Identification by Exome Sequencing of Predisposing Variants in Familial Cases of Autoinflammatory Recurrent Fevers
Abstract
:1. Introduction
2. Material and Methods
2.1. Families
2.2. Sequencing
2.3. Bioinformatics Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caso, F.; Rigante, D.; Vitale, A.; Lucherini, O.M.; Costa, L.; Atteno, M.; Compagnone, A.; Caso, P.; Frediani, B.; Galeazzi, M.; et al. Monogenic Autoinflammatory Syndromes: State of the Art on Genetic, Clinical, and Therapeutic Issues. Int. J. Rheumatol. 2013, 2013, 513782. [Google Scholar] [CrossRef] [PubMed]
- David, T.; Ling, S.F.; Barton, A. Genetics of Immune-Mediated Inflammatory Diseases. Clin. Exp. Immunol. 2018, 193, 3–12. [Google Scholar] [CrossRef] [Green Version]
- The International FMF Consortium. Ancient Missense Mutations in a New Member of the RoRet Gene Family Are Likely to Cause Familial Mediterranean Fever. Cell 1997, 90, 797–807. [Google Scholar] [CrossRef]
- Consortium, T.F.F.; Bernot, A.; Clepet, C.; Dasilva, C.; Devaud, C.; Petit, J.-L.; Caloustian, C.; Cruaud, C.; Samson, D.; Pulcini, F.; et al. A Candidate Gene for Familial Mediterranean Fever. Nat. Genet. 1997, 17, 25–31. [Google Scholar] [CrossRef]
- Sangiorgi, E.; Rigante, D. The Clinical Chameleon of Autoinflammatory Diseases in Children. Cells 2022, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
- Ombrello, M.J. Advances in the Genetically Complex Autoinflammatory Diseases. Semin. Immunopathol. 2015, 37, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Rama, M.; Mura, T.; Kone-Paut, I.; Boursier, G.; Aouinti, S.; Touitou, I.; Sarrabay, G. Is Gene Panel Sequencing More Efficient than Clinical-Based Gene Sequencing to Diagnose Autoinflammatory Diseases? A Randomized Study. Clin. Exp. Immunol. 2021, 203, 105–114. [Google Scholar] [CrossRef]
- Papa, R.; Penco, F.; Volpi, S.; Sutera, D.; Caorsi, R.; Gattorno, M. Syndrome of Undifferentiated Recurrent Fever (SURF): An Emerging Group of Autoinflammatory Recurrent Fevers. J. Clin. Med. 2021, 10, 1963. [Google Scholar] [CrossRef]
- Luu, I.; Nation, J.; Page, N.; Carvalho, D.; Magit, A.; Jiang, W.; Leuin, S.; Bliss, M.; Bothwell, M.; Brigger, M.; et al. Undifferentiated Recurrent Fevers in Pediatrics Are Clinically Distinct from PFAPA Syndrome but Retain an IL-1 Signature. Clin. Immunol. 2021, 226, 108697. [Google Scholar] [CrossRef]
- Sutera, D.; Bustaffa, M.; Papa, R.; Matucci-Cerinic, C.; Matarese, S.; D’Orsi, C.; Penco, F.; Prigione, I.; Palmeri, S.; Bovis, F.; et al. Clinical Characterization, Long-Term Follow-up, and Response to Treatment of Patients with Syndrome of Undifferentiated Recurrent Fever (SURF). Semin. Arthritis Rheum. 2022, 55, 152024. [Google Scholar] [CrossRef]
- Marshall, G.S.; Edwards, K.M.; Butler, J.; Lawton, A.R. Syndrome of Periodic Fever, Pharyngitis, and Aphthous Stomatitis. J. Pediatr. 1987, 110, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, S.A.; Bedoni, N.; von Scheven-Gête, A.; Vanoni, F.; Superti-Furga, A.; Hofer, M.; Rivolta, C. Analysis of the Genetic Basis of Periodic Fever with Aphthous Stomatitis, Pharyngitis, and Cervical Adenitis (PFAPA) Syndrome. Sci. Rep. 2015, 5, 10200. [Google Scholar] [CrossRef] [Green Version]
