.; Veseliny, E.; Pella, J.; Sabol, F.; Jarcuska, P.; Marekova, M.; et al. Prevalence of cardiovascular risk factors in relation to metabolic syndrome in the Roma population compared with the non-Roma population in the eastern part of Slovakia. Cent. Eur. J. Public. Health 2014, 22, S69–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hujova, Z.; Alberty, R.; Ahlers, I.; Ahlersova, E.; Paulikova, E.; Desatnikova, J.; Gabor, D.; Hruba, F. Cardiovascular Risk Predictors in Central Slovakian Roma Children and Adolescents: Regional Differences. Cent. Eur. J. Public. Health 2010, 18, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ádány, R.; Pikó, P.; Fiatal, S.; Kósa, Z.; Sándor, J.; Bíró, É.; Kósa, K.; Paragh, G.; Bácsné Bába, É.; Veres-Balajti, I.; et al. Prevalence of Insulin Resistance in the Hungarian General and Roma Populations as Defined by Using Data Generated in a Complex Health (Interview and Examination) Survey. Int. J. Environ. Res. Public. Health 2020, 17, 4833. [Google Scholar] [CrossRef]
- Pogue, V.A.; Ellis, C.; Michel, J.; Francis, C.K. New Staging System of the Fifth Joint National Committee Report on the Detection, Evaluation, and Treatment of High Blood Pressure (JNC-V) Alters Assessment of the Severity and Treatment of Hypertension. Hypertension 1996, 28, 713–718. [Google Scholar] [CrossRef]
- Mega, J.L.; Stitziel, N.O.; Smith, J.G.; Chasman, D.I.; Caulfield, M.J.; Devlin, J.J.; Nordio, F.; Hyde, C.L.; Cannon, C.P.; Sacks, F.M.; et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet 2015, 385, 2264–2271. [Google Scholar] [CrossRef] [Green Version]
- Tikkanen, E.; Havulinna, A.S.; Palotie, A.; Salomaa, V.; Ripatti, S. Genetic Risk Prediction and a 2-Stage Risk Screening Strategy for Coronary Heart Disease. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2261–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.R.; Barbalic, M.; Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 43, 333–338. [Google Scholar] [CrossRef]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Starnecker, F.; Pang, S.; Chen, Z.; Güldener, U.; Li, L.; Heinig, M.; Schunkert, H. Polygenic risk for coronary artery disease in the Scottish and English population. BMC Cardiovasc. Disord. 2021, 21, 586. [Google Scholar] [CrossRef]
- Ripatti, S.; Tikkanen, E.; Orho-Melander, M.; Havulinna, A.S.; Silander, K.; Sharma, A.; Guiducci, C.; Perola, M.; Jula, A.; Sinisalo, J.; et al. A multilocus genetic risk score for coronary heart disease: Case-control and prospective cohort analyses. Lancet 2010, 376, 1393–1400. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010, 5, 1564–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, G.M.; Anderson, C.A.; Pettersson, F.H.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Basic statistical analysis in genetic case-control studies. Nat. Protoc. 2011, 6, 121–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramovs, N.; Brass, A.; Tassabehji, M. Hardy-Weinberg Equilibrium in the Large Scale Genomic Sequencing Era. Front. Genet. 2020, 11, 210. [Google Scholar] [CrossRef]
