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Abstract: Herein, we present a tool called Evident that can be used for deriving effect sizes for a
broad spectrum of metadata variables, such as mode of birth, antibiotics, socioeconomics, etc., to
provide power calculations for a new study. Evident can be used to mine existing databases of
large microbiome studies (such as the American Gut Project, FINRISK, and TEDDY) to analyze the
effect sizes for planning future microbiome studies via power analysis. For each metavariable, the
Evident software is flexible to compute effect sizes for many commonly used measures of microbiome
analyses, including α diversity, β diversity, and log-ratio analysis. In this work, we describe why
effect size and power analysis are necessary for computational microbiome analysis and show how
Evident can help researchers perform these procedures. Additionally, we describe how Evident is
easy for researchers to use and provide an example of efficient analyses using a dataset of thousands
of samples and dozens of metadata categories.

Keywords: bioinformatics; microbiome; statistics; effect size

1. Introduction

Power analysis for a univariate (or multivariate) outcome variable is not new. Nu-
merous statistical packages are available (e.g., SAS) for a variety of experimental designs
and outcome variables. For a given level of significance, a common challenge with any
power analysis is the understanding of the underlying variability in the data and the value
of the parameter of interest in the alternative hypothesis. Once the statistical parameter of
interest is identified, researchers often conduct a pilot study to estimate mean differences
and standard deviations and use these values, termed effect sizes [1–3], as the basis for
conducting power analysis, i.e., sample size calculations for the larger study proposed in
their research program. The larger the effect size, the stronger the statistical difference, and
the fewer samples are needed for high statistical power.

This type of power analysis is important because of the limited resources available for
experimental designs. Ensuring that researchers do not spend more resources than required
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to achieve a given statistical power is paramount. The problem is more complicated when
it comes to microbiome studies because there are a variety of parameters one can base
their designs on. Almost all parameters of interest, such as measures of α or β diversity
are (nonlinear) functions of relative abundances of various taxa. Estimation of relative
abundances using small pilot studies (i.e., N < 100) is not always satisfactory because
the observed count data contain a large number of zeros. The preliminary estimates
from a pilot study are potentially subject to large bias and uncertainties. Consequently,
the determination of the effect size for a given parameter, say α diversity defined by
Shannon’s entropy, is a difficult task. This article takes the first step towards addressing
this challenging problem by making use of the recently created large databases such as
the American Gut Project [4], TEDDY [5], and FINRISK [6]. These are very rich databases
that continue to grow. They contain microbiome data on several thousands of individuals
along with hundreds of commonly measured metadata and thousands of represented taxa.
For each variable in the metadata, say, mode of birth, the user-friendly software Evident
derives the effect size for a parameter of a researcher’s interest, such as Shannon’s entropy.
Using this parameter, a researcher can then conduct a simulation study to derive power
functions for different sample sizes [7].

Since microbiome datasets such as AGP, TEDDY, and FINRISK are very large and
contain a large number of metavariables, we expect Evident to be a useful tool for deriving
effect sizes for variables of common interest. Importantly, Evident takes user-inputted
study data for the generation of results, so researchers can customize their analyses as
they see fit. As new databases get constructed, Evident will access those to derive better
and more refined effect size estimates that will be useful for planning microbiome studies.
Evident is available both as a standalone Python package as well as a QIIME 2 plugin [8].
Currently, effect size analysis and power analysis for microbiome science can be performed
using programming languages such as Python and R. However, these approaches are not
designed for use with many metavariables. As a result, researchers must write custom
code to iterate through the full dataset. With Evident, researchers can seamlessly explore
the effect size of community differences in dozens of metadata columns at once and easily
perform power analysis. The interactive component of Evident additionally makes this
process easy to use and share. This scalability, flexibility, user-friendliness, and integration
with existing microbiome software make Evident easier to slot into existing microbiome
workflows over existing methods.