- Cheung, M.S.; Theodoropoulou, K.; Lugrin, J.; Martinon, F.; Busso, N.; Hofer, M. Periodic Fever with Aphthous Stomatitis, Pharyngitis, and Cervical Adenitis Syndrome Is Associated with a CARD8 Variant Unable to Bind the NLRP3 Inflammasome. J. Immunol. 2017, 198, 2063–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manthiram, K.; Preite, S.; Dedeoglu, F.; Demir, S.; Ozen, S.; Edwards, K.M.; Lapidus, S.; Katz, A.E.; Feder, H.M.; Genomic Ascertainment Cohort; et al. Common Genetic Susceptibility Loci Link PFAPA Syndrome, Behçet’s Disease, and Recurrent Aphthous Stomatitis. Proc. Natl. Acad. Sci. USA 2020, 117, 14405–14411. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgi, E.; Azzarà, A.; Molinario, C.; Pietrobono, R.; Rigante, D.; Verrecchia, E.; Sicignano, L.L.; Genuardi, M.; Gurrieri, F.; Manna, R. Rare Missense Variants in the ALPK1 Gene May Predispose to Periodic Fever, Aphthous Stomatitis, Pharyngitis and Adenitis (PFAPA) Syndrome. Eur. J. Hum. Genet. EJHG 2019, 27, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Goecks, J.; Nekrutenko, A.; Taylor, J.; Team, T.G. Galaxy: A Comprehensive Approach for Supporting Accessible, Reproducible, and Transparent Computational Research in the Life Sciences. Genome Biol. 2010, 11, R86. [Google Scholar] [CrossRef] [Green Version]
- Stelzer, G.; Plaschkes, I.; Oz-Levi, D.; Alkelai, A.; Olender, T.; Zimmerman, S.; Twik, M.; Belinky, F.; Fishilevich, S.; Nudel, R.; et al. VarElect: The Phenotype-Based Variation Prioritizer of the GeneCards Suite. BMC Genom. 2016, 17 (Suppl. S2), 444. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, T.; Kodate, S.; Hibara, H.; Kagaya, Y.; Kinoshita, K. COXPRESdb v8: An Animal Gene Coexpression Database Navigating from a Global View to Detailed Investigations. Nucleic Acids Res. 2023, 51, D80–D87. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the Deleteriousness of Variants throughout the Human Genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Hull, K.M.; Drewe, E.; Aksentijevich, I.; Singh, H.K.; Wong, K.; McDermott, E.M.; Dean, J.; Powell, R.J.; Kastner, D.L. The TNF Receptor-Associated Periodic Syndrome (TRAPS): Emerging Concepts of an Autoinflammatory Disorder. Medicine 2002, 81, 349–368. [Google Scholar] [CrossRef] [PubMed]
- Gaggiano, C.; Vitale, A.; Obici, L.; Merlini, G.; Soriano, A.; Viapiana, O.; Cattalini, M.; Maggio, M.C.; Lopalco, G.; Montin, D.; et al. Clinical Features at Onset and Genetic Characterization of Pediatric and Adult Patients with TNF-α Receptor-Associated Periodic Syndrome (TRAPS): A Series of 80 Cases from the AIDA Network. Mediat. Inflamm. 2020, 2020, 8562485. [Google Scholar] [CrossRef] [PubMed]
- Cantarini, L.; Vitale, A.; Sicignano, L.L.; Emmi, G.; Verrecchia, E.; Patisso, I.; Cerrito, L.; Fabiani, C.; Cevenini, G.; Frediani, B.; et al. Diagnostic Criteria for Adult-Onset Periodic Fever, Aphthous Stomatitis, Pharyngitis, and Cervical Adenitis (PFAPA) Syndrome. Front. Immunol. 2017, 8, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattorno, M.; Caorsi, R.; Meini, A.; Cattalini, M.; Federici, S.; Zulian, F.; Cortis, E.; Calcagno, G.; Tommasini, A.; Consolini, R.; et al. Differentiating PFAPA Syndrome From Monogenic Periodic Fevers. Pediatrics 2009, 124, e721–e728. [Google Scholar] [CrossRef] [PubMed]
