Molecular Evidence Supports Five Lineages within Chiropotes (Pitheciidae, Platyrrhini)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Laboratory Procedures
2.3. Data Partitioning, Phylogenetic Analyses and Estimates of Genetic Distance
2.4. Divergence Times, Species Tree, Species Delimitation and Biogeographic Analyses
3. Results
4. Discussion
4.1. Taxonomy and Phylogenetic Relationships of Chiropotes
4.2. Diversification and Biogeographic History of Chiropotes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnett, A.A.; Pinto, L.P.; Bicca-Marques, J.C.; Ferrari, S.F.; Gordo, M.; Guedes, P.G.; Lopes, M.A.; Opazo, J.C.; Port-Carvalho, M.; Dos Santos, R.R. A proposal for the common names for species of Chiropotes (Pitheciinae: Primates). Zootaxa 2012, 3507, 79–83. [Google Scholar] [CrossRef]
- Kinzey, W.G. Dietary and dental adaptations in the Pitheciinae. Am. J. Phys. Anthr. 1992, 88, 499–514. [Google Scholar] [CrossRef]
- Fleagle, J.G. Primate Adaptation and Evolution; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Silva, S.S.; Ferrari, S.F. Behavior patterns of southern bearded sakis (Chiropotes satanas) in the fragmented landscape of eastern Brazilian Amazonia. Am. J. Primatol. 2009, 71, 1–7. [Google Scholar] [CrossRef]
- Hill, W.C.O. Primates: Comparative Anatomy and Taxonomy, Cebidae; Edinburgh University Press: Edinburgh, UK, 1960; Volume 4, Cebidae, Part A. [Google Scholar]
- Hershkovitz, P. A Preliminary Taxonomic Review of South American Bearded Saki Monkeys Genus Chiropotes (Cebidae, Platyrrhini) with Description of a New Subspecies; Field Museum of Natural History: Chicago, IL, USA, 1985; Volume 27, pp. 1–46. [Google Scholar]
- Silva, J., Jr.; Figueiredo, W. Pithecíneos: Uma última fronteira amazônica, Revisão sistemática dos cuxiús, gênero Chiropotes Lesson, 1840 (Primates, Pithecidae). In Proceedings of the X Congresso Brasileiro de Primatologia, Belém, Brasil, 1 July 2002. [Google Scholar]
- Bonvicino, C.R.; Boubli, J.P.; Otazu, I.B.; Almeida, F.C.; Nascimento, F.F.; Coura, J.R.; Seuanez, H.N. Morphologic, karyotypic, and molecular evidence of a new form of Chiropotes (primates, pitheciinae). Am. J. Primatol. 2003, 61, 123–133. [Google Scholar] [CrossRef]
- Boubli, J.; Mittermeier, R.A.; Urbani, B.; de Azevedo, R. Chiropotes Chiropotes. The IUCN Red List of Threatened Species 2018: e.T43891A17976546. 2018. Available online: https://www.iucnredlist.org/species/43891/17976546 (accessed on 26 May 2023).
- Mittermeier, R.A.; Boubli, J.P.; de Azevedo, R.B.; Veiga, L.M.; de Melo, F.R. Chiropotes Sagulatus (Amended Version of 2020 Assessment). The IUCN Red List of Threatened Species 2021: e.T70330167A191707709. 2021. Available online: https://www.iucnredlist.org/species/70330167/191707709 (accessed on 26 May 2023).
- Pinto, L.P.; Buss, G.; Veiga, L.M.; de Melo, F.R.; Mittermeier, R.A.; Boubli, J.P.; Wallace, R.B. Chiropotes Albinasus (Amended VERSION of 2020 assessment). The IUCN Red List of Threatened Species 2021: e.T4685A191702783. 2021. Available online: https://www.iucnredlist.org/species/4685/191702783 (accessed on 26 May 2023).
- Alonso, A.C.; Carvalho, A.; Jerusalinsky, L. Chiropotes Utahickae. The IUCN Red List of Threatened Species 2020: E.T43892A17976648. 2020. Available online: https://www.iucnredlist.org/species/43892/17976648 (accessed on 26 May 2023).
- Port-Carvalho, M.; Muniz, C.C.; Fialho, M.S.; Alonso, A.C.; Jerusalinsky, L.; Veiga, L.M. Chiropotes Satanas (Amended Version of 2020 Assessment). The IUCN Red List of Threatened Species 2021: e.T39956A191704509. 2021. Available online: https://www.iucnredlist.org/species/39956/191704509 (accessed on 26 May 2023).
