Selection of Reliable Reference Genes for Gene Expression Normalization in Sagittaria trifolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Extraction and cDNA Synthesis
2.3. Primer Design
2.4. Primer’s Performance Analysis and RT-qPCR Test
2.5. Statistical Analysis of Gene Expression Stability
2.6. Expression Analysis of PDS and EXP1 Genes
2.7. Data Analysis
3. Results
3.1. Specificity and Amplification Efficiency of Primers
3.2. Expression Levels of Candidate Reference Genes
3.3. GeNorm Analysis
3.4. NormFinder Analysis
3.5. BestKeeper Analysis
3.6. ΔCt Analysis
3.7. RefFinder Analysis
3.8. Reference Gene Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brattelid, T.; Levy, F.O. Quantification of GPCR mRNA using real-time RT-PCR. Methods Mol. Biol. 2011, 746, 165–193. [Google Scholar]
- Niu, L.; Tao, Y.; Chen, M.; Fu, Q.; Li, C.; Dong, Y.; Wang, X.; He, H.; Xu, Z. Selection of reliable reference genes for gene expression studies of a promising oilseed crop, Plukenetia volubilis, by real-time quantitative PCR. Int. J. Mol. Sci. 2015, 16, 12513–12530. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Li, S.; Sun, M. Selection of reliable reference genes for gene expression studies in Clonostachys rosea 67-1 under sclerotial induction. J. Microbiol. Methods 2015, 114, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Kong, F.; Sun, P.; Bi, G.; Mao, Y. Transcriptome-wide identification of optimal reference genes for expression analysis of Pyropia yezoensis responses to abiotic stress. BMC Genomics 2018, 19, 251. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Singh, V.K.; Suryanarayana, V.; Krishnamurthy, L.; Saxena, R.K.; Varshney, R.K. Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS ONE 2015, 10, e0122847. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Huggett, J.F.; Chang, J.S.; Kim, L.U.; Bustin, S.A.; Johnson, M.A.; Rook, G.A.W.; Zumla, A. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal. Biochem. 2005, 344, 141–143. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Zhang, B. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). Gene 2013, 530, 44–50. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, B.; Wang, X.; Wei, X. Screening of stable internal reference gene of Quinoa under hormone treatment and abiotic stress. Physiol. Mol. Biol. Plants 2021, 27, 2459–2470. [Google Scholar] [CrossRef] [PubMed]
- Popovici, V.; Goldstein, D.R.; Antonov, J.; Jaggi, R.; Delorenzi, M.; Wirapati, P. Selecting control genes for RT-QPCR using public microarray data. BMC. Bioinformatics 2009, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Tian, C.; Wang, Y.; Wan, F.; Hu, L.; Xiong, A.; Tian, J. Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. PeerJ 2019, 7, e7319. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Huggett, J.F.; Bustin, S.A.; Johnson, M.A.; Rook, G.; Zumla, A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambarotta, G.; Ronchi, G.; Friard, O.; Galletta, P.; Perroteau, I.; Geuna, S. Identification and validation of suitable housekeeping genes for normalizing quantitative real-time PCR assays in injured peripheral nerves. PLoS ONE 2014, 9, e105601. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K. Ecological studies on tubers of arrowhead (Sagittaria trifolia L.), a perennial weed in the paddy fields. Bull. Natl. Agric. Res. Cent. 1997, 34, 15–89. [Google Scholar]
