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Abstract: To further investigate the immune response of Macrobrachium rosenbergii against Aeromonas
veronii, comparative transcriptomic analyses of the M. rosenbergii hepatopancreas were conducted
on challenge and control groups at 6, 12, and 24 h post-infection (hpi), independently. A total of
51,707 high-quality unigenes were collected from the RNA-seq data, and 8060 differentially expressed
genes (DEGs) were discovered through paired comparisons. Among the three comparison groups,
a KEGG pathway enrichment analysis showed that 173 immune-related DEGs were considerably
clustered into 28 immune-related pathways, including the lysosome, the phagosome, etc. Moreover,
the expression levels of the four key immune-related genes (TOLL, PAK1, GSK3β, and IKKα) were
evaluated at various stages following post-infection in the hepatopancreas, hemolymph, and gills.
Both PAK1 and GSK3β genes were highly up-regulated in all three tissues at 6 hpi with A. veronii;
TOLL was up-regulated in the hepatopancreas and hemolymph but down-regulated in the gill at 6 hpi,
and IKKα was up-regulated in hemolymph and gill, but down-regulated in the hepatopancreas at
6 hpi. These findings lay the groundwork for understanding the immune mechanism of M. rosenbergii
after contracting A. veronii.

Keywords: transcriptome; differentially expressed genes; Macrobrachium rosenbergii; Aeromonas veronii

1. Introduction

The production of M. rosenbergii has reached an impressive 290,708 tons globally
in 2021 [1]. China is a prominent producer, having produced a total of 171,263 tons
in 2021 as reported by the “China Fisheries Yearbook,” with Guangdong, Jiangsu, and
Zhejiang provinces contributing over 92% of the national total. However, the diversity
and complexity of diseases affecting M. rosenbergii have resulted in substantial losses for
farmers in recent years. These pathogenic microorganisms that invade M. rosenbergii include
M. rosenbergii nodavirus (MrNV) and extra-small virus (XSV) [2], infectious precocity virus
(IPV) [3], decapod iridescent virus 1 (DIV1) [4], Citrobacter freundii [5], etc.

A. veronii is a conditioned pathogen, widely distributed in fresh water, seawater, and
soil [6], and was classified in the genus Aeromonas in 1978 [7]. As a Gram-negative bacterium,
it has caused the mortality of various aquatic animals, such as Nile tilapia (Oreochromis
niloticus) [8], yellow catfish (Pelteobagrus fulvidraco) [9], Odontobutis potamophila [10], etc.
Our previous research discovered a dominant strain named WSQ-1, which has caused the
mass mortality of adult M. rosenbergii in certain farms in Gaoyou city of Jiangsu Province.
This strain was isolated from the hepatopancreas of dying M. rosenbergii and identified
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as A. veronii. The challenge test, amplification of virulence genes, and histopathologi-
cal examination of the hepatopancreas all demonstrated that the strain was extremely
pathogenic [11].

As an invertebrate, M. rosenbergii mainly relies on innate immunity to recognize
and resist invading pathogens [12]. Among these tissues, the hepatopancreas is closely
related to nutrient metabolism regulation [13], and the hemolymph plays a crucial role
in the host immune response, including the recognition and phagocytosis of pathogenic
bacteria [14,15]. The gills are more prone to damage and physiological responses compared
to other organs as they participate in the absorption of pathogens into the hemolymph to
eliminate them [16,17].

In previous experiments, we explored the virulence and pathogenicity of A. veronii [11].
In this study, we further investigated the immune response of M. rosenbergii against
A. veronii. We conducted a comparative transcriptomic analysis on the hepatopancreas of
M. rosenbergii infected with A. veronii at different time points (6, 12, and 24 post-injection).
Additionally, four immune-related genes were identified from the transcriptomic data, and
their expression levels were analyzed in the hepatopancreas, hemolymph, and gills at differ-
ent post-infection time points. These findings may provide insights into the host response
to A. veronii infection and can be used as a guide for A. veronii prevention and treatment.