- Barnett, A.A.; Boyle, S.A.; Pinto, L.P.; Lourenço, W.C.; Almeida, T.; Silva, W.S.; RonchiTeles, B.; Bezerra, B.M.; Ross, C.; MacLarnon, A. Primary seed dispersal by three Neotropical seed-predating primates (Cacajao melanocephalus ouakary, Chiropotes chiropotes and Chiropotes albinasus). J. Trop. Ecol. 2012, 28, 543–555. [Google Scholar] [CrossRef]
- Bufalo, F.S.; Galetti, M.; Culot, L. Seed dispersal by primates and implications for the conservation of a biodiversity hotspot, the Atlantic Forest of South America. Int. J. Primatol. 2016, 37, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Estrada, A.; Garber, P.A.; Rylands, A.B.; Roos, C.; Fernandez-Duque, E.; Di Fiore, A.; Nekaris, K.A.-I.; Nijman, V.; Heymann, E.W.; Lambert, J.E.; et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 2017, 3, e1600946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva Júnior, J.S. Especiação nos Macacos-Prego e Caiararas, Gênero Cebus Erxleben, 1777 (Primates, Cebidae). Ph.D Thesis, Programa de Pós-Graduação em Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 2001. [Google Scholar]
- Ferrari, S.F.; Iwanaga, S.; Coutinho, P.E.; Messias, M.R.; Neto, E.H.C.; Ramos, E.M.; Ramos, P.C. Zoogeography of Chiropotes albinasus (Platyrrhini, Atelidae) in southwestern Amazonia. Int. J. Primatol. 1999, 20, 995–1004. [Google Scholar] [CrossRef]
- Rocha, R.M.D.; Harada Hamel, M.L.; Schneider, H. ABO blood groups in natural populations of callitrichidae (Platyrrhini, Primates). Rev. Bras. Genética 1990, 13, 531–537. [Google Scholar]
- Sampaio, M.I.C.; Schneider, M.P.C.; Barroso, C.M.L.; Silva, B.T.F.; Schneider, H.; Encarnacion, F.; Montoya, E.; Salzano, F.M. Carbonic anhydrase II in new world monkeys. Int. J. Primatol. 1991, 12, 389–402. [Google Scholar] [CrossRef]
- Schneider, M.P.C.; Sampaio, M.I.D.; Schneider, H.; Encarnacion, F.; Montoya, E.; Pissinatti, A.; Coimbra, A.; Salzano, F.M. Comparative-study of lactate-dehydrogenase in 15 genera of New World monkeys. Rev. Bras. Genet. 1994, 17, 321–329. [Google Scholar]
- Perelman, P.; Johnson, W.E.; Roos, C.; Seuánez, H.N.; Horvath, J.E.; Moreira, M.A.M.; Kessing, B.; Pontius, J.; Roelke, M.; Rumpler, Y.; et al. A molecular phylogeny of living primates. PLoS Genet. 2011, 7, e1001342. [Google Scholar] [CrossRef] [Green Version]
- Paithankar, K.R.; Prasad, K.S. Precipitation of DNA by polyethylene glycol and ethanol. Nucleic Acids Res. 1991, 19, 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Lanfear, R.; Calcott, B.; Ho, S.Y.; Guindon, S. Partitionfinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, A.S. Kakusan4 and Aminosan: Two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 2011, 11, 914–921. [Google Scholar] [CrossRef]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer v1.6; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2014; Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 26 May 2023).
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Kay, R.F.; Johnson, D.; Meldrum, D.J. A new pitheciin primate from the middle Miocene of Argentina. Am. J. Primatol. 1998, 45, 317–336. [Google Scholar] [CrossRef]
- Drummond, A.J.; Ho, S.Y.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, 88. [Google Scholar] [CrossRef]
- Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 2008, 253, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. The BPP program for species tree estimation and species delimitation. Curr. Zool. 2015, 61, 854–865. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, D.X.; Zhu, T.; Yang, Z. Evaluation of a bayesian coalescent method of species delimitation. Syst. Biol. 2011, 60, 747–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 2017, 74, 447–467. [Google Scholar] [CrossRef]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Heled, J.; Drummond, A.J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 2010, 27, 570–580. [Google Scholar] [CrossRef] [Green Version]
- Matzke, N.J. BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts, version 0.2 1.; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Van Dam, M.H.; Matzke, N.J. Evaluating the influence of connectivity and distance on biogeographical patterns in the south-western deserts of North America. J. Biogeogr. 2016, 43, 1514–1532. [Google Scholar] [CrossRef]
- Quantumgis Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. 2014. Available online: https://qgis.org/pt_BR/site/ (accessed on 20 September 2022).