- Zhang, Y.; Yang, G.; Wang, X.; Ni, G.; Cui, Z.; Yan, Z. Sagittaria trifolia tuber: Bioconstituents, processing, products, and health benefits. J. Sci. Food Agric. 2021, 101, 3085–3098. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.; Kumar, S. Sagittaria trifolia L.: A potential nutraceutical of the Northeastern part of India. Biodivers. Conserv. 2019, 3, S1. [Google Scholar]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A mod-el-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar]
- Lin, L.; Han, X.; Chen, Y.; Wu, Q.; Wang, Y. Identification of appropriate reference genes for normalizing transcript expression by quantitative real-time PCR in Litsea cubeba. Mol. Genet. Genomics 2013, 288, 727–737. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genomics 2023, 23, 125. [Google Scholar]
- Yang, Z.; Zhang, R.; Zhou, Z. Identification and validation of reference genes for gene expression analysis in Schima superba. Genes 2021, 12, 732. [Google Scholar] [CrossRef]
- Gantasala, N.P.; Papolu, P.K.; Thakur, P.K.; Kamaraju, D.; Sreevathsa, R.; Rao, U. Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L.). BMC Res. Notes 2013, 6, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Bhullar, N.K. Selection of suitable reference genes for qRT-PCR gene expression studies in rice. Methods Mol. Biol. 2021, 2238, 293–312. [Google Scholar] [PubMed]
- Brunner, A.M.; Yakovlev, I.A.; Strauss, S.H. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 2004, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, A.; Jamwal, M.; Viswanathan, G.K.; Sharma, P.; Sachdeva, M.S.; Bansal, D.; Malhotra, P.; Das, R. Optimal reference gene selection for expression studies in human reticulocytes. J. Mol. Diagn. 2018, 20, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Jiang, J.; Yan, Y.; Chen, X. Isolation and characterization of phytoene desaturase cDNA involved in the beta-carotene biosynthetic pathway in Dunaliella salina. J. Agric. Food Chem. 2005, 53, 5593–5597. [Google Scholar] [CrossRef]
- Wu, Y.; Meeley, R.B.; Cosgrove, D.J. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize. Plant Physiol. 2001, 126, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, X.; Wang, C.; Qi, W.; Zhang, W.; Tang, L.; Zhao, X. Validation of suitable reference genes for RT-qPCR data in Achyranthes bidentata Blume under different experimental conditions. Front. Plant Sci. 2017, 8, 776. [Google Scholar] [CrossRef] [Green Version]
- Bu, J.; Zhao, J.; Liu, M. Expression stabilities of candidate reference genes for RT-qPCR in Chinese jujube (Ziziphus jujuba Mill.) under a variety of conditions. PLoS ONE 2016, 11, e0154212. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Zhang, X.; Pang, Y.; Qi, Y.; Wang, Q.; Ren, S.; Hu, Y.; Zhao, Y.; Wang, T.; Huo, L. Screening of stably expressed internal reference genes for quantitative real-time PCR analysis in quail. Biol. Bull. 2022, 49, 418–427. [Google Scholar] [CrossRef]
- Chen, R.; Chen, W.; Tigabu, M.; Zhong, W.; Li, Y.; Ma, X.; Li, M. Screening and evaluation of stable reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) analysis in Chinese fir roots under water, phosphorus, and nitrogen stresses. Forests 2019, 10, 1087. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Hu, L.; Wang, X.; Liu, H.; Tian, H.; Wang, J. Selection of reliable reference genes for gene expression analysis in seeds at different developmental stages and across various tissues in Paeonia ostii. Mol. Biol. Rep. 2019, 46, 6003–6011. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lai, Z. Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Sci. 2010, 178, 359–365. [Google Scholar] [CrossRef]