2. Materials and Methods
2.1. Experimental Prawns and A. veronii Preparation

The healthy prawns, which had an average body weight of 3.11 ± 0.49 g, were used
in the challenge experiment. Before being subjected to experimental manipulation, all
prawns were acclimatized for one week in the recirculating water barrel system of Yuya
Technology (Huzhou) Co. LTD (Zhejiang, China). Since the suitable growth temperature
range for M. rosenbergii is 24–32 ◦C, the water temperature was maintained at 28 ± 2 ◦C
during the challenge experiment. The dissolved oxygen concentration was above 5 mg/L
and the prawns were fed twice daily but were not fed during the injection trial. Then,
180 prawns were split into two groups (n = 90) (the challenge groups and the control
groups) at random, and each group was further separated into three parallel groups so that
there were 30 prawns in each 60-L plastic container. Random inspections of the prawns by
plate culture test were conducted before the injection trial to ensure that they were free of
any bacterial infections.

In accordance with previous tests’ median lethal dosage (LD50) of 72 h, the strain
WSQ-1 (A. veronii) was first inoculated in the tryptic soybean peptone liquid medium (TSB),
then placed in a 28 ◦C shaker with shaking at 180 rpm for 18 h. Lastly, the turbidity was
adjusted to 2.50 × 106 CFU/mL.

2.2. Sample Collection

In the experiment, the challenge groups received an intramuscular injection of 50 µL
of A. veronii, whereas the control groups were injected with sterilized PBS in the same
amount. After 6, 12, and 24 hpi, prawns from the two groups were randomly selected,
and the hepatopancreas and gills were temporarily stored in liquid nitrogen and then
transferred to the ultra-low temperature (−80 ◦C) refrigerator. Every three of the same
tissues were mixed into one sample at different time points, with three biological replicates.
Significantly, the treatment of the hemocytes was particularly important. Briefly, the fresh
hemolymp and TRIzol were first added to the cryotube in a 1:3 ratio to lyse the blood cells,
and the mixture was then shocked for 1–2 min until the floccule was completely cracked.
Finally, the mixture was incubated at room temperature for 5 min to completely decompose
the ribosome and then stored at −80 ◦C.

2.3. Total RNA Extraction and Illumina Sequencing

The TRIzol reagent (Dalian, China) was used to extract the total RNA from 18 hep-
atopancreas samples at 6, 12, and 24 hpi in accordance with the manufacturer’s instructions.
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The challenge groups were named AV6_1, AV6_2, AV6_3, AV12_1, AV12_2, AV12_3, AV24_1,
AV24_2, AV24_3, whereas the control groups were marked as C6_1, C6_2, C6_3, C12_1,
C12_2, C12_3, C24_1, C24_2, C24_3, separately. These libraries were obtained after the
whole RNA was first screened and purified using the AMPure XP technology (Beckman
Coulter, Beverly, CA, USA). Following these libraries’ initial Qubit 2.0 quantification, they
were diluted to 1.5 ng/uL and identified using an Agilent 2100 bioanalyzer. These libraries’
quality was further ensured by using qRT-PCR to precisely measure their effective con-
centration. The libraries’ construction and sequencing were completed using the Illumina
NovaSeq 6000.

2.4. De Novo Assembly, Annotation, and Classification

To ensure the accuracy and dependability of data analysis, some raw data, such as
reads with adapters, low-quality, and N bases were filtered away to obtain clean reads.
Next, GC content and Q30 were computed with clean data by fastp (version 0.19.7). Trinity
was used to assemble the transcripts [18], and BUSCO software was used to evaluate the
correctness and completeness of the transcripts [19]. Finally, all of the transcripts were
classified and annotated using the following 7 databases: Nr, Nt, Pfam, COG, Swiss-Prot,
KO, and GO.

2.5. DEGs, KEGG, and GO Enrichment Analysis

The DESeq2 package (version 1.20.1) [20] was used in this research to screen DEGs for
significantly differential gene expression. In addition, we set three comparisons between
challenge and control groups after 6, 12, and 24 hpi (i.e., AV6 vs. C6, AV12 vs. C12, and
AV24 vs. C24); next, the immune-related DEGs were collected and analyzed for GO and
KEGG enrichment using GOseq and KOBAS software packages, separately [21].

