TMT-Based Comparative Proteomic Analysis of the Spermatozoa of Buck (Capra hircus) and Ram (Ovis aries)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Workflow
2.2. Animals and Sample Collection
2.3. Protein Extraction and Digestion
2.4. TMT Labeling
2.5. High-Performance Liquid Chromatography (HPLC) Fractionation of Peptides
2.6. Liquid Chromatography Coupled with Tandem mass Spectrometry (LC–MS/MS) Analysis
2.7. Identification and Quantification of Proteins
2.8. Western Blotting Verification
2.9. Bioinformatics Analysis
3. Results
3.1. Protein Identification
3.2. Cluster Analysis
3.3. Functional Enrichment Analysis
3.4. Proteins Network Analysis
3.5. Western Blot
4. Discussion
4.1. Proteome Characterization of the Spermatozoa
4.2. Differences in Spermatozoa Proteins between Bucks and Rams
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leboeuf, B.; Restall, B.; Salamon, S. Production and storage of goat semen for artificial insemination. Anim. Reprod. Sci. 2000, 62, 113–141. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.X.; Zhu, Y.; Zhu, Z.Y.; Sun, Q.Y.; Chen, D.Y. Effects of cooling, cryopreservation and heating on sperm proteins, nuclear DNA, and fertilization capability in mouse. Mol. Reprod. Dev. 2005, 72, 129–134. [Google Scholar] [CrossRef]
- Morrell, J.M.; Georgakas, A.; Lundeheim, N.; Nash, D.; Davies Morel, M.C.G.; Johannisson, A. Effect of heterologous and homologous seminal plasma on stallion sperm quality. Theriogenology 2014, 82, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Vicentefiel, S.; Palacín, I.; Santolaria, P.; Yániz, J.L. A comparative study of sperm morphometric subpopulations in cattle; goat; sheep and pigs using a computer-assisted fluorescence method (CASMA-F). Anim. Reprod. Sci. 2013, 139, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.F.; Matos, M.N.C.; Alves, J.G.; Valle, R.V.D.; Cunha, R.M.S.D. Diversity of ejaculated sperm proteins in Moxotó bucks (Capra hircus) evaluated by multiple extraction methods. Anim. Reprod. 2018, 15, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Maroto Morales, A.; Ramón, M.; García Álvarez, O.; Soler, A.J.; Fernández Santos, M.R.; Roldan, E.R.S.; Gomendio, M.; Pérez Guzmán, M.D.; Garde, J.J. Morphometrically-distinct sperm subpopulations defined by a multistep statistical procedure in ram ejaculates: Intra- and interindividual variation. Theriogenology 2012, 77, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.C.; Noirel, J.; Ow, S.Y.; Fazeli, A. A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 2012, 77, 738–765.e52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Elias, J.E. Relative Protein Quantification Using Tandem Mass Tag Mass Spectrometry. Methods Mol. Biol. 2017, 1550, 185–198. [Google Scholar] [PubMed]
- Zhang, Z.; Tang, J.; Di, R.; Liu, Q.; Wang, X.; Gan, S.; Zhang, X.; Zhang, J.; Chen, W.; Hu, W.; et al. Identification of Prolificacy-Related Differentially Expressed Proteins from Sheep (Ovis aries) Hypothalamus by Comparative Proteomics. Proteomics 2019, 19, e1900118. [Google Scholar] [CrossRef] [PubMed]