- Barrett, J.C. Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb. Protoc. 2009, 2009, pdb.ip71. [Google Scholar] [CrossRef]
- Gao, X.; Starmer, J.; Martin, E.R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 2008, 32, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Pallayova, M.; Brenisin, M.; Putrya, A.; Vrsko, M.; Drazilova, S.; Janicko, M.; Marekova, M.; Pella, D.; Geckova, A.M.; Urdzik, P.; et al. Roma Ethnicity and Sex-Specific Associations of Serum Uric Acid with Cardiometabolic and Hepatorenal Health Factors in Eastern Slovakian Population: The HepaMeta Study. Int. J. Environ. Res. Public. Health 2020, 17, 7673. [Google Scholar] [CrossRef] [PubMed]
- Petrikova, J.; Janicko, M.; Fedacko, J.; Drazilova, S.; Madarasova Geckova, A.; Marekova, M.; Pella, D.; Jarcuska, P. Serum Uric Acid in Roma and Non-Roma—Its Correlation with Metabolic Syndrome and Other Variables. Int. J. Environ. Res. Public. Health 2018, 15, 1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ádány, R. Roma health is global ill health. Eur. J. Public. Health 2014, 24, 702–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piko, P.; Fiatal, S.; Kosa, Z.; Sandor, J.; Adany, R. Increased risk of Roma for 10-year development of CVDs based on Framingham Risk Score calculation. Eur. J. Public. Health 2019, 29. [Google Scholar] [CrossRef]
- Kósa, Z.; Moravcsik-Kornyicki, Á.; Diószegi, J.; Roberts, B.; Szabó, Z.; Sándor, J.; Ádány, R. Prevalence of metabolic syndrome among Roma: A comparative health examination survey in Hungary. Eur. J. Public. Health 2014, 25, 299–304. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General Cardiovascular Risk Profile for Use in Primary Care. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Farzadfar, F. Cardiovascular disease risk prediction models: Challenges and perspectives. Lancet Glob. Health 2019, 7, e1288–e1289. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Ding, D.; Zhang, Y.; Yang, Y.; Li, Q.; Chen, X.; Hu, G.; Ling, W. Prediction of the risk of mortality using risk score in patients with coronary heart disease. Oncotarget 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Wenger, N.K.; Shaw, L.J.; Vaccarino, V. Coronary Heart Disease in Women: Update 2008. Clin. Pharmacol. Ther. 2008, 83, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Battipaglia, I.; Andreotti, F. Sex differences in mechanisms, presentation and management of ischaemic heart disease. Atherosclerosis 2015, 241, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Hajar, R. Risk factors for coronary artery disease: Historical perspectives. Heart Views 2017, 18, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.F.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [Green Version]