2.6. Validation of Immune-Related DEGs by RT-qPCR

Ten immune-related DEGs were chosen at random for quantitative real-time PCR
(qRT-PCR) analysis in order to verify the credibility of the transcriptome sequencing data.
Primer 5.0 software was used to design the primers (Table 1), which were then synthesized
by the company. The cDNA of the hepatopancreas (AV6 vs. C6) used for qRT-PCR was
synthesized by reverse transcription using cDNA Synthesis Supermix (TransGen Biotech,
Beijing, China), while the 18S rRNA was used as the reference gene for the qRT-PCR. In
addition, amplifications were performed in a 10 µL reaction system with 0.8 µL of cDNA,
3.4 µL of ddH2O, 5 µL of TB Green Premix Ex Taq II (2×), and 0.4 µL each PCR forward
primer and reverse primer. The PCR procedure was pre-denaturation at 95 ◦C for 3 min,
followed by 39 cycles of denaturation at 95 ◦C for 5 s and annealing at 59 ◦C for 30 s. When
the temperature rose from 65 ◦C to 95 ◦C, the melting curve increased by 0.5 ◦C every
5 s. Each qRT-PCR assay was carried out in three biological replicates and three technique
replicates. Ultimately, the 2−∆∆CT method was used to evaluate relative mRNA expression.

Table 1. Sequences of primers used in this study.

Primer Gene Name or Usage Sequence (5′→3′) Annealing Temperature (◦C)

18S-F Used as reference gene TATACGCTAGTGGAGCTGGAA
5918S-R GGGGAGGTAGTGACGAAAAAT

GSK3β-F Glycogen synthase kinase 3 β
ACCCGTGAGCAGATTAGA

59GSK3β-R GCCTGAAGTGGCGTGATA
1κB-F NF-kappa-B inhibitor α

GCATAATGGCTATTGAACTG
591κB-R TCCCAAGATGGAACGCTA

PAK1-F p21-activated kinase 1 TTCGTCGGAAGGTAGAGG
59PAK1-R GAGGCTGGTCGGTGGTAT

TBK1-F Tank-binding kinase 1 AGAGGAGCAAGAAGGTCG
59TBK1-R CAGGCTTCAAGTCACGATGT



Genes 2023, 14, 1383 4 of 14

Table 1. Cont.

Primer Gene Name or Usage Sequence (5′→3′) Annealing Temperature (◦C)

TOLL-F
Protein toll

CAAACCGTCGGAGGAACA
59TOLL-R CCTTGACTGCCACTGAAC

CD13-F Aminopeptidase N GAGTGCCGACTTCCAACC
59CD13-R CAAGACCTCCAGAACAATA

Actin-F Actin β/γ 1 ATGGTCGGTATGGGTCAGA
59Actin-R AGGTGCTACACGGAGTTCA

GRB2-F Growth factor receptor-Bound protein 2 GAAGGACTTATTCCCAGCAA
59GRB2-R ACCATCGCCACATTTAGG

IKKα-F Inhibitor of nuclear factor kappa-B
kinase subunit α

AATATCCCACTTGAAGCC
59IKKα-R CGTTGAAACAGGACGAAA

MALT-F Mucosa-associated lymphoid tissue
lymphoma translocation protein 1

CGGAAGGACGGCGTTACAT
59MALT-R CACGGTCACGGGTCTGGTT

JAK1/2-F Janus kinase 1 AAAGAGCGGATGAGCAC
59JAK1/2-R CTGGCAAGTCCCGATGA

2.7. Expression Patterns of Four Key Immune-Related DEGs in Different Tissues

Based on KEGG enrichment pathway analysis results, protein Toll gene (TOLL) was
enriched in “Toll and Imd signaling pathway”; p21-activated kinase 1 (PAK1) was enriched
in three immune-related pathways, such as “Chemokine signaling pathway”, etc.; glycogen
synthase kinase 3 β (GSK3β) was enriched in six immune-related pathways, such as “mTOR
signaling pathway”, etc.; and inhibitor of nuclear factor kappa-B kinase subunit α (IKKα) was
enriched in 12 immune-related pathways, such as ”NOD-like receptor signaling pathway”,
etc. (Table 2). In addition, TOLL, PAK1, GSK3β were up-regulated and IKKα was down-
regulated at 6 hpi.

Table 2. Information of four immune key genes in the immune-related KEGG pathway.