- Urizar Arenaza, I.; Osinalde, N.; Akimov, V.; Puglia, M.; Candenas, L.; Pinto, F.M.; Muñoa Hoyos, I.; Gianzo, M.; Matorras, R.; Irazusta, J.; et al. Phosphoproteomic and Functional Analyses Reveal Sperm-specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol. Cell. Proteom. 2019, 18 (Suppl. 1), s118–s131. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jiang, W.; Yu, W.; Niu, X.; Liu, F.; Zhou, T.; Zhang, H.; Li, Y.; Zhu, H.; Zhou, Z.; et al. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility. J. Proteom. 2019, 208, 103478. [Google Scholar] [CrossRef] [PubMed]
- Nixon, B.; De Iuliis, G.N.; Hart, H.M.; Zhou, W.; Mathe, A.; Bernstein, I.R.; Anderson, A.L.; Stanger, S.J.; Skerrett Byrne, D.A.; Jamaluddin, M.F.B.; et al. Proteomic Profiling of Mouse Epididymosomes Reveals their Contributions to Post-testicular Sperm Maturation. Mol. Cell. Proteom. 2019, 18 (Suppl. 1), s91–s108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, Y.; Ren, C.H.; Cheng, X.; Chen, J.H.; Ge, Z.Y.; Sun, Z.P.; Zhuo, X.; Sun, F.F.; Chen, Y.L.; et al. Identification of proteomic markers for ram spermatozoa motility using a tandem mass tag (TMT) approach. J. Proteom. 2020, 210, 103438. [Google Scholar] [CrossRef] [PubMed]
- Peris Frau, P.; Martín Maestro, A.; Iniesta Cuerda, M.; Iniesta Cuerda, M.; Sánchez Ajofrín, I.; Mateos Hernández, L.; Julián Garde, J.; Margarita, V.; Josefa Soler, A. Freezing-Thawing Procedures Remodel the Proteome of Ram Sperm before and after In Vitro Capacitation. Int. J. Mol. Sci. 2019, 20, 4596. [Google Scholar] [CrossRef]
- Liu, T.; Han, Y.; Zhou, T.; Zhang, R.; Chen, H.; Chen, S.; Zhao, H. Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa. Aging 2019, 11, 7880–7898. [Google Scholar] [CrossRef]
- Lv, C.; Wu, G.; Hong, Q.; Quan, G. Spermatozoa Cryopreservation: State of Art and Future in Small Ruminants. Biopreserv. Biobank. 2019, 17, 171–182. [Google Scholar] [CrossRef]
- Vicente Fiel, S.; Palacín, I.; Santolaria, P.; Hidalgo, C.O.; Silvestre, M.A.; Arrebola, F.; Yániz, J.L. A comparative study of the sperm nuclear morphometry in cattle; goat; sheep; and pigs using a new computer-assisted method (CASMA-F). Theriogenology 2013, 79, 436–442. [Google Scholar] [CrossRef]
- Shan, X.; Yu, T.; Yan, X.; Wu, J.; Liu, Y. Proteomic analysis of healthy and atretic porcine follicular granulosa cells. J. Proteom. 2021, 232, 104027. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, X.; Bian, J.; Ma, X.; Chen, B. Differential proteomic analysis of fetal and geriatric lumbar nucleus pulposus: Immunoinflammation and age-related intervertebral disc degeneration. BMC Musculoskelet. Disord. 2020, 21, 339. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, X.; Ren, C.; Chen, J.; Zhang, Y.; Chen, Y.; Jia, X.; Wang, S.; Sun, Z.; Zhang, R. Proteomic characterization and comparison of ram (Ovis aries) and buck (Capra hircus) spermatozoa proteome using a data independent acquisition mass spectometry (DIA-MS) approach. PLoS ONE 2020, 15, e0228656. [Google Scholar] [CrossRef] [PubMed]