- Sicignano, L.L.; Rigante, D.; Moccaldi, B.; Massaro, M.G.; Delli Noci, S.; Patisso, I.; Capozio, G.; Verrecchia, E.; Manna, R. Children and Adults with PFAPA Syndrome: Similarities and Divergences in a Real-Life Clinical Setting. Adv. Ther. 2021, 38, 1078–1093. [Google Scholar] [CrossRef]
- Kulemzin, S.V.; Zamoshnikova, A.Y.; Yurchenko, M.Y.; Vitak, N.Y.; Najakshin, A.M.; Fayngerts, S.A.; Chikaev, N.A.; Reshetnikova, E.S.; Kashirina, N.M.; Peclo, M.M.; et al. FCRL6 Receptor: Expression and Associated Proteins. Immunol. Lett. 2011, 134, 174–182. [Google Scholar] [CrossRef]
- Schreeder, D.M.; Pan, J.; Li, F.J.; Vivier, E.; Davis, R.S. FCRL6 Distinguishes Mature Cytotoxic Lymphocytes and Is Upregulated in Patients with B-Cell Chronic Lymphocytic Leukemia. Eur. J. Immunol. 2008, 38, 3159–3166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnappauf, O.; Chae, J.J.; Kastner, D.L.; Aksentijevich, I. The Pyrin Inflammasome in Health and Disease. Front. Immunol. 2019, 10, 1745. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.H.; Wood, G.; Kastner, D.L.; Chae, J.J. Pyrin Inflammasome Activation and RhoA Signaling in the Autoinflammatory Diseases FMF and HIDS. Nat. Immunol. 2016, 17, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Magnotti, F.; Lefeuvre, L.; Benezech, S.; Malsot, T.; Waeckel, L.; Martin, A.; Kerever, S.; Chirita, D.; Desjonqueres, M.; Duquesne, A.; et al. Pyrin Dephosphorylation Is Sufficient to Trigger Inflammasome Activation in Familial Mediterranean Fever Patients. EMBO Mol. Med. 2019, 11, e10547. [Google Scholar] [CrossRef]
- Sun, G.G.; Zhang, J.; Hu, W.N. CCNG2 Expression Is Downregulated in Colorectal Carcinoma and Its Clinical Significance. Tumour Biol. 2014, 35, 3339–3346. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.G.; Hu, W.N.; Cui, D.W.; Zhang, J. Decreased Expression of CCNG2 Is Significantly Linked to the Malignant Transformation of Gastric Carcinoma. Tumour Biol. 2014, 35, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Cabral, F.; Al-Rahem, M.; Skaggs, J.; Thomas, T.A.; Kumar, N.; Wu, Q.; Fadda, P.; Yu, L.; Robinson, J.M.; Kim, J.; et al. Stabilin Receptors Clear LPS and Control Systemic Inflammation. iScience 2021, 24, 103337. [Google Scholar] [CrossRef]
- Carai, P.; Papageorgiou, A.P.; Van Linthout, S.; Deckx, S.; Velthuis, S.; Lutgens, E.; Wijnands, E.; Tschöpe, C.; Schmuttermaier, C.; Kzhyshkowska, J.; et al. Stabilin-1 Mediates Beneficial Monocyte Recruitment and Tolerogenic Macrophage Programming during CVB3-Induced Viral Myocarditis. J. Mol. Cell. Cardiol. 2022, 165, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Pombinho, R.; Pinheiro, J.; Resende, M.; Meireles, D.; Jalkanen, S.; Sousa, S.; Cabanes, D. Stabilin-1 Plays a Protective Role against Listeria Monocytogenes Infection through the Regulation of Cytokine and Chemokine Production and Immune Cell Recruitment. Virulence 2021, 12, 2088–2103. [Google Scholar] [CrossRef]
- Ouyang, P.; Sugrue, S.P. Characterization of Pinin, a Novel Protein Associated with the Desmosome-Intermediate Filament Complex. J. Cell. Biol. 1996, 135, 1027–1042. [Google Scholar] [CrossRef]