Genes Fold Change Up/Down Regulation Pathway

Toll 1.6164 Up Toll and Imd signaling pathway

PAK1 1.2329 Up
Chemokine signaling pathway
Fc γ R-mediated phagocytosis

Natural killer cell mediated cytotoxicity

GSK3B 1.2959 Up

mTOR signaling pathway
Chemokine signaling pathway

Wnt signaling pathway
T cell receptor signaling pathway

IL-17 signaling pathway
B cell receptor signaling pathway

IKKα −5.0217 Down

mTOR signaling pathway
Chemokine signaling pathway

NOD-like receptor signaling pathway
T cell receptor signaling pathway

Toll-like receptor signaling pathway
IL-17 signaling pathway
Th17 cell differentiation

B cell receptor signaling pathway
NF-kappa B signaling pathway

RIG-I-like receptor signaling pathway
Cytosolic DNA-sensing pathway
Th1 and Th2 cell differentiation

Note: Gene information in KEGG pathway of M. rosenbergii infecting with A. veronii at 6 h. In fold change, positive
numbers represent gene up-regulation and negative numbers represent gene down-regulation.
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To further analyze the relative mRNA expression in different tissues and time points,
these four immune-related DEGs were selected and anticipated to be engaged in the im-
munological response of the tissues. The collected samples at 6, 12, and 24 hpi were used to
extract RNA and synthesize cDNA based on the previous methods, and all qRT-PCR reac-
tions were performed in triplicate (three biological replicates and three technique replicates).
Lastly, the 2−∆∆CT approach was used to calculate the relative mRNA expression.

2.8. Statistical Analysis

SPSS 25.0 software (IBM Corp., Armonk, NY, USA) was used to detect statistical signif-
icance for differences in gene expression levels between the challenge and control groups
at three time points after infection in three tissues including hemolymph, hepatopancreas,
and gills. Then, a chart was created with GraphPad Prism 9.0 software (GraphPad Software
Inc., San Diego, CA, USA).

3. Results
3.1. Transcript Assembly, Gene Functional Annotation, GO, and KEGG Classification

There were a total of 22,248,733–24,166,064 raw reads in 18 libraries, and 21,489,762–
23,722,890 clean reads were obtained after quality control (Table S1). The Q30 percentages’
average values were 93.35%. Using the Trinity software, 93,091 transcripts were produced,
with an average length of 1716 bp. Finally, 51,707 unigenes were obtained, with sizes
ranging from 301 bp to 28,851 bp and the N50 length of 2808 bp (Figure 1A).
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length of unigene/transcript (x-axis), and the number of unigene and transcript (y-axis). (B) Venn
diagrams for five databases; each region was annotated with a corresponding number of genes.

Seven public databases were used to annotate the functions of all unigenes: 17,353
(33.56%) in NR, 5130 (9.92%) in NT, 7354 (14.22%) in KEGG, 12,481 (24.13%) in Swiss-Prot,
16,723 (32.34%) in Pfam, 16,720 (32.33%) in GO, and 6487 (12.54%) in KOG, respectively
(Table S2). In addition, 2325 genes were coexisting functional genes annotated in the
5 databases, as demonstrated in the Venn diagram of Nr, Nt, Pfam, GO, and KOG annota-
tions in Figure 1B.

KEGG is used to comprehend the sophisticated functions of biological systems. In
this study, 861 unigenes were associated with “signal transduction”, 618 unigenes with
“transport and catabolism”, and 366 unigenes with the “immune system” (Figure S1A).
Meanwhile, GO analysis is also important. 16,720 unigenes were classified as molecular



Genes 2023, 14, 1383 6 of 14

function, cellular component, and biological process, with 12, 5, and 25 subcategories, re-
spectively. Among the biological processes, 45 unigenes were associated with “antioxidant
activity” (GO:0016209), 173 unigenes with “immune system process” (GO:0002376), and
2526 unigenes were associated with “response to stimulus” (GO:0050896), respectively
(Figure S1B).

3.2. Identification of DEGs Related to A. veronii Infection

In the current study, 8060 DEGs (Table S3) were detected in three transcriptome
comparisons between challenge and control groups (AV6 vs. C6, AV12 vs. C12, and
AV24 vs. C24), among which 5208 DEGs (containing 2596 up-regulated and 2612 down-
regulated genes) were involved at the early stage of the challenge (AV6 vs. C6). The
DEGs reduced dramatically with the extension of the challenge time, with 2262 genes
(1225 down-regulated and 1037 up-regulated) and 590 genes (325 down-regulated and
265 up-regulated) differentially expressed, respectively, at 12 and 24 hpi (Figure 2A). The
Venn diagram showed that 36 DEGs coexisted in three comparable groups (Figure 2B).

Genes 2023, 14, x FOR PEER REVIEW  7  of  16 
 

 

 

Figure 2. (A) Columnar distribution of DEGs in three compare groups. Orange color (all DEGs num‐

bers), yellow color (up‐regulation gene numbers) and green color (down‐regulation gene numbers). 