- Parrilla, I.; Perez Patiño, C.; Li, J.; Barranco, I.; Padilla, L.; Rodriguez Martinez, H.; Martinez, E.A.; Roca, J. Boar semen proteomics and sperm preservation. Theriogenology 2019, 137, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Druart, X.; de Graaf, S. Seminal plasma proteomes and sperm fertility. Anim. Reprod. Sci. 2018, 194, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Pini, T.; Leahy, T.; Soleilhavoup, C.; Tsikis, G.; Labas, V.; Combes Soia, L.; Harichaux, G.; Rickard, J.P.; Druart, X.; de Graaf, S.P. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma. J. Proteome Res. 2016, 15, 3700–3711. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Larbi, A.; Memon, S.; Liang, J.; Zhao, X.; Shao, Q.; Wu, G.; Quan, G. The proteomic characterization of ram sperm during cryopreservation analyzed by the two-dimensional electrophoresis coupled with mass spectrometry. Cryobiology 2020, 97, 37–45. [Google Scholar] [CrossRef]
- Boerke, A.; Tsai, P.S.; Garcia-Gil, N.; Brewis, I.A.; Gadella, B.M. Capacitation-dependent reorganization of microdomains in the apical sperm head plasma membrane: Functional relationship with zona binding and the zona-induced acrosome reaction. Theriogenology 2008, 70, 1188–1196. [Google Scholar] [CrossRef]
- Tumova, L.; Zigo, M.; Sutovsky, P.; Sedmikova, M.; Postlerova, P. The Ubiquitin-Proteasome System Does Not Regulate the Degradation of Porcine β-Microseminoprotein during Sperm Capacitation. Int. J. Mol. Sci. 2020, 21, 4151. [Google Scholar] [CrossRef]
- Navon, A.; Ciechanover, A. The 26 S proteasome: From basic mechanisms to drug targeting. J. Biol. Chem. 2009, 284, 33713–33718. [Google Scholar] [CrossRef]
- Sutovsky, P. Sperm proteasome and fertilization. Reproduction 2011, 142, 1–14. [Google Scholar] [CrossRef]
- Sahasrabuddhe, A.A.; Elenitoba-Johnson, K.S. Role of the ubiquitin proteasome system in hematologic malignancies. Immunol. Rev. 2015, 263, 224–239. [Google Scholar] [CrossRef]
- Shimizu, N.; Ueno, K.; Kurita, E.; Shin, S.-W.; Nishihara, T.; Amano, T.; Anzai, M.; Kishigami, S.; Kato, H.; Mitani, T.; et al. Possible role of ZPAC, zygote-specific proteasome assembly chaperone, during spermatogenesis in the mouse. J. Reprod. Dev. 2014, 60, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Gómez, H.L.; Felipe-Medina, N.; Condezo, Y.B.; Garcia-Valiente, R.; Ramos, I.; Suja, J.A.; Barbero, J.L.; Roig, I.; Sánchez-Martín, M.; De Rooij, D.G.; et al. The PSMA8 subunit of the spermatoproteasome is essential for proper meiotic exit and mouse fertility. PLoS Genet. 2019, 15, e1008316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ji, S.Y.; Busayavalasa, K.; Shao, J.; Yu, C. Meiosis I progression in spermatogenesis requires a type of testis-specific 20S core proteasome. Nat. Commun. 2019, 10, 3387. [Google Scholar] [CrossRef]
- Yi, Y.J.; Manandhar, G.; Sutovsky, M.; Zimmerman, S.W.; Jonáková, V.; Van Leeuwen, F.W.; Oko, R.; Park, C.-S.; Sutovsky, P. Interference with the 19S proteasomal regulatory complex subunit PSMD4 on the sperm surface inhibits sperm-zona pellucida penetration during porcine fertilization. Cell Tissue Res. 2010, 341, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Pearl, L.H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 2006, 75, 271–294. [Google Scholar] [CrossRef]