- Critchley, J.A.; Capewell, S. Mortality Risk Reduction Associated With Smoking Cessation in Patients With Coronary Heart Disease: A Systematic Review. JAMA 2003, 290, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.C.; Thain, J.; Deans, H.G.; Ritchie, L.D.; Rawles, J.M. Secondary prevention in coronary heart disease: Baseline survey of provision in general practice. BMJ 1998, 316, 1430–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolton, J.L.; Stewart, M.C.W.; Wilson, J.F.; Anderson, N.; Price, J.F. Improvement in Prediction of Coronary Heart Disease Risk over Conventional Risk Factors Using SNPs Identified in Genome-Wide Association Studies. PLoS ONE 2013, 8, e57310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganna, A.; Magnusson, P.K.E.; Pedersen, N.L.; Faire, U.D.; Reilly, M.; Ärnlöv, J.; Sundström, J.; Hamsten, A.; Ingelsson, E. Multilocus Genetic Risk Scores for Coronary Heart Disease Prediction. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2267–2272. [Google Scholar] [CrossRef] [Green Version]
- Lluis-Ganella, C.; Subirana, I.; Lucas, G.; Tomás, M.; Muñoz, D.; Sentí, M.; Salas, E.; Sala, J.; Ramos, R.; Ordovas, J.M.; et al. Assessment of the value of a genetic risk score in improving the estimation of coronary risk. Atherosclerosis 2012, 222, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, A.C.; Bare, L.A.; Chambless, L.E.; Ellis, S.G.; Malloy, M.; Kane, J.P.; Pankow, J.S.; Devlin, J.J.; Willerson, J.T.; Boerwinkle, E. Prediction of Coronary Heart Disease Risk using a Genetic Risk Score: The Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 2007, 166, 28–35. [Google Scholar] [CrossRef]
- Hughes, M.F.; Saarela, O.; Stritzke, J.; Kee, F.; Silander, K.; Klopp, N.; Kontto, J.; Karvanen, J.; Willenborg, C.; Salomaa, V.; et al. Genetic Markers Enhance Coronary Risk Prediction in Men: The MORGAM Prospective Cohorts. PLoS ONE 2012, 7, e40922. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.S.; Sun, Y.V.; Hartiala, J.; Veledar, E.; Su, S.; Sher, S.; Liu, Y.X.; Rahman, A.; Patel, R.; Rab, S.T.; et al. Association of a Genetic Risk Score With Prevalent and Incident Myocardial Infarction in Subjects Undergoing Coronary Angiography. Circ. Cardiovasc. Genet. 2012, 5, 441–449. [Google Scholar] [CrossRef] [Green Version]
Models | Explanatory Variables |
---|---|
SCORE based models + ethnicity | age, sex, HTC-Med, HTN-Med, smoking (CRFs) |
CRFs + ethnicity * | |
Genetic based models only | GRS per tertiles |
wGRS per tertiles | |
SCORE based models + genetic models + ethnicity | CRFs + GRS + ethnicity |
CRFs + wGRS + ethnicity | |
SCORE based models upgraded * | CRFs + DM |
CRFs + DM + ethnicity | |
SCORE based models + genetic models + ethnicity upgraded * | CRFs + DM + GRS + ethnicity |
CRFs + DM + wGRS + ethnicity |