(B) Venn diagram reflects the number of DEGs in the three comparison groups. 

3.3. KEGG Enrichment of the Immune‐Related DEGs 

At 6, 12, and 24 hpi, KEGG enrichment of  immune‐related DEGs  in different  im‐

mune‐related  pathways was  analyzed  between  the  challenge  group  and  the  control 

group. For the three transcriptome comparisons, 28 important immune‐related pathways 

were chosen (Table S4). As shown in Figure 3, the lysosome pathway was substantially 

enriched by all  three comparisons, with  the highest number of DEGs  in  the top‐20  im‐

mune‐related pathways. Except  for Figure 3C, both comparison groups of AV6 vs. C6 

(Figure 3A) and AV12 vs. C12 (Figure 3B) greatly enriched the phagosome pathway. A 

total of six up‐regulated genes were detected at 6 hpi, including actin γ 1 (F‐actin), C‐type 

lectin domain family 4 member L/M (DCSIGN), tubulin β (TUBB), 1‐phosphatidylinositol‐

3‐phosphate  5‐kinase  (PIKFYVE),  cation‐dependent  mannose‐6‐phosphate  receptor 

(M6PR), and nitric‐oxide synthase (NOS1) in the phagosome pathway (Figure 4A), and 4 

up‐regulated genes at 6 hpi were detected in the lysosome pathway, including lysosomal 

acid lipase (LIPA), lysophospholipase III (LYPLA3), lysosomal acid phosphatase (ACP2), 

and ceroid‐lipofuscinosis neuronal protein 7 (CLN7) (Figure 4B). Other DEGs information 

was shown in Table 3 and other immune‐related pathways, such as the MAPK signaling 

pathway‐fly, the chemokine signaling pathway, antigen processing and presentation, etc., 

were also abundant in the DEGs. 

Figure 2. (A) Columnar distribution of DEGs in three compare groups. Orange color (all DEGs num-
bers), yellow color (up-regulation gene numbers) and green color (down-regulation gene numbers).
(B) Venn diagram reflects the number of DEGs in the three comparison groups.

3.3. KEGG Enrichment of the Immune-Related DEGs

At 6, 12, and 24 hpi, KEGG enrichment of immune-related DEGs in different immune-
related pathways was analyzed between the challenge group and the control group. For
the three transcriptome comparisons, 28 important immune-related pathways were chosen
(Table S4). As shown in Figure 3, the lysosome pathway was substantially enriched by all
three comparisons, with the highest number of DEGs in the top-20 immune-related path-
ways. Except for Figure 3C, both comparison groups of AV6 vs. C6 (Figure 3A) and AV12 vs.
C12 (Figure 3B) greatly enriched the phagosome pathway. A total of six up-regulated genes
were detected at 6 hpi, including actin γ 1 (F-actin), C-type lectin domain family 4 member
L/M (DCSIGN), tubulin β (TUBB), 1-phosphatidylinositol-3-phosphate 5-kinase (PIK-
FYVE), cation-dependent mannose-6-phosphate receptor (M6PR), and nitric-oxide synthase
(NOS1) in the phagosome pathway (Figure 4A), and 4 up-regulated genes at 6 hpi were
detected in the lysosome pathway, including lysosomal acid lipase (LIPA), lysophospholi-
pase III (LYPLA3), lysosomal acid phosphatase (ACP2), and ceroid-lipofuscinosis neuronal
protein 7 (CLN7) (Figure 4B). Other DEGs information was shown in Table 3 and other
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immune-related pathways, such as the MAPK signaling pathway-fly, the chemokine signal-
ing pathway, antigen processing and presentation, etc., were also abundant in the DEGs.
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Figure 4. Pathway map of the phagosome (A) and lysosome (B) pathways in KEGG at 6 h post
injection. The red and green boxes represent up-regulated and down-regulated genes, respectively.
The yellow boxes represent unclear up-regulation and down-regulation of genes.

Table 3. Relevant DEGs information in the phagosome and lysosome pathways.