- Joo, J.-H.; Lee, Y.J.; Munguba, G.C.; Park, S.; Taxter, T.J.; Elsagga, M.Y.; Jackson, M.R.; Oh, S.P.; Sugrue, S.P. Role of Pinin in Neural Crest, Dorsal Dermis, and Axial Skeleton Development and Its Involvement in the Regulation of Tcf/Lef Activity in Mice. Dev. Dyn. 2007, 236, 2147–2158. [Google Scholar] [CrossRef]
- Lee, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. PTGDR Polymorphisms and Susceptibility to Asthma: A Meta-Analysis. Mol. Biol. Rep. 2013, 40, 2195–2203. [Google Scholar] [CrossRef]
- Zheng, J.; Sariol, A.; Meyerholz, D.; Zhang, Q.; Abrahante Lloréns, J.E.; Narumiya, S.; Perlman, S. Prostaglandin D2 Signaling in Dendritic Cells Is Critical for the Development of EAE. J. Autoimmun. 2020, 114, 102508. [Google Scholar] [CrossRef]
- Kong, D.-H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef] [Green Version]
Genes | Variant | Allelic Frequency gnomAD | CADD | Mutation Taster | SIFT | Polyphen | GERP | |
---|---|---|---|---|---|---|---|---|
MROH9 | p.Leu671Ser | 6/179018 | 23.6 | Polymorphism | Damaging | Probably damaging | 5.91 | family R |
CRP | p.Arg206Trp | 77/282680 | 19.27 | Polymorphism | Damaging | Possibly damaging | −2.18 | |
FCRL6 | p.Gly350Arg | 23/282834 | 14.48 | Polymorphism | Tolerated | Possibly damaging | −1.12 | |
KIF26B | p.Ala277Val | 47/269910 | 14.42 | Polymorphism | Tolerated | Benign | 3.9 | |
NUBP1 | p.Pro5Arg | 46/208086 | 32 | Disease causing | Deleterious | Probably damaging | 3.96 | family G |
SLC15A1 | p.Ile631Thr | 313/282220 | 25.9 | Disease causing | Deleterious | Benign | 5.91 | |
PKN1 | p.Gly884Ser | - | 23.6 | Disease causing | Tolerated | Benign | 3.82 | |
GBP3 | p.Glu457Asp | 223/282744 | 14.52 | Polymorphism | Damaging | Benign | 0.45 | |
CCNG2 | p.Ala67Val | - | 23.7 | Polymorphism | Damaging | Benign | 4.55 | family C |
STAB1 | p.Arg1305Gln | 19/250642 | 21.6 | Polymorphism | Tolerated | Benign | 0.26 | |
GNAI2 | p.Thr11Lys | - | 6.59 | Disease causing | Damaging | Benign | −0.36 | |
PTGDR | p.Met228Ile | 2/245746 | 29.3 | Disease causing | Damaging | Probably damaging | 4.14 | family V |
PNN | p.Ala74Pfs*43 | - | 28.6 | Disease causing | - | - | - | |
TCTEX1D4 | p.Gly115Glu | - | 11.28 | Polymorphism | Tolerated | Benign | 3.5 | |
PNN | p.Asp680Gly | 1/251262 | 28.6 | Disease causing | Damaging | Probably damaging | 6.13 | family A |
VCAM1 | p.Thr49Ile | - | 23.6 | Polymorphism | Damaging | Possibly damaging | 4.73 | |
PBK | p.Asp178Asn | 7/279908 | 23 | Disease causing | Tolerated | Possibly damaging | 2.24 |
GSE3526 | GTEx | |||||
---|---|---|---|---|---|---|
Gene | Bone Marrow | Lymph Nodes | Spleen | Tonsil | Spleen | Whole Blood |
MROH9 | 0.0930 | −0.1060 | −0.2327 | −0.0957 | −11.815 | −11.815 |
CRP | −0.0024 | −0.1586 | −0.2677 | −0.0531 | 0.3596 | −0.6280 |
KIF26B | 0.3755 | −0.3633 | −0.4275 | 0.1002 | −0.5859 | −54.054 |
NUBP1 | −0.0219 | 0.1659 | 0.0932 | 0.6114 | 0.7842 | −0.4391 |
SLC15A1 | −0.1079 | −0.2001 | −0.1035 | −0.2850 | −23.668 | −68.529 |
PKN1 | 0.4406 | 0.6524 | 0.8633 | 0.6063 | 12.913 | 0.6124 |
GBP3 | −11.977 | 13.194 | 19.294 | 0.7066 | 13.878 | −11.340 |
CCNG2 | −0.1532 | 0.6432 | 12.254 | 12.614 | 0.6959 | −0.7247 |
STAB1 | −0.0473 | 20.651 | 27.469 | 0.5974 | 40.382 | 0.9264 |