- Ribas, C.C.; Aleixo, A.; Nogueira, A.C.; Miyaki, C.Y.; Cracraft, J. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc. Biol. Sci. 2012, 279, 681–689. [Google Scholar] [CrossRef]
- Oliveira, U.; Vasconcelos, M.F.; Santos, A.J. Biogeography of Amazon birds: Rivers limit species composition, but not areas of endemism. Sci. Rep. 2017, 7, 2992. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.S.; Vieira, I.C.G. Centro de Endemismo Belém: Status da vegetação remanescente e desafios para a conservação da biodiversidade e restauração ecológica. Rev. Estud. Univ. 2010, 36, 95–111. [Google Scholar]
- Rylands, A.B.; Mittermeier, R.A. IUCN red list and primate conservation. In The International Encyclopedia of Primatology; John Wiley & Sons, Inc.: New York, NY, USA, 2017; pp. 1–3. [Google Scholar]
- Hoorn, C.; Wesselingh, F.P.; ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sanmartin, I.; Sanchez-Meseguer, A.; Anderson, C.L.; Figueiredo, J.P.; et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 2010, 330, 927–931. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, J.W.L.; Boubli, J.P.; Paim, F.P.; Ribas, C.C.; da Silva, M.N.F.; Messias, M.R.; Röhe, F.; Mercês, M.P.; Júnior, J.S.S.; Silva, C.R. Biogeography of squirrel monkeys (genus Saimiri): South-central Amazon origin and rapid pan-Amazonian diversification of a lowland primate. Mol. Phylogenetics Evol. 2015, 82, 436–454. [Google Scholar] [CrossRef] [PubMed]
- Buckner, J.C.; Lynch Alfaro, J.W.; Rylands, A.B.; Alfaro, M.E. Biogeography of the marmosets and tamarins (Callitrichidae). Mol. Phylogenetics Evol. 2015, 82, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Sioli, H. (Ed.) The Amazon: Limnology and Landscape of a Mighty Tropical River and Its Basin; Springer Science: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Blum, M.D.; Törnqvist, T.E. Fluvial responses to climate and sea-level change: A review and look forward. Sedimentology 2000, 47, 2–48. [Google Scholar] [CrossRef]
- Gonçalves-Junior, S.E.; Soares, E.A.A.; Tatumi, S.H.; Yee, M.; Mittani, J.C.R. Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon. Braz. J. Geol. 2016, 46, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Herz, N.; Hasui, Y.; Costa, J.B.S.; Matta, M.A.D.S. The Araguaia Fold Belt, Brazil: A reactivated Brasíliano-Pan-African cycle (550 Ma) geosuture. Precambrian Res. 1989, 42, 371–386. [Google Scholar] [CrossRef]
- Schaefer, C.E.R.; Vale Júnior, J.F. Mudanças climáticas e evolução da paisagem em Roraima: Uma resenha do Cretáceo ao Recente. In Homem, Ambiente e Ecologia em Roraima; Instituto Nacional de Pesquisas da Amazônia: Manaus, Brasil, 1997; pp. 231–265. [Google Scholar]
- Horvath, J.E.; Weisrock, D.W.; Embry, S.L.; Fiorentino, I.; Balhoff, J.P.; Kappeler, P.; Gregory, A.W.; Huntington, F.W.; Yoder, A.D. Development and application of a phylogenomic toolkit: Resolving the evolutionary history of Madagascar’s lemurs. Genome Res. 2008, 18, 489–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, L.A.; Laughlin, T.F.; Copeland, N.G.; Jenkins, N.A.; Womack, J.E.; O’Brien, S.J. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat. Genet. 1997, 15, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, J.; Silva, J., Jr.; Sampaio, I.; Pissinatti, A.; Hrbek, T.; Rezende Messias, M.; Fabio, R.; Izeni, F.; Boubli, J.; Schneider, H. Phylogeny of the titi monkeys of the Callicebus moloch group (Pitheciidae, Primates). Am. J. Primatol. 2016, 78, 904–913. [Google Scholar] [CrossRef] [Green Version]