Pathway Genes Fold Change Up/Down Regulation Genes Fold Change Up/Down Regulation

Phagosome F-actin 1.7692 Up Dvnein −1.2674 Down
TUBB 2.9491 Up LAMP −7.1505 Down
PIKFYVE 1.1451 Up αVβ5 −3.1955 Down
M6PR 1.315 Up α2β1 −2.9904 Down
NOS 5.1266 Up β1 −1.4217 Down
DCSIGN 2.472 Up SRB1 −2.3453 Down

Lysosome LIPA 1.7805 Up LGMN −1.3984 Down
LYPLA 1.6242 Up GLB −2.5314 Down
ACP2 1.7805 Up GAA −1.8661 Down
CLN7 2.5625 Up GBA −1.9262 Down
LAMAN −5.2917 Down NAGLU −2.5669 Down
GANLS −2.0659 Down GUSB −2.8311 Down
SGSH −2.5976 Down HXA/P −3.5577 Down
GM2A −2.4086 Down LAMP −7.1505 Down
CLN1 −1.498 Down HGSNAT −1.2058 Down
GGAS −1.2001 Down

Note: DEGs information in phagosome and lysosome pathways of M. rosenbergii infected with A. veronii at
6 h. In fold change, positive numbers represent gene up-regulation and negative numbers represent gene
down-regulation.
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Furthermore, the Venn diagram analysis showed that 173 immune-related DEGs were
detected based on the aforementioned 28 immune-related pathways, and there were 138,
43, and 12 immune-related DEGs, respectively, at 6, 12, and 24 hpi compared to the control
groups (Figure 5A). Furthermore, in the hierarchical cluster analysis, 173 immune-related
DEGs in AV6 showed significant differences compared to AV12 and AV24, indicating that
the majority of the 173 immune-related DEGs were relatively highly expressed at 6 hpi,
then the number of DEGs was drastically reduced at 12 and 24 hpi; some genes’ expression
increased at 12 hpi while being relatively low expressed at 6 and 24 hpi; a few genes were
highly expressed at 24 hpi compared with 6 and 12 hpi (Figure 5B).
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3.4. Validation of DEGs by qRT-PCR

To further confirm the gene expression from RNA-seq data, 10 immune-related DEGs,
including TOLL, GSK3β, IκB, ACTIN, TBK1, MALT, GRB2, PAK1, CD13, and JACK1/2, were
selected for qRT-PCR verification at random. The results showed that qRT-PCR had an
identical expression tendency to the RNA-seq data, which confirmed the expression of
immune-related DEGs in the RNA-seq data (Figure 6).
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3.5. Temporal and Spatial Expression Levels of Four Key Immune-Related Genes in M. rosenbergii

To further explore the gene expression in hepatopancreas, hemolymph, and gills, four
immune-related DEGs, including TOLL, PAK1, GSK3β, and IKKα, were screened from the
KEGG pathways, in which these genes overlapped each other.

As seen in Figure 7A, the TOLL gene’s expression level in the hepatopancreas of
the challenge groups at 6 hpi was significantly higher than that in the control group
(p < 0.05), but then sharply decreased at 12 hpi, significantly lower than that in the control
group (p < 0.05), and almost kept successively low levels at 24 hpi, indicating that this
gene was remarkably up-regulated at 6 hpi, whereas it became down-regulated at 12 and
24 hpi. Similar to the hepatopancreas, the expression trend of TOLL in the hemolymph
of the challenge group was significantly higher than that in the control group (p < 0.01)
at 6 hpi, then slightly dropped at 12 hpi and remained similar at 24 hpi, still with a
higher expression level than the control group, though the difference was not significant.
Therefore, the expression of TOLL was up-regulated in the hemolymph after A. veronii
infection. Unlike the hepatopancreas and hemolymph, in the gills, the expression of TOLL
was down-regulated at 6 and 12 hpi, significantly lower than the control group at 6 hpi
(p < 0.05), then slightly increased at 12 hpi, and became up-regulated at 24 hpi.

In the hepatopancreas, the PAK1 gene expression in the challenge group at 6 hpi
was higher than that in the control group, then slightly decreased at 12 hpi and dropped
dramatically at 24 hpi, but both of them were significantly higher than the control group
(p < 0.05), indicating that the PAK1 gene was remarkably up-regulated at the three time
points, despite the continuing decline at 12 and 24 hpi. A similar trend of PAK1 gene
expression also appeared in the hemolymph and gills, except that the expression level of
the PAK1 gene was slightly lower than that in the control group at 24 hpi in the gills and
became down-regulated (Figure 7B).