- Moura, J.C.M.S.; Araujo, P.; Brito, M.d.S.; Souza, U.R.; Viana, J.d.O.F.; Mazzafera, P. Validation of reference genes from Eucalyptus spp. under different stress conditions. BMC Res. Notes 2012, 5, 634. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yang, Z.; Hu, Y.; Tan, J.; Jia, J.; Xu, H.; Chen, X. Reference genes selection for quantitative gene expression studies in Pinus massoniana L. Trees-Struct. Funct. 2016, 30, 685–696. [Google Scholar] [CrossRef]
- Choi, S.; Seo, Y.B.; Han Kyu, L.; Soo-Wan, N.; Gun-Do, K. Molecular cloning and overexpression of phytoene desaturase (CrtI) from Paracoccus haeundaensis. Microbiol. Biotechnol. Lett. 2018, 46, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.; Wang, C.; Li, Z.; Chen, L.; Yang, G.; Wang, Y.; He, G. cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and zeta-carotene desaturase genes. Mol. Biol. Rep. 2010, 37, 3351–3361. [Google Scholar] [CrossRef]
- Tuan, P.A.; Kim, J.K.; Kim, H.H.; Lee, S.Y.; Park, N.I.; Park, S.U. Carotenoid accumulation and characterization of cDNAs encoding phytoene synthase and phytoene desaturase in Garlic (Allium sativum). J. Agric. Food Chem. 2011, 59, 5412–5417. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, S.; Hameed, S.; Xiao, D.; Zhan, J.; Wang, A.; He, L. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 2020, 21, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.I.R.; Palenius, H.G.N.; Guzman, G.H.; Solis, A.G.A.; Pina, C.G.; Dominguez, J.F.M. Ripening-related cDNAs in guava fruit (Psidium guajava L.). Characterization and expression analysis. Rev. Fitotec. Mex. 2013, 36, 117–125. [Google Scholar]
- Mao, Y. Research progress of tomato and potato extension protein. J. Heilongjiang Bayi Agric. Univ. 2013, 25, 5–8. [Google Scholar]
Gene Symbol | Gene Name | Primer Sequences (5′–3′) | |
---|---|---|---|
ACT5 | Actin 5 | Forward Reverse | CGGAGAGGCTGTCACGATT CGAACTGATAGACGACATTGGAA |
UBQ | Ubiquitin | Forward Reverse | AGGTGCTACTCTCCATCTGTTC CATACTTGTTCCTGTCTGTCTTGT |
GAPDH | Glyceraldehyde-3-phospho dehydrogense | Forward Reverse | CTCCTCCTCGCAATACTCACA CAGCCACAACTTCAACATCGT |
CYP | Cyclophilin | Forward Reverse | CTCCACCTTCCACCGTATCAT GAACTTCAAGCCGTAGATAGACTC |
NAC | NAC domain protein | Forward Reverse | ATTCCTCCAACTGTCTGATGAAC ACTGCCTGATATGAGCCTGTT |
IDH | Isocitrate dehydrogenase | Forward Reverse | CTGAGAACAGCAGCGGTAAC GGCAACGGTCGCATAAGAG |
SLEEPER | Zinc finger BED domain-containing protein DAYSLEEPER-like | Forward Reverse | CCTGTATTGCTTGGAAGTGGTAT CCGTCGTCTTGATTGAATGGAT |
PLA | Phospholipase A I | Forward Reverse | GACCTTATCTGTGGCACTTCTAC CTCTCCAAGTTGCTGCTTCATT |
Gene Symbol | Gene Name | Primer Sequences (5′–3′) | |
---|---|---|---|
PDS | Phytoene desaturase | Forward Reverse | CAGTCTCCGTCTCCACCGTCAA CCACCATCCGCAAGATACTTAGCC |
EXP1 | Expansin | Forward Reverse | GTCAACATTGTGGTCACGGATTACG TGTGCCATCAAGCCATCAGTCAG |
Materials | Rank | GeNorm | NormFinder | BestKeeper | Delta CT | RefFinder | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | Stability | Gene | Stability | Gene | SD | CV | Gene | Stability | Gene | Values | ||
Different tissues | 1 | UBQ | 0.37 | ACT5 | 0.22 | NAC | 0.72 | 2.31 | UBQ | 1.04 | UBQ | 1.41 |
2 | SLEEPER | 0.37 | UBQ | 0.25 | UBQ | 0.76 | 2.73 | IDH | 1.07 | SLEEPER | 2.78 | |
3 | IDH | 0.40 | IDH | 0.28 | SLEEPER | 0.85 | 2.62 | ACT5 | 1.08 | ACT5 | 3.03 | |