2. Materials and Methods

Figure 1a shows an overview of the Evident workflow. As input, Evident takes a
sample metadata file and a data file of interest (for example, α diversity). In this cartoon
example [9], we show the main Evident workflow is (1) calculating effect size for a metavari-
able of interest between two or more groups (2) performing parametric power analysis on
varying sample sizes, levels of significance, and/or effect sizes (3) plotting the accompany-
ing power curve(s). Both univariate per-sample data (such as α diversity) and multivariate
data (as a distance matrix such as β diversity) are supported. For univariate measures,
the differences in means among groups are considered. For multivariate measures, the
difference in means among within-group pairwise distances is considered. We also note
that, at the moment, Evident implements effect size computations of univariable analyses
(without explicit handling of confounders) following the approach of existing work [10–13].
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Figure 1. Evident workflow and interactive visualizations. (a) Graphical overview of Evident usage. 
Sample metadata with categorical groups are used to determine differences among samples. Effect 
size calculation can be performed and used to generate power curves (in this example using classi-
fication status from [7]) at multiple statistical significance levels and sample sizes. (b,c) Screenshots 
of the interactive webpage for a dynamic exploration of effect sizes and power analysis. 

Figure 1. Evident workflow and interactive visualizations. (a) Graphical overview of Evident usage.
Sample metadata with categorical groups are used to determine differences among samples. Effect
size calculation can be performed and used to generate power curves (in this example using classifi-
cation status from [7]) at multiple statistical significance levels and sample sizes. (b,c) Screenshots of
the interactive webpage for a dynamic exploration of effect sizes and power analysis. Summarized
effect sizes of all columns can be used to inform interactive power analysis on multiple groups (b).
The underlying grouped data can be visualized with boxplots and, optionally, the raw data as scatter
plots (c). The data shown are from McClorry et al. (Qiita study ID: 11402) [9].
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Evident supports both binary categories and multi-class categories. For binary cate-
gories, Cohen’s d is calculated between the two levels. For multi-class categories, Cohen’s
f is calculated among the levels [14]. Users also have the option of performing pairwise
effect size calculations between levels of a multi-class category rather than comparing all
groups together. Effect size calculations can be performed on multiple categories at once
with simple parallelization by providing the number of CPUs to use. For example, this
architecture allows us to decrease the runtime of effect size calculations for 9495 samples
comprising 61 categories from over 12 min to 3.5 min using 8 CPUs in parallel.

Evident also provides an interactive component by which users can dynamically
explore sample groupings. In Figure 1b,c, we show a screenshot of a web app that users can
access with Evident. Metadata categories are pre-sorted by effect size, allowing efficient
determination of interesting categories. Power analysis is implemented dynamically—
multiple categories can be visualized simultaneously for a specified significance level
and number of observations. Researchers can look at the “elbow” of the power curves
to determine an optimal number of samples to achieve the desired statistical power for
their experiments.

2.1. Statistical Methodology

Let X1, X2, . . . , Xl denote l metavariables available in some database. Without loss of
generality, in the following, we shall describe the methodology used in Evident for X1. For
simplicity of exposition, we shall drop the subscript 1 from X1. Furthermore, to fix ideas of
the methodology and simplicity of exposition, we shall assume X is binary, such as mode
of delivery. The outcome variable is denoted by Y, such as Shannon entropy, a measure
of α diversity of an infant’s gut microbiome. The relative abundance of the jth taxon,
j = 1, 2 , . . . , q, in the kth infant belonging to the X = ith group, i = 1, 2, . . . , G, (e.g.,
mode of delivery), is denoted by pijk. For example, X = 1 represents babies born vaginally,
and X = 2 represents babies born by C-Section. We assume that there are q taxa measured
on each infant (some may be zeros) and there are Ni infants in the ith the group in the large
database. Thus, the Shannon entropy for the kth subject belonging to the X = ith group
is given by Yik = −∑

q
j=1 pijk ln

(
pijk

)
. In this definition, pijk ln

(
pijk

)
→ 0, as pijk → 0 .

Since we are working with very large databases, such as AGP, we assume that each Ni is
sufficiently large.

The Evident methodology for determining the effect size needed for conducting
power analysis and sample size calculations for a future infant gut microbiome study using
Shannon entropy to describe microbial diversity is described in the following steps.