GNAI2 | 0.7099 | 0.7281 | 0.9906 | 0.2581 | 11.305 | 19.680 |
PTGDR | 0.4130 | 0.9623 | 33.963 | −0.0985 | 37.453 | 20.216 |
PNN | 0.2193 | 12.600 | 18.740 | 0.9020 | 0.9617 | −17.914 |
VCAM1 | 17.452 | 32.880 | 40.500 | 26.203 | 54.978 | −52.102 |
Color scale | −3~−2 | −2~−1 | −1~+1 | +1~+2 | +2~+3 | +3~ |
Query Gene | Interact Gene | Data Source | Experiment Type | Pubmed |
---|---|---|---|---|
GNAI2 | UBA1 | HPRD_complex | in vivo | 16263121 |
PKN1 | PSMB4 | IntAct(hsa) | validated two hybrid | 32296183 |
PKN1 | PSMB4 | IntAct(hsa) | two hybrid prey pooling approach | 32296183 |
VCAM1 | PSMA3 | IntAct(hsa) | cross-linking study | 22623428 |
VCAM1 | TRAP1 | IntAct(hsa) | cross-linking study | 22623428 |
Node1 | Node2 | Co-Expression | Experimentally Determined Interaction | Database Annotated | Automated Text Mining | Combined Score |
---|---|---|---|---|---|---|
GNAI2 | CDC42 | 0.249 | 0.352 | 0.900 | 0.167 | 0.954 |
PKN1 | MEFV | 0.057 | 0 | 0.800 | 0.517 | 0.901 |
CRP | IL10 | 0 | 0 | 0 | 0.838 | 0.838 |
CRP | VCAM1 | 0 | 0 | 0 | 0.802 | 0.802 |
VCAM1 | IL10 | 0.053 | 0 | 0 | 0.708 | 0.712 |
SLC15A1 | SLC29A3 | 0.066 | 0 | 0 | 0.679 | 0.688 |
CRP | IL1RN | 0.062 | 0 | 0 | 0.681 | 0.687 |
PKN1 | CDC42 | 0.062 | 0.300 | 0 | 0.504 | 0.646 |
CRP | TNFRSF1A | 0 | 0 | 0 | 0.601 | 0.601 |
VCAM1 | TNFRSF1A | 0 | 0 | 0 | 0.595 | 0.595 |
GBP3 | NLRP3 | 0.072 | 0 | 0 | 0.548 | 0.563 |
CRP | MEFV | 0 | 0 | 0 | 0.556 | 0.556 |
CRP | NLRP3 | 0 | 0 | 0 | 0.556 | 0.556 |
CRP | IL36RN | 0.062 | 0 | 0 | 0.541 | 0.551 |
GBP3 | PSMB8 | 0.241 | 0.058 | 0 | 0.345 | 0.491 |
VCAM1 | ADAM17 | 0.049 | 0 | 0 | 0.462 | 0.466 |
SLC15A1 | NOD2 | 0 | 0 | 0 | 0.462 | 0.462 |
GNAI2 | ALPK1 | 0 | 0 | 0 | 0.455 | 0.455 |
VCAM1 | NLRP3 | 0.052 | 0 | 0 | 0.428 | 0.435 |
VCAM1 | IL36RN | 0 | 0 | 0 | 0.427 | 0.427 |
VCAM1 | IL1RN | 0.062 | 0 | 0 | 0.410 | 0.423 |
CRP | NOD2 | 0 | 0 | 0 | 0.407 | 0.407 |
VCAM1 | CDC42 | 0.089 | 0 | 0 | 0.372 | 0.403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangiorgi, E.; Azzarà, A.; Rumore, R.; Cassano, I.; Verrecchia, E.; Giacò, L.; Tullio, M.A.; Gurrieri, F.; Manna, R. Identification by Exome Sequencing of Predisposing Variants in Familial Cases of Autoinflammatory Recurrent Fevers. Genes 2023, 14, 1310. https://doi.org/10.3390/genes14071310
Sangiorgi E, Azzarà A, Rumore R, Cassano I, Verrecchia E, Giacò L, Tullio MA, Gurrieri F, Manna R. Identification by Exome Sequencing of Predisposing Variants in Familial Cases of Autoinflammatory Recurrent Fevers. Genes. 2023; 14(7):1310. https://doi.org/10.3390/genes14071310
Chicago/Turabian StyleSangiorgi, Eugenio, Alessia Azzarà, Roberto Rumore, Ilaria Cassano, Elena Verrecchia, Luciano Giacò, Maria Alessandra Tullio, Fiorella Gurrieri, and Raffaele Manna. 2023. "Identification by Exome Sequencing of Predisposing Variants in Familial Cases of Autoinflammatory Recurrent Fevers" Genes 14, no. 7: 1310. https://doi.org/10.3390/genes14071310
APA StyleSangiorgi, E., Azzarà, A., Rumore, R., Cassano, I., Verrecchia, E., Giacò, L., Tullio, M. A., Gurrieri, F., & Manna, R. (2023). Identification by Exome Sequencing of Predisposing Variants in Familial Cases of Autoinflammatory Recurrent Fevers. Genes, 14(7), 1310. https://doi.org/10.3390/genes14071310