Characteristics | Hungarian General (n = 279) | Hungarian Roma (n = 279) | p-Value |
---|---|---|---|
Age (years, mean ± SD) | 44.14 ± 12.12 | 42.73 ± 12.99 | 0.177 |
18–36 age-group (%) | 27.60 | 34.77 | |
37–49 age-group (%) | 35.48 | 30.82 | |
50–77 age-group (%) | 36.92 | 34.41 | |
Sex male/female (%) | 43.73/56.27 | 23.3/76.7 | <0.001 |
BMI kg/m2 (mean ± SD) | 27.11 ± 5.49 | 27.29 ± 6.72 | 0.725 |
SBP mmHg (mean ± SD) | 126.94 ± 15.23 | 123.57 ± 17.73 | 0.017 |
DBP mmHg (mean ± SD) | 78.91 ± 8.71 | 79.97 ± 10.26 | 0.189 |
TC mmol/l (mean ± SD) | 4.95 ±1.14 | 4. 90 ± 1.07 | 0.563 |
HDL-C mmol/l (mean ± SD) | 70.11 ± 33.15 | 61.00 ± 30.98 | 0.001 |
LDL-C mmol/l (mean ± SD) | 3.07 ± 1.00 | 3.15 ± 0.94 | 0.328 |
TG mmol/l (mean ± SD) | 1.58 ± 1.09 | 1.57 ± 0.95 | 0.884 |
CHD yes/no (%) | 2.87/97.13 | 3.94/9.06 | 0.484 |
AMI yes/no (%) | 1.08/98.92 | 3.23/96.77 | 0.080 |
Stroke yes/no (%) | 1.43/98.57 | 3.23/96.77 | 0.161 |
DM yes/no (%) | 6.09/93.91 | 12.54/87.46 | 0.009 |
HTN yes/no (%) | 28.32/71.68 | 34.05/65.95 | 0.144 |
CKD yes/no (%) | 0.72/99.28 | 4.3 /95.7 | 0.007 |
HTN-Med yes/no (%) | 4.3/95.7 | 15.41/84.59 | <0.001 |
HTC-Med yes/no (%) | 7.89/ 92.11 | 14.34/ 85.66 | 0.015 |
Smoking currently yes/no (%) | 32.97/67.03 | 69.95/34.05 | <0.001 |
rs Number | CHR | RA | Roma | Hungarian | OA | p-Value |
---|---|---|---|---|---|---|
rs11206510 | 1 | T | 0.875 | 0.814 | C | 0.005 |
rs17114036 | 1 | A | 0.919 | 0.918 | G | 0.913 |
rs646776 | 1 | T | 0.823 | 0.789 | C | 0.151 |
rs17465637 | 1 | C | 0.654 | 0.703 | A | 0.084 |
rs6725887 | 2 | C | 0.084 | 0.100 | T | 0.352 |
rs2306374 | 3 | C | 0.066 | 0.145 | T | <0.001 |
rs9818870 | 3 | T | 0.066 | 0.142 | C | <0.001 |
rs9349379 | 6 | G | 0.475 | 0.430 | A | 0.133 |
rs12526453 | 6 | G | 0.339 | 0.344 | C | 0.850 |
rs17609940 | 6 | G | 0.952 | 0.884 | C | <0.001 |
rs12190287 | 6 | C | 0.552 | 0.647 | G | 0.001 |
rs3798220 | 6 | C | 0.002 | 0.013 | T | 0.033 |
rs10455872 | 6 | G | 0.020 | 0.057 | A | 0.001 |
rs11556924 | 7 | C | 0.706 | 0.669 | T | 0.175 |
rs4977574 | 9 | G | 0.570 | 0.488 | A | 0.006 |
rs579459 | 9 | C | 0.238 | 0.285 | T | 0.077 |
rs635634 | 9 | T | 0.192 | 0.262 | C | 0.005 |
rs1746048 | 10 | C | 0.792 | 0.817 | T | 0.291 |
rs12413409 | 10 | G | 0.801 | 0.862 | A | 0.007 |
rs964184 | 11 | G | 0.194 | 0.145 | C | 0.031 |
rs3184504 | 12 | T | 0.366 | 0.529 | C | <0.001 |
rs2259816 | 12 | T | 0.480 | 0.344 | G | <0.001 |
rs4773144 | 13 | G | 0.414 | 0.416 | A | 0.952 |
rs2895811 | 14 | C | 0.344 | 0.412 | T | 0.019 |
rs3825807 | 15 | A | 0.504 | 0.590 | G | 0.004 |
rs216172 | 17 | C | 0.285 | 0.324 | G | 0.153 |
rs12936587 | 17 | G | 0.731 | 0.597 | A | <0.001 |
rs46522 | 17 | T | 0.572 | 0.548 | C | 0.433 |
rs1122608 | 19 | G | 0.720 | 0.769 | T | 0.064 |
rs9982601 | 21 | T | 0.086 | 0.147 | C | 0.002 |
CHD/AMI | Hungarian General | Hungarian Roma | ||||