Step 1 (Average population diversity): For each value of X, for each subject in the
database, using the available microbiome data, compute the desired parameter of interest,
for example, the average Shannon entropy for α diversity, µi = −

(
1
Ni

)
∑Ni

k=1 Yik, i = 1, 2.
As noted above, we assume that each Ni is sufficiently large so that µi represents the
average Shannon entropy, for the ith the population of infants.

Step 2 (Variance of population diversity): Similar to the population mean µi, for
each i = 1, 2, . . . G we compute the population variance of α diversity, denoted by
σ2

i =
(

1
Ni

)
∑Ni

k=1(Yik − µi)
2 . Again, each ni is sufficiently large so that σ2

i represents the

population variance of Shannon entropy for the ith population of infants. Under the
simplifying assumption of homoscedasticity (i.e., all populations have same the variance),

we average the two empirical variances to obtain the pooled variance, i.e., σ2
pool =

∑G
i=1 Niσ

2
i

∑G
i=1 Ni

.

Again, since the sample sizes are large, we regard the pooled variance as the true population
variance for all our calculations.

Step 3 (Effect size calculations): Assuming that the outcome variable of interest (e.g., α
diversity) is normally distributed, we have the following formulas for effect sizes using
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non-central distribution for the test statistic (for G = 2) or non-central F distribution (for
G ≥ 2), respectively:

d =
µ1 − µ2

σpool
.

f =
∑G

i=1

(
Ni
N

)
(µi − µ)2

σ2
pool

, µ = ∑G
i=1

Ni
N

µi, N = ∑G
i=1Ni.

Although equal variances across groups may be an unreasonable assumption, in the
following we make a simplifying assumption that all groups have a common variance
of σ2

pool .
Step 4 (Power and sample size calculations): For a future study, suppose a researcher

has a budget for a sample size mi, for the ith population of infants, i = 1, 2, . . . , G, then
for a level of significance of α, the power corresponding to the effect size d and sample mi,
can be calculated parametrically, assuming Yik ∼iid N

(
µi, σpool

)
.

Under the normality assumption, for G = 2, Evident calculates power using non-
central t-distribution using the effect size parameter d and different choices of samples sizes
m1, m2. In the case G > 2, it uses non-central F distribution with effect size parameter f
and different choices of samples sizes m1, m2, . . . , mG.

2.2. Interactive Exploration of Community Differences

The interactive visualization provided in Evident is created with Bokeh. Given micro-
biome data and sample metadata, Evident creates a Bokeh app that dynamically calculates
effect sizes and power analysis for the chosen parameters. This view also shows the raw
data values as boxplots with optional scatter points.

2.3. Analysis of AGP Data

A sample ID list was generated from the original distance matrix used in the AGP
study. 100 nucleotide 16S rRNA gene amplicon (16S) data targeting the V4 hypervariable
region for these samples were downloaded from the AGP study on Qiita (study ID: 10317)
using redbiom [15,16]. Both preparation and sample metadata were also retrieved with
redbiom. Due to multiple preparations containing data from some samples, we performed
disambiguation by keeping the samples with the highest sequencing depth.

We then processed the feature table and metadata according to the original study. The
original workflow used the default parameters in Deblur to remove features with fewer
than 10 occurrences in the data [17]. Because Qiita does not perform this filtering by default,
we performed this filtering manually. To remove sequences associated with sample bloom,
we performed bloom filtering [18]. We then rarefied the feature table to 1250 sequences as
in the original analysis.

We processed the sample metadata in accordance with the original study. Because
of differences in self-reporting protocols from 2018, metadata categories associated with
reported Vioscreen responses as well as those associated with alcohol consumption were
removed. The following categories were removed due to mismatches in sample meta-
data: roommates, allergies, age_cat, bmi_cat, longitude, latitude, elevation, height_cm,
collection_time, and center_project_name. Only the top four annotated countries were
considered—US, UK, Australia, and Canada. All other countries were ignored. Overall,
61 metadata categories common to both the original data and redbiom data were used for
further analysis.