Species | Code | Institution | Locality |
---|---|---|---|
Chiropotes satanas | Cs196 | UFPA | 1 |
Chiropotes satanas | Cs197 | UFPA | 1 |
Chiropotes satanas | Cs198 | UFPA | 1 |
Chiropotes utahicki | Cs1096 | UFPA | 2 |
Chiropotes utahicki | Cs1307 | UFPA | 2 |
Chiropotes utahicki | Cs970 | UFPA | 2 |
Chiropotes utahicki | Cs1244 | UFPA | 2 |
Chiropotes utahicki | Cs614 | UFPA | 2 |
Chiropotes albinasus | CTGAM213 | UFAM | 3 |
Chiropotes albinasus | CTGAM430 | UFAM | 3 * |
Chiropotes albinasus | CTGAM435 | UFAM | 3 * |
Chiropotes albinasus | Sant01 | UFPA | 4 |
Chiropotes sagulatus | Cs3058 | UFPA | 5 |
Chiropotes sagulatus | BDAAC | UFPA | 5 |
Chiropotes sagulatus | BDAAB | UFPA | 5 |
Chiropotes chiropotes | No code | GenBank | 6 |
Cacajao calvus | No code | GenBank | NI |
Cacajao melanocephalus | CTGAM5663 | UFAM | 7 |
Cacajao melanocephalus | CTGAM5665 | UFAM | 7 |
Pithecia Pithecia | Pit22 | UFPA | 8 |
Plecturocebus moloch | MCB79 | UFPA | 9 |
C. albinasus | C. satanas | C. utahicki | C. sagulatus | |||||
---|---|---|---|---|---|---|---|---|
C. satanas | 6.8% | 2.7% | ||||||
C. utahicki | 6.9% | 2.7% | 1.3% | 0.5% | ||||
C. sagulatus | 7.4% | 2.8% | 2.3% | 1.5% | 2.3% | 1.5% | ||
C. chiropotes | 7.0% | 2.7% | 2.5% | 1.3% | 2.4% | 1.3% | 1.5% | 0.9% |
Node | Clade | Median Age in Ma | 95%HPD | |
---|---|---|---|---|
1 | Callicebinae vs. Pitheciinae | 16.34 | 17.3 | 15.3 |
2 | Pithecia vs. Cacajao + Chiropotes | 9.56 | 11.27 | 7.74 |
3 | Cacajao vs. Chiropotes | 5.87 | 7.82 | 3.95 |
4 | C. albinasus vs. satanas clade | 4.18 | 6.12 | 2.33 |
5 | C. chiropotes + C. sagulatus vs. C. satanas + C. utahicki | 2.65 | 4.65 | 1.18 |
6 | C. satanas vs. C. utahicki | 1.43 | 3.1 | 0.34 |
7 | C. chiropotes vs. C. sagulatus | 1.39 | 3.09 | 0.36 |
8 | Cacajao calvus vs. Cacajao melanocephalus | 1.34 | 1.87 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, J.; Sampaio, I.; Silva-Júnior, J.d.S.e.; Martins-Junior, A.; Farias, I.; Hrbek, T.; Boubli, J.; Schneider, H. Molecular Evidence Supports Five Lineages within Chiropotes (Pitheciidae, Platyrrhini). Genes 2023, 14, 1309. https://doi.org/10.3390/genes14071309
Carneiro J, Sampaio I, Silva-Júnior JdSe, Martins-Junior A, Farias I, Hrbek T, Boubli J, Schneider H. Molecular Evidence Supports Five Lineages within Chiropotes (Pitheciidae, Platyrrhini). Genes. 2023; 14(7):1309. https://doi.org/10.3390/genes14071309
Chicago/Turabian StyleCarneiro, Jeferson, Iracilda Sampaio, José de S. e Silva-Júnior, Antonio Martins-Junior, Izeni Farias, Tomas Hrbek, Jean Boubli, and Horacio Schneider. 2023. "Molecular Evidence Supports Five Lineages within Chiropotes (Pitheciidae, Platyrrhini)" Genes 14, no. 7: 1309. https://doi.org/10.3390/genes14071309
APA StyleCarneiro, J., Sampaio, I., Silva-Júnior, J. d. S. e., Martins-Junior, A., Farias, I., Hrbek, T., Boubli, J., & Schneider, H. (2023). Molecular Evidence Supports Five Lineages within Chiropotes (Pitheciidae, Platyrrhini). Genes, 14(7), 1309. https://doi.org/10.3390/genes14071309