---|---|---|---|---|---|---|
OR | p-Value | 95% CI | OR | p-Value | 95% CI | |
Age | 1.183 | 0.046 * | 1.001–1.172 | 1.029 | 0.317 | 0.973–1.087 |
Sex(Male) | 1.623 | 0.480 | 0.424–6.155 | 2.338 | 0.149 | 0.738–7.403 |
HTC-Med | 4.899 | 0.032 * | 0.236–0.219 | 2.999 | 0.078 | 0.885–10.157 |
HTN-Med | 1.373 | 0.781 | 1.151–20.848 | 7.849 | 0.001 * | 2.412–25.547 |
Smoking | 0.916 | 0.905 | 0.147–12.778 | 1.264 | 0.704 | 0.377–4.232 |
CHDAMI | OR | p-Value | 95% CI |
---|---|---|---|
Age | 1.050 | 0.030 * | 1.005–1.096 |
Sex (Male) | 1.916 | 0.139 | 0.809–4.537 |
Ethnicity ** | 1.468 | 0.410 | 0.588–3.665 |
HTC-Med | 3.553 | 0.007 * | 1.418–8.901 |
HTN-Med | 4.790 | 0.001 * | 1.902–12.066 |
Smoking | 1.059 | 0.901 | 0.427–2.628 |
CHD/AMI | Hungarian General | Hungarian Roma | ||||
---|---|---|---|---|---|---|
OR | p-Value | 95% CI | OR | p-Value | 95% CI | |
GRS-T2 | 1.965 | 0.550 | 0.215–17.993 | 0.372 | 0.125 | 0.105–1.317 |
GRS-T3 | 2.828 | 0.348 | 0.322–24.818 | 0.668 | 0.508 | 0.203–2.020 |
CHD/AMI | Hungarian General | Hungarian Roma | ||||
---|---|---|---|---|---|---|
OR | p-Value | 95% CI | OR | p-Value | 95% CI | |
wGRS-T2 | 1.113 | 0.908 | 0.181–6.837 | 0.926 | 0.899 | 0.283–3.024 |
wGRS-T3 | 1.800 | 0.490 | 0.340–9.539 | 0.779 | 0.699 | 0.220–2.756 |
CHDAMI | OR | p-Value | 95% CI |
---|---|---|---|
Age | 1.047 | 0.040 * | 1.002–1.094 |
Sex(Male) | 2.056 | 0.114 | 0.841–5.022 |
Ethnicity ** | 1.473 | 0.411 | 0.586–3.706 |
HTC-Med | 3.862 | 0.005 * | 1.513–9.855 |
HTN_Med | 4.674 | 0.001 * | 1.820–12.007 |
Smoking | 1.026 | 0.957 | 0.409–2.573 |
GRS-T2 | 0.528 | 0.261 | 0.173–1.610 |
GRS-T3 | 0.995 | 0.993 | 0.338–2.928 |
CHDAMI | OR | p-Value | 95% CI |
---|---|---|---|
Age | 1.051 | 0.029 * | 1.005–1.098 |
Sex(Male) | 1.879 | 0.161 | 0.778–4.539 |
Ethnicity ** | 1.465 | 0.413 | 0.587–3.660 |
HTC-Med | 3.524 | 0.007 * | 1.406–8.832 |
HTN_Med | 4.907 | 0.001 * | 1.920–12.541 |
Smoking | 1.058 | 0.903 | 0.426–2.630 |
wGRS-T2 | 1.169 | 0.779 | 0.393–3.484 |
wGRS-T3 | 1.067 | 0.904 | 0.371–3.069 |
CHDAMI | OR | p-Value | 95% CI |
---|---|---|---|
Age | 1.046 | 0.046 * | 1.001–1.094 |
Sex(Male) | 1.942 | 0.134 | 0.816–4.621 |
Ethnicity ** | 1.559 | 0.346 | 0.619–3.928 |
HTC-Med | 3.322 | 0.011 * | 1.315–8.391 |
DM | 1.677 | 0.323 | 0.602–4.678 |
HTN_Med | 4.406 | 0.002 * | 1.711–11.342 |
Smoking | 1.053 | 0.911 | 0.424–2.620 |
CHDAMI | OR | p-Value | 95% CI |
---|---|---|---|
Age | 1.044 | 0.059 | 0.998–1.091 |
Sex (Male) | 2.061 | 0.115 | 0.839–5.063 |
Ethnicity ** | 1.545 | 0.359 | 0.609–3.916 |
HTC-Med | 3.605 | 0.008 * | 1.399–9.289 |
DM | 1.572 | 0.395 | 0554–4.458 |
HTN-Med | 4.395 | 0.002 * | 1.684–11.458 |
Smoking | 1.025 | 0.958 | 0.408–2.576 |
GRS-T2 | 0.559 | 0.311 | 0.181–1.724 |
GRS-T3 | 1.030 | 0.958 | 0.347–3.056 |
CHDAMI | OR | p-Value | 95% CI |
---|---|---|---|
Age | 1.047 | 0.044 * | 1.001–1.095 |