- Fang, D.A.; Duan, J.R.; Zhou, Y.F.; Zhang, M.-Y.; Xu, D.-P.; Liu, K.; Xu, P. Molecular Characteristic, Protein Distribution and Potential Regulation of HSP90AA1 in the Anadromous Fish Coilia nasus. Genes 2016, 7, 8. [Google Scholar] [CrossRef]
- Maselli, J.; Hales, B.F.; Robaire, B. Paternal exposure to testis cancer chemotherapeutics alters sperm fertilizing capacity and affects gene expression in the eight-cell stage rat embryo. Andrology 2014, 2, 259–266. [Google Scholar] [CrossRef]
- Casas, I.; Sancho, S.; Ballester, J.; Briz, M.D.; Pinart, E.; Bussalleu, E.; Yeste, M.; Fàbrega, A.; Gil, J.E.; Bonet, S. The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology 2010, 74, 940–950. [Google Scholar] [CrossRef]
- Erlejman, A.G.; Lagadari, M.; Toneatto, J.; Piwien-Pilipuk, G.; Galigniana, M.D. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochim. Biophys. Acta 2014, 1839, 71–87. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, C.; Xiang, H.; Zhao, X.; Zhong, R. Melatonin Inhibits Formation of Mitochondrial Permeability Transition Pores and Improves Oxidative Phosphorylation of Frozen-Thawed Ram Sperm. Front. Endocrinol. 2019, 10, 896. [Google Scholar] [CrossRef]
- Lin, R.; Tao, R.; Gao, X.; Li, T.; Zhou, X.; Guan, K.-L.; Xiong, Y.; Lei, Q.-Y. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 2013, 51, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Pandey, A.; Kumar, L.; Devi, A.; Kushwaha, B.; Vishvkarma, R.; Maikhuri, J.P.; Rajender, S.; Gupta, G. The thermo-sensitive gene expression signatures of spermatogenesis. Reprod. Biol. Endocrinol. 2018, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liang, W.; Liu, L.; Li, Y.; Sun, D. Genetic association of the ACACB gene with milk yield and composition traits in dairy cattle. Anim. Genet. 2018, 49, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Knottnerus, S.J.G.; Bleeker, J.C.; Wüst, R.C.I.; Ferdinandusse, S.; Ijlst, L.; Wijburg, F.A.; Wanders, R.J.A.; Visser, G.; Houtkooper, R.H. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev. Endocr. Metab. Disord. 2018, 19, 93–106. [Google Scholar] [CrossRef]
- Asghari, A.; Marashi, S.A.; Ansari-Pour, N. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Syst. Biol. Reprod. Med. 2017, 63, 100–112. [Google Scholar] [CrossRef]
- Amaral, A.; Paiva, C.; Parrinello, C.A.; Estanyol, J.M.; Ballescà, J.L.; Ramalho-Santos, J.; Oliva, R. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J. Proteome Res. 2014, 13, 5670–5684. [Google Scholar] [CrossRef]
- Maruyama, S.Y.; Ito, M.; Ikami, Y.; Okitsu, Y.; Ito, C.; Toshimori, K.; Fujii, W.; Yogo, K. A critical role of solute carrier 22a14 in sperm motility and male fertility in mice. Sci. Rep. 2016, 6, 36468. [Google Scholar] [CrossRef]
- Yogo, K.; Tojima, H.; Ohno, J.Y.; Ogawa, T.; Nakamura, N.; Hirose, S.; Takeya, T.; Kohsaka, T. Identification of SAMT family proteins as substrates of MARCH11 in mouse spermatids. Histochem. Cell Biol. 2012, 137, 53–65. [Google Scholar] [CrossRef]