4 | ACT5 | 0.46 | PLA | 0.39 | PLA | 0.86 | 2.63 | SLEEPER | 1.10 | IDH | 3.22 | |
5 | PLA | 0.51 | SLEEPER | 0.51 | CYP | 0.94 | 3.23 | PLA | 1.12 | NAC | 3.83 | |
6 | NAC | 0.70 | NAC | 1.00 | IDH | 0.96 | 2.99 | NAC | 1.45 | PLA | 4.47 | |
7 | CYP | 0.94 | CYP | 1.52 | ACT5 | 0.98 | 3.00 | CYP | 1.81 | CYP | 6.44 | |
8 | GAPDH | 1.46 | GAPDH | 2.95 | GAPDH | 2.99 | 10.24 | GAPDH | 3.03 | GAPDH | 8.00 | |
Corm developmental stages | 1 | UBQ | 0.19 | IDH | 0.11 | SLEEPER | 0.29 | 0.94 | IDH | 0.44 | IDH | 2.11 |
2 | PLA | 0.19 | ACT5 | 0.13 | UBQ | 0.30 | 1.40 | ACT5 | 0.46 | UBQ | 2.21 | |
3 | GAPDH | 0.24 | SLEEPER | 0.31 | PLA | 0.32 | 1.05 | UBQ | 0.51 | PLA | 2.78 | |
4 | IDH | 0.31 | UBQ | 0.37 | GAPDH | 0.41 | 1.85 | PLA | 0.52 | SLEEPER | 3.08 | |
5 | ACT5 | 0.33 | PLA | 0.40 | IDH | 0.47 | 1.62 | SLEEPER | 0.54 | ACT5 | 3.31 | |
6 | SLEEPER | 0.38 | GAPDH | 0.44 | ACT5 | 0.47 | 1.58 | GAPDH | 0.54 | GAPDH | 4.56 | |
7 | NAC | 0.49 | NAC | 0.64 | CYP | 0.67 | 2.21 | NAC | 0.73 | NAC | 7.24 | |
8 | CYP | 0.56 | CYP | 0.71 | NAC | 0.67 | 2.06 | CYP | 0.78 | CYP | 7.74 | |
Leaf developmental stages | 1 | SLEEPER | 0.32 | UBQ | 0.27 | CYP | 0.21 | 0.68 | UBQ | 0.69 | UBQ | 1.68 |
2 | PLA | 0.32 | ACT5 | 0.33 | UBQ | 0.26 | 0.91 | ACT5 | 0.71 | ACT5 | 2.78 | |
3 | ACT5 | 0.49 | GAPDH | 0.44 | GAPDH | 0.44 | 1.29 | SLEEPER | 0.76 | SLEEPER | 3.03 | |
4 | UBQ | 0.59 | SLEEPER | 0.45 | NAC | 0.51 | 1.48 | GAPDH | 0.76 | CYP | 3.50 | |
5 | GAPDH | 0.63 | CYP | 0.52 | ACT5 | 0.55 | 1.64 | CYP | 0.79 | GAPDH | 3.66 | |
6 | CYP | 0.65 | PLA | 0.57 | PLA | 0.64 | 1.92 | PLA | 0.81 | PLA | 3.83 | |
7 | NAC | 0.74 | NAC | 0.95 | SLEEPER | 0.65 | 1.96 | NAC | 1.06 | NAC | 6.09 | |
8 | IDH | 0.84 | IDH | 1.04 | IDH | 1.00 | 3.03 | IDH | 1.15 | IDH | 8.00 | |
Leafstalk developmental stages | 1 | SLEEPER | 0.27 | UBQ | 0.26 | CYP | 0.33 | 1.05 | PLA | 0.51 | PLA | 1.93 |
2 | PLA | 0.27 | PLA | 0.27 | GAPDH | 0.42 | 1.33 | UBQ | 0.51 | UBQ | 2.21 | |
3 | UBQ | 0.35 | ACT5 | 0.33 | NAC | 0.45 | 1.33 | SLEEPER | 0.54 | SLEEPER | 2.91 | |
4 | ACT5 | 0.43 | SLEEPER | 0.34 | UBQ | 0.56 | 2.01 | ACT5 | 0.54 | CYP | 3.50 | |
5 | GAPDH | 0.47 | CYP | 0.41 | ACT5 | 0.65 | 1.97 | CYP | 0.56 | ACT5 | 3.94 | |
6 | CYP | 0.48 | GAPDH | 0.44 | SLEEPER | 0.74 | 2.31 | GAPDH | 0.58 | GAPDH | 4.36 | |
7 | NAC | 0.51 | NAC | 0.47 | PLA | 0.75 | 2.30 | NAC | 0.62 | NAC | 5.66 | |
8 | IDH | 0.59 | IDH | 0.74 | IDH | 1.08 | 3.24 | IDH | 0.81 | IDH | 8.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Li, E.; Liu, J.; Zhang, Z.; Hua, B.; Jiang, J.; Miao, M. Selection of Reliable Reference Genes for Gene Expression Normalization in Sagittaria trifolia. Genes 2023, 14, 1321. https://doi.org/10.3390/genes14071321
Tang J, Li E, Liu J, Zhang Z, Hua B, Jiang J, Miao M. Selection of Reliable Reference Genes for Gene Expression Normalization in Sagittaria trifolia. Genes. 2023; 14(7):1321. https://doi.org/10.3390/genes14071321
Chicago/Turabian StyleTang, Jing, Enjiao Li, Jiexia Liu, Zhiping Zhang, Bing Hua, Jiezeng Jiang, and Minmin Miao. 2023. "Selection of Reliable Reference Genes for Gene Expression Normalization in Sagittaria trifolia" Genes 14, no. 7: 1321. https://doi.org/10.3390/genes14071321
APA StyleTang, J., Li, E., Liu, J., Zhang, Z., Hua, B., Jiang, J., & Miao, M. (2023). Selection of Reliable Reference Genes for Gene Expression Normalization in Sagittaria trifolia. Genes, 14(7), 1321. https://doi.org/10.3390/genes14071321