Sequences from the feature table were placed into a 99% Greengenes [19] insertion
reference tree using SEPP [20]. We then used unweighted UniFrac to generate a sample-by-
sample distance matrix [21]. This distance matrix was used as input to Evident along with
the disambiguated, processed sample metadata.

We used effect_size_by_category to calculate the whole-group effect sizes for each col-
umn in the metadata and pairwise_effect_size_by_category to calculate the group-pairwise
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effect sizes for multi-class categories. For each whole-group effect size, we computed a
power analysis for α values of 0.01, 0.05, and 0.1. Power was calculated on total sample
size values from 20 to 1500 in increments of 40 samples. Evident analyses were performed
in parallel on a high-performance computing environment. Group-wise and pairwise
effect size calculations both took under 4 min for 82 metadata categories on 9495 samples
using 8 CPUs (we note the AGP paper used n = 9511 but operated at 125 nt; we observe a
slightly reduced number of samples at 100 nt). We also benchmarked group-wise effect size
calculations using only a single CPU as a comparison; this process took 12.4 min, meaning
the parallelization decreased runtime by approximately 3.5×. Power analysis calculation
took 2.7 min for 82 categories using 8 CPUs in parallel.

2.4. Analysis of Study of Latinos Data

We downloaded closed-reference (picked against Greengenes 97%) 16S-V4 fecal data
from Qiita (study ID: 11666) using redbiom. We used the bmi_v2 column to separate
samples into two groups: normal (BMI < 25) and obese (BMI > 40). For each sample, we
summed the abundance of Prevotella spp. and Bacteroides spp. adding a pseudocount to
both sums. We then calculated the (log) ratio of the Prevotella sum and Bacteroides sum.

For power analysis, we first established the “true” difference between the obese and
normal samples as 1.06 (d = 0.27). We used the log-ratio data to determine three levels
of effect sizes we wanted to evaluate: 0.5 (d = 0.13), 1.0 (d = 0.25), and 1.5 (d = 0.38). To
convert the differences into desired effect sizes, we divided each difference by the pooled
standard deviation of the original log ratios. We used Evident to compute the power at
each of these effect sizes for a significance threshold of 0.05 for total observations varying
between 100 and 1000.

3. Results

As a demonstration of Evident, we reprocessed 9495 samples from the AGP to compare
the published effect sizes in McDonald 2018 with those from a new analysis with Evident [4].
We downloaded the same samples from the original paper and reprocessed the data and
metadata in the same manner, focusing on within-group UniFrac [22] distances. First, we
computed the group-wise effect sizes for all valid metadata categories. The top ten binary
categories and multi-class effect sizes are shown in Figure 2a,c, respectively. Using these
effect sizes, we performed power analyses for each category at a significance level of 0.05
for a range of sample sizes from 20 to 1500 (Figure 2b,d). We plotted the distribution of
the highest effect size binary and multi-class categories as reported by our new analysis
in Figure 2e. Finally, we computed the pairwise effect sizes as performed in the original
paper to verify that Evident returns the same values. Figure 2f shows that the effect sizes
map extremely closely between the published data and the newly reprocessed data. The
values of effect size differences in Figure 2g are distributed around 0, indicating that there
is very little difference between effect size calculations. This serves as validation that
Evident returns the correct effect sizes. We note, however, that the data used in this study
is very heterogeneous—coming from multiple countries. It is important to make sure
the data used in computing effect sizes are specific to the biological questions of interest.
In Supplementary Figure S1, we plot the effect sizes calculated from only US samples
and only UK samples. These effect sizes have a weak correlation (Spearman rho = 0.54),
suggesting that country is a strong factor for effect sizes between biological groups. As
such, researchers may want to perform further pre-processing such as stratification of data
by country and computing the individual effect sizes for each population. We believe more
work should be done on evaluating these differences in relation to these heterogenous
populations to ensure results are not artificially inflated or deflated.
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Figure 2. Analysis of American Gut Project data. (a) Top 10 binary categories by group-wise effect
size. (b) Two-sample independent t-test power analysis of selected binary category effect sizes for a
significance level of 0.05. (c) Top 10 multi-class categories by group-wise effect size. (d) One-way
ANOVA F-test power analysis of selected multi-class category effect sizes at a significance level
of 0.05. (e) Distributions of within-group pairwise UniFrac distances for highest effect size binary
category (top) and multi-class category (bottom). (f) Comparison of pairwise effect sizes between
reprocessed data from redbiom and published effect sizes from McDonald et al. Reprocessing results
are not identical due to inherent randomness in rarefaction. (g) Boxplot of differences in effect sizes
between published and reprocessed effect sizes.