- Li, W.; Liu, G. DNAJB13, a type II HSP40 family member, localizes to the spermatids and spermatozoa during mouse spermatogenesis. BMC Dev. Biol. 2014, 14, 38. [Google Scholar] [CrossRef]
- Li, W.N.; Zhu, L.; Jia, M.M.; Yin, S.L.; Lu, G.X.; Liu, G. Missense mutation in DNAJB13 gene correlated with male fertility in asthenozoospermia. Andrology 2020, 8, 299–306. [Google Scholar] [CrossRef]
- Singh, B.P.; Asthana, A.; Basu, A.; Tangirala, R.; Mohan Rao, C.; Swamy, M.J. Conserved core tryptophans of FnII domains are crucial for the membranolytic and chaperone-like activities of bovine seminal plasma protein PDC-109. FEBS Lett. 2020, 594, 509–518. [Google Scholar] [CrossRef] [PubMed]
Accession | Description | Gene Name | MW [kDa] | Peptides | Coverage | Accession | Description | Gene Name |
---|---|---|---|---|---|---|---|---|
P02784 | Seminal plasma protein PDC-109 | 15.48 | 1 | 5.2 | 1 | 0.002299 | 47.32 | |
Q2TA26 | Coiled-coil domain-containing 116 | CCDC116 | 40.31 | 3 | 14.3 | 1 | 0.000542 | 27.11 |
F1MB31 | PREDICTED: putative serine protease 46 | PRSS46 | 33.36 | 2 | 7.3 | 1 | 0.001534 | 26.54 |
O77780 | Disintegrin and metalloproteinase domain-containing protein 2 | ADAM2 | 83.15 | 6 | 5.8 | 2 | 9.23 × 10−7 | 25.22 |
E1BPJ2 | Coiled-coil domain-containing protein 8 | CCDC81 | 76.13 | 23 | 31.9 | 2 | 0.001281 | 22.90 |
Q02368 | NADH dehydrogenase [ubiquinone] 1 β subcomplex subunit 7 | NDUFB7 | 16.40 | 4 | 40.1 | 1 | 0.000444 | 22.56 |
Q3SZW9 | DnaJ (Hsp40) related, subfamily B, member 13 | DNAJB13 | 36.08 | 14 | 47.2 | 2 | 0.001758 | 21.13 |
Q32PA1 | CD59 molecule, complement regulatory protein | CD59 | 13.66 | 1 | 7.4 | 1 | 0.017282 | 21.03 |
E1B715 | Kinesin-like protein | KIF9 | 89.82 | 16 | 22.9 | 1 | 0.009728 | 19.94 |
G3N1S7 | Cilia- and flagella-associated protein 44 isoform X1 | 115.08 | 19 | 22.8 | 1 | 0.020836 | 16.25 | |
F1MI34 | Coiled-coil domain-containing protein 108-like isoform X1 | CFAP65 | 206.06 | 14 | 8.8 | 1 | 1.46 × 10−5 | 14.65 |
G3MWG7 | EF-hand calcium-binding domain-containing protein 6 isoform X1 | EFCAB6 | 173 | 25 | 20.7 | 3 | 7.76 × 10−5 | 13.56 |
Q3SZ00 | HADHA protein | HADHA | 83.25 | 26 | 38.1 | 1 | 0.002899 | 13.38 |
Q32KP0 | Spermatid-specific manchette-related protein 1 | SMRP1 | 35.07 | 15 | 47 | 1 | 0.000412 | 13.33 |
Q32KS3 | “Capping protein (Actin filament) muscle Z-line, α 3 | CAPZA3 | 35.07 | 12 | 38.5 | 2 | 0.00056 | 12.96 |
A6QPW2 | MGC157332 protein | MGC157332 | 30.57 | 9 | 26.2 | 2 | 0.001011 | 11.99 |
Q58D55 | β-galactosidase | GLB1 | 73.41 | 4 | 7.8 | 1 | 0.007557 | 11.59 |
W5P004 | Midkine isoform X1 | MDK | 15.57 | 9 | 49 | 9 | 0.016649 | 11.17 |
Q2TA11 | Uncharacterized protein C1orf158 homolog | 23.23 | 5 | 29.1 | 1 | 5.54 × 10−5 | 10.83 | |
F1MJM3 | Disintegrin and metalloproteinase domain-containing protein 20 | ADAM20 | 79.58 | 4 | 5.2 | 2 | 0.000432 | 10.47 |
Accession | Description | Gene Name | MW [kDa] | Peptides | Coverage | Accession | Description | Gene Name |
---|---|---|---|---|---|---|---|---|