In the hepatopancreas and gills, the expression trend of the GSK3β gene was similar
to the TOLL gene expression in the hepatopancreas, which was significantly higher than
that in the control group (p < 0.05), but precipitously declined at 12 and 24 hpi; both
of the expression levels at the two points were slightly lower than those in the control
group, indicating that the GSK3β gene was up-regulated at 6 hpi, whereas it became down-
regulated at 12 and 24 hpi. Furthermore, the expression trend of the GSK3β gene in the
hemolymph was similar to that of the PAK1 gene expression in the hepatopancreas and
hemolymph, which was higher than that in the control group at 6 hpi (p < 0.01) but sharply
decreased at 12 hpi, in spite of the fact that the difference was not significant compared
to the control group. Following that, it maintained a slight decline at 24 hpi, but was
significantly higher than that in the control group (p < 0.01), revealing that this gene was
up-regulated and expressed at all three points (Figure 7C).

The expression level of the IKKα gene in the hepatopancreas of the challenge groups
at 6 hpi decreased slightly and maintained a sustained decline at 12 and 24 hpi, and all of
them were lower than the control group, which revealed that this gene remained down-
regulated throughout the challenge. Unlike the hepatopancreas, the expression level in the
hemolymph was remarkably higher than the control group at 6 hpi (p < 0.01) but decreased
sharply at 12 hpi and was lower than the control group. After that, it increased slightly at
24 hpi but was still lower compared to the control. These results revealed that the gene
IKKα was up-regulated at 6 hpi and became down-regulated at 12 and 24 hpi. In the gill,
the IKKα gene in the challenge groups was slightly higher at 6 hpi than the control group
and was remarkably higher compared to the control group at 12 hpi (p < 0.01), but then
sharply declined at 24 hpi and was lower than the control group, indicating that the IKKα
gene was up-regulated at 6 and 12 hpi but became down-regulated at 24 hpi (Figure 7D).
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Figure 7. Gene expression analysis of the TOLL (A), PAK1 (B), GSK3β (C), and IKKα (D) in M.
rosenbergii hepatopancreas, hemolymph, and gills at 6, 12, 24 hpi, respectively. Data shown are the
mean of triplicates ± SD. The asterisk represents significant differences between the challenge and
control groups at different times (“*”indicates p < 0.05 and “**” indicates p < 0.01). The orange column
and the green column represent the challenge group and the control group, respectively.



Genes 2023, 14, 1383 11 of 14

4. Discussion
4.1. Phagosome and Lysosome Pathway Analysis

Phagocytosis plays an important role in the innate immunity of M. rosenbergii [15,22].
The phagocytosis process was the particle binding to the cell surface, forming an endocyte,
becoming a phagolysosome, and finally digesting within the phagolysosome [23].

As shown in Figure 4A, phagocytosis is driven by the recombination of F-actin, which
stimulates the diffusion of a pseudopod around the particle and produces phagosomes
that are closely apposed to the particle [24]. F-actin was up-regulated in the M. rosenbergii-
infected group at 6 hpi, which might promote the production of phagosomes. C-type
lectin receptors (CLRs) play an important role in autoimmunity, allergy, homeostasis, and
anti-microbial host defense [25], and one of the functions is to eliminate pathogens by
regulating phagosome maturation in macrophages [26]. Up-regulation of the DCSIGN gene
in the challenge group at 6 hpi might indicate the promotion of phagosome maturation. In
addition, V-type proton ATPase can clear the pathogens in the phagosome by increasing
the hydrogen ion (H+) concentration [27]. In the present study, the ATPase gene was
down-regulated at 12 hpi compared to the control group, which might suggest a decreased
phagocytic capacity of the phagosome in infected individuals compared to healthy M.
rosenbergii, and this result is similar to Zhang et al.’s (2019) study which found a significant
down-regulation in diseased sea urchins (Strongylocentrotus intermedius) [22].

Crustaceans’ innate immunity depends heavily on lysosomes, which mostly degrade
hazardous compounds by phagocytosis and endocytosis, and several lysosomal hydrolytic
enzymes, including lipase, proteases, etc., show their greatest enzyme activity at low pH
levels [28].

As shown in Figure 4B, LIPA is a very important hydrolase, and reducing its activity
can lead to symptoms such as hypercholesterolemia and hepatomegaly [29]. LYPLA3 is a
transacylase that may play a specific role in lysosomes [30]. It is reported that LYPLA3′s
loss increased atherosclerosis in apolipoprotein E-deficient mice [31]. ACP2 is the most
important lysosomal enzyme in crustacean defense, transferring phosphate groups and
catalyzing the hydrolysis of phosphorylated proteins [32]. In addition, loss of CLN7 will
impair mTOR reactivation and the loss of soluble lysosomal proteins [33]. These genes
(LIPA, LYPLA3, ACP2, CLN7) were up-regulated in the M. rosenbergii infection group at 6 hpi,
suggesting that they may improve lysosome activity to defend against an A. veronii invasion.