While we focus on diversity measures in this work, Evident is also usable with any
other data such as log ratios of microbial abundances. As an example, we use Evident to
extend the work of Morton et al. [23] and Fedarko et al. [24] in using log ratios for, e.g., post-
hoc differential abundance analysis. We analyzed the commonly reported (log) ratio of Pre-
votella to Bacteroides in the Study of Latinos (SoL) cohort [25]. In Supplementary Figure S2,
we plot the log ratio differences between subjects with a BMI < 25 and subjects with a
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BMI > 40. We also plot a power curve with custom differences in means, showing Evident’s
flexibility in designing experiments with specific effect sizes in mind.

4. Conclusions

It is important for researchers to keep effect sizes in mind when performing com-
putational microbiome analysis. Calculating and reporting effect sizes make it easier for
researchers to determine the magnitude of biological effects on microbial communities.
Additionally, these effect sizes can be used to inform power analyses for the efficient alloca-
tion of resources for new studies. We designed Evident for researchers to easily mine and
process existing datasets for this information. Evident can slot into existing microbiome
workflows and process numerous metadata categories efficiently and quickly, allowing its
application to a broad range of microbiome research questions.

We note that the choice of study used in Evident should be carefully considered
when designing and planning new experiments. For example, an existing study using 16S
sequencing may not be completely appropriate when planning shotgun metagenomics
experiments, or even experiments that will use a different primer set to target a different
region of the 16S rRNA gene, because the different methods may recapture different
bacteria with different efficiencies and therefore the effect size of the same per-subject or
per-sample variable may differ depending on the methodology. More work should be done
to evaluate the differences in downstream analyses on samples between 16S and shotgun
metagenomics data. Similarly, culture-based microbiome studies may not follow the same
statistical properties as NGS data. Researchers should be mindful of these differences when
using Evident. Additionally, researchers should be aware of the limitations of the statistical
methodology of Evident. For example, if the assumptions of variance homogeneity are
not held, the obtained effect sizes will be inaccurate and the subsequent power analyses
can overestimate or underestimate the number of samples required to achieve a given
level of statistical power. Similarly, the assumption of equal group sizes in proposed
experimental designs from power analysis may be naïve in practice. For rare diseases or
phenotypes, it may not be feasible to design an experiment in which all groups have the
same number of samples. In these cases, performing simulations with unequal group sizes
to determine the necessary sample size to be likely to achieve a statistically significant
result may be informative.

We encourage microbiome researchers to incorporate Evident into their workflows for
both reporting effect sizes of microbial community differences and planning experimental
designs. In the future, we hope to enhance flexibility by including quantitative metadata
categories (rather than the current qualitative categories) and unbalanced group sample
size power analyses.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14061239/s1, Figure S1: Comparison of effect sizes between
UK and US samples; Figure S2: Log-ratio analysis on Study of Latinos cohort.
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Data Availability Statement: Data for the demonstration in Figure S1 were downloaded from Qiita
(study ID: 11402) [9] at 90 nucleotides using the deblur pipeline. AGP data were downloaded
from Qiita (study ID: 10317) using redbiom with context “Deblur_2021.09-Illumina-16S-V4-100nt-
50b3a2”. The original pairwise effect sizes, sample metadata, and unweighted UniFrac distance
matrix were downloaded from the original McDonald et al. study for comparison. SoL data used in
Supplemental Figure S2 were downloaded from Qiita (study ID: 11666) using redbiom with context
“Pick_closed-reference_OTUs-Greengenes-Illumina-16S-V4-90nt-44feac”.
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