Sex (Male) | 1.888 | 0.161 | 0.776–4.591 |
Ethnicity ** | 1.558 | 0.347 | 0.618–3.926 |
HTC-Med | 3.276 | 0.012 * | 1.296–8.280 |
DM | 1.711 | 0.306 | 0.612–4.783 |
HTN_Med | 4.561 | 0.002* | 1.747–11.908 |
Smoking | 1.051 | 0.914 | 0.422–2.618 |
wGRS-T2 | 1.242 | 0.701 | 0.411–3.753 |
wGRS-T3 | 1.104 | 0.857 | 0.378–3.223 |
Models | Hungarian General | Hungarian Roma | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SENS | SPEC | CLASS | CALIB | LROC | SENS | SPEC | CLASS | CALIB | LROC | |
1. CHD/AMI models basic SCORE | ||||||||||
CRFs basic | 60.00 | 82.90 | 82.08 | 0.9601 | 0.8149 | 81.25 | 76.81 | 77.06 | 0.2193 | 0.8616 |
CRFs+GRS | 70.00 | 85.50 | 84.95 | 0.9241 | 0.8346 | 81.25 | 77.57 | 77.78 | 0.7087 | 0.8549 |
CRFs+wGRS | 60.00 | 84.01 | 83.15 | 0.9349 | 0.8160 | 81.25 | 77.57 | 77.78 | 0.3803 | 0.8674 |
2. CHD/AMI models based on the updated SCORE (plus DM) | ||||||||||
CRFs+DM | 60.00 | 86.99 | 86.02 | 0.2818 | 0.8299 | 81.25 | 77.19 | 77.42 | 0.2298 | 0.8611 |
CRFs+DM+GRS | 60.00 | 86.99 | 86.02 | 0.6587 | 0.8400 | 81.25 | 77.57 | 77.78 | 0.5061 | 0.8534 |
CRFs+DM+wGRS | 60.00 | 86.62 | 85.66 | 0.9496 | 0.8333 | 81.25 | 77.19 | 77.42 | 0.3807 | 0.8670 |
Models | Hungarian General | ||||
---|---|---|---|---|---|
SENS | SPEC | CLASS | CALIB | LROC | |
1. CHD/AMI models basic SCORE | |||||
CRFs+E | 76.92 | 81.02 | 80.82 | 0.7843 | 0.8479 |
CRFs+GRS+E | 80.77 | 81.77 | 81.18 | 0.1082 | 0.8490 |
CRFs+wGRS+E | 76.92 | 81.02 | 80.82 | 0.7922 | 0.8456 |
2. CHD/AMI models based on the updated SCORE | |||||
CRFs+DM+E | 80.77 | 80.83 | 80.82 | 0.5329 | 0.8525 |
CRFs++DM+GRS+E | 80.77 | 80.83 | 80.82 | 0.4737 | 0.8518 |
CRFs+DM+wGRS+E | 80.77 | 81.20 | 81.18 | 0.7842 | 0.8497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, N.; Soltész, B.; Sándor, J.; Ádány, R.; Fiatal, S. Comparison of Genetic Susceptibility to Coronary Heart Disease in the Hungarian Populations: Risk Prediction Models for Coronary Heart Disease. Genes 2023, 14, 1033. https://doi.org/10.3390/genes14051033
Nasr N, Soltész B, Sándor J, Ádány R, Fiatal S. Comparison of Genetic Susceptibility to Coronary Heart Disease in the Hungarian Populations: Risk Prediction Models for Coronary Heart Disease. Genes. 2023; 14(5):1033. https://doi.org/10.3390/genes14051033
Chicago/Turabian StyleNasr, Nayla, Beáta Soltész, János Sándor, Róza Ádány, and Szilvia Fiatal. 2023. "Comparison of Genetic Susceptibility to Coronary Heart Disease in the Hungarian Populations: Risk Prediction Models for Coronary Heart Disease" Genes 14, no. 5: 1033. https://doi.org/10.3390/genes14051033
APA StyleNasr, N., Soltész, B., Sándor, J., Ádány, R., & Fiatal, S. (2023). Comparison of Genetic Susceptibility to Coronary Heart Disease in the Hungarian Populations: Risk Prediction Models for Coronary Heart Disease. Genes, 14(5), 1033. https://doi.org/10.3390/genes14051033