4.2. Important Immune-Related Genes Involved in the Immune Response

The Toll receptor is typically composed of transmembrane regions, intracellular in-
terleukin hormone receptor domains, and extracellular leucine repeats [34]. It is the key
vector in immune signal transduction [35]. In the present study, the expression of Toll
continuously increased in gills for 24 h and remained highly expressed in hemolymph and
hepatopancreas at 6 hpi, indicating that the Toll gene is involved in the immune response
against A. veronii infection. In the process of attacking M. rosenbergii with viruses (WSSV),
Feng et al. found (2016) that the Toll gene was uniformly up-regulated within 24–48 h, thus
it was speculated that the Toll gene played a positive role in the fight against viruses [36].
The result is similar to the present study that the Toll expression remained consistently
up-regulated in three tissues after injection of A. veronii, although it varied across tissues
and at different times.

PAK1 is the first protein kinase gene to be discovered and is extensively expressed
in eukaryotic tissues while being crucial for biological processes [37]. In this study, PAK1
expression was significantly enhanced at 6 hpi in three tissues, then decreased at 12 and
24 hpi successively. The expression level at all time points was higher than the control group.
It indicated that PAK1 was closely related to the immune response in M. rosenbergii against
A. veronii. This result was similar to the study of Ren et al. (2019), who detected PAK1 in
all tissues of infected sea cucumbers (Apostichopus japonicus) and the highest expression
was found in the coelom. After the silencing of the PAK1 gene, the lysozyme in the coelom
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was significantly reduced, thus it was speculated that PAK1 was involved in the immune
response against bacteria [38].

GSK-3β plays an important role in innate immunity, phosphorylating and inhibiting
glycogen synthase [39]. Ruan et al. (2018) found that down-regulation of GSK3β can inhibit
WSSV infection, suggesting that it may promote WSSV clearance in Litopenaeus vannamei by
mediating cell apoptosis [40]. Zhang et al. (2020) also found that GSK3β negatively affects
L. vannamei when it is infected with WSSV by mediating feedback regulation of the NF-κB
pathway [41]. Contrary to the above study, GSK3β expression in the three tissues of M.
rosenbergii was remarkably enhanced at 6 hpi in the present study, possibly because these
infected individuals were greatly damaged and died in large numbers. The expression
of GSK3β returned to normal at 12 and 24 hpi, which might be generated by an effective
immune response in the surviving shrimp.

IKK (IκB kinase) consists of IKKα, IKKβ, and IKKγ, IKKα, and IKKβ are involved
in the phosphorylation of IκB and the activation of NF-κB, while IKKγ is in charge of
IKKβ and IKKα’s recruitment [42]. NF-κB is a transcription factor that is essential for the
cell cycle, immunity, inflammation, etc. [43,44]. NF-κB proteins are usually inactivated by
attaching to the IκB (the κB inhibitor) [45]. IKK will be activated when cells are stimulated
from the outside, such as via a virus [46], and the NF-κB protein will be released, leading to
inflammatory and immune responses. In this study, the expression of IKKα was significantly
up-regulated in the hemolymph at 6 hpi and in gills at 12 hpi in the challenge group,
suggesting a severe immune response in the prawns at these time points. However, the
expression of IKKα was down-regulated at 24 hpi, indicating a relief in the symptoms
of the surviving prawns. The expression of IKKα in the hepatopancreas kept decreasing,
suggesting that the hepatopancreas might be an essential immune organ that responds
positively to the stimulus from A. veronii.

5. Conclusions

In this study, a comparative transcriptome analysis revealed a variety of transcriptional
information in the hepatopancreas of M. rosenbergii at different time points. KEGG enrich-
ment analysis showed that plenty of DEGs were mainly concentrated in the phagosome
and lysosome pathways. In addition, the spatio-temporal expression of four immune-
related genes was found to be significantly up-regulated at 6 hpi. These findings contribute
to understanding the immune mechanism of M. rosenbergii infected with A. veronii and
provide new insights for further research on disease-resistance breeding in M. rosenbergii.
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