W5QAF5 | Solute carrier organic anion transporter family member | SLCO6A1 | 79.53 | 3 | 5.2 | 3 | 0.018435 | 17.20 |
W5QIT9 | LOW QUALITY PROTEIN: phospholipase DDHD1 isoform X1 | DDHD1 | 98.70 | 4 | 4.1 | 1 | 0.043971 | 16.45 |
W5NPV3 | Disintegrin and metalloproteinase domain-containing protein 5-like isoform X1 | 21.37 | 3 | 12.1 | 3 | 0.044157 | 13.66 | |
W5Q563 | GDP-L-fucose synthase isoform X1 | TSTA3 | 36.03 | 1 | 4.4 | 1 | 0.013513 | 11.82 |
W5PZ19 | Equatorin isoform X1 | EQTN | 33.80 | 4 | 12 | 2 | 0.001924 | 11.07 |
W5PLD6 | Sialomucin core protein 24 isoform X1 | CD164 | 20.59 | 1 | 6.6 | 1 | 0.020619 | 10.31 |
W5NTS0 | Lymphocyte antigen 6K | LY6K | 17.83 | 2 | 12.5 | 2 | 0.033376 | 10.26 |
W5QI97 | Cytoskeleton-associated protein 2-like isoform X2 | CKAP2L | 85.60 | 1 | 1.3 | 1 | 0.029717 | 9.94 |
W5PT91 | Ubiquitin-conjugating enzyme E2 J1 isoform X4 | UBE2J1 | 35.68 | 4 | 15.4 | 1 | 0.003098 | 9.61 |
W5PD71 | Pentaxin | CRP | 25.27 | 7 | 33.5 | 7 | 0.02044 | 9.50 |
W5Q4D9 | NAD(P)(+)--arginine ADP-ribosyltransferase | ART3 | 43.75 | 11 | 22.7 | 7 | 0.022189 | 9.23 |
W5PNP1 | Lactadherin isoform X1 | MFGE8 | 48.36 | 14 | 36.1 | 3 | 0.014737 | 8.91 |
W5PSI1 | 26S proteasome non-ATPase regulatory subunit 3 isoform X2 | PSMD3 | 61.66 | 13 | 22.6 | 1 | 0.034579 | 8.09 |
W5QET6 | Monocarboxylate transporter 1 | SLC16A1 | 54.19 | 8 | 16.2 | 1 | 0.004748 | 7.49 |
W5PU33 | T-complex protein 1 subunit zeta isoform X1 | 44.13 | 5 | 11.2 | 2 | 0.014637 | 7.33 | |
W5QIQ0 | C-type lectin domain family 2 member F-like isoform X1 | LOC101120482 | 22.34 | 3 | 16.7 | 3 | 0.004093 | 7.03 |
F1MNL6 | Nuclear pore membrane glycoprotein 210-like | NUP210L | 206.8 | 30 | 17 | 1 | 0.006081 | 6.91 |
W5Q104 | Disintegrin and metalloproteinase domain-containing protein 20-like | LOC101111942 | 83.46 | 8 | 11 | 6 | 0.005871 | 6.78 |
E1BAR0 | Small integral membrane protein 5 | SMIM5 | 8.76 | 1 | 19.2 | 1 | 0.002139 | 6.77 |
W5Q0G6 | Serine protease 55 | PRSS55 | 35.99 | 6 | 29.9 | 6 | 0.012645 | 6.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, C.; Chen, Y.; Tang, J.; Wang, P.; Zhang, Y.; Li, C.; Zhang, Z.; Cheng, X. TMT-Based Comparative Proteomic Analysis of the Spermatozoa of Buck (Capra hircus) and Ram (Ovis aries). Genes 2023, 14, 973. https://doi.org/10.3390/genes14050973
Ren C, Chen Y, Tang J, Wang P, Zhang Y, Li C, Zhang Z, Cheng X. TMT-Based Comparative Proteomic Analysis of the Spermatozoa of Buck (Capra hircus) and Ram (Ovis aries). Genes. 2023; 14(5):973. https://doi.org/10.3390/genes14050973
Chicago/Turabian StyleRen, Chunhuan, Yale Chen, Jun Tang, Penghui Wang, Yan Zhang, Chunyan Li, Zijun Zhang, and Xiao Cheng. 2023. "TMT-Based Comparative Proteomic Analysis of the Spermatozoa of Buck (Capra hircus) and Ram (Ovis aries)" Genes 14, no. 5: 973. https://doi.org/10.3390/genes14050973
APA StyleRen, C., Chen, Y., Tang, J., Wang, P., Zhang, Y., Li, C., Zhang, Z., & Cheng, X. (2023). TMT-Based Comparative Proteomic Analysis of the Spermatozoa of Buck (Capra hircus) and Ram (Ovis aries). Genes, 14(5), 973. https://doi.org/10.3390/genes14050973