Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies
Abstract
:1. Introduction
2. Role of Primary Cilia in Oncogenic Programs
2.1. The Functional Link between Cilia and Cell-Cycle-Related Oncogenic Programs
2.2. The Functional Link between Cilia and Cancer-Related Signaling Networks
2.2.1. Hedgehog Pathway
2.2.2. Notch Pathway
2.2.3. Wnt Pathway
2.2.4. Receptor Tyrosine Kinases and Other Membrane-Associated Kinases
2.2.5. Hippo Pathway
2.2.6. DNA Damage/Repair Pathway
2.2.7. Autophagy Network
2.2.8. The Polycystin Signaling
3. Primary Cilia Defects in Cancer: Implication for Molecular Oncology
3.1. Brain Cancers
3.2. Skin Cancers
3.3. Gastrointestinal Cancers
3.4. Genito-Urinary and Endocrine Cancers
3.5. Sarcomas
4. Molecular Oncology of Primary Cilia: Clinical Implications
4.1. Brain Tumors
4.2. Skin Cancers
4.3. Gastrointestinal Cancers
4.4. Genito-Urinary and Endocrine Cancers
4.5. Implication of PC in Cancer Therapeutics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MCs | motile cilia |
PCs | primary cilia |
BB | basal body |
PKD | polycystic kidney disease |
NPHP | nephronophthisis |
BBS | Bardet–Biedl |
OFD1 | oral–facial–digital type 1 syndrome |
MTOC | microtubule-organizing center |
PLK1 | polo-like kinase 1 |
AURKA | Aurora A kinase |
CDK1 | cyclin-dependent kinase |
NEK2 | never-in-mitosis-A-related kinase |
HEF1 | human enhancer of filamentation 1 |
CaM | calmodulin |
Dvl | dishevelled |
Dvl2 | disheveled segment polarity protein 2 |
IFT | intraflagellar transport |
KIF24 | kinesin family member 24 |
HDAC6 | deacetylase histone deacetylase 6 |
HH | Hedgehog |
PTCH1 | patched 1 |
GPR161 | G-protein-coupled receptor |
CCND1 | cyclin D1 |
SMO | Smoothened |
NICD | Notch intracellular domain |
RTKs | receptor tyrosine kinases |
CEP164 | centrosomal protein 164 |
IFT20 | intraflagellar transport protein 20 |
PCM1 | pericentriolar material 1 |
MVA | mevalonate |
PTC | thyroid cancer |
FTC | follicular thyroid cancer |
PDTC | poorly differentiated thyroid cancer |
ATC | anaplastic thyroid cancer |
MTC | medullary thyroid cancer |
OS | overall survival |
References
- Reiter, J.F.; Leroux, M.R. Genes and Molecular Pathways Underpinning Ciliopathies. Nat. Rev. Mol. Cell Biol. 2017, 18, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, P.; Alvarez Viar, G.; Tsoy, N.; Maraspini, R.; Gorilak, P.; Varga, V.; Honigmann, A.; Pigino, G. The Molecular Structure of Mammalian Primary Cilia Revealed by Cryo-Electron Tomography. Nat. Struct. Mol. Biol. 2020, 27, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Vertii, A.; Hung, H.-F.; Hehnly, H.; Doxsey, S. Human Basal Body Basics. Cilia 2016, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, S.; Narita, K. Structure and Function of Vertebrate Cilia, towards a New Taxonomy. Differentiation 2012, 83, S4–S11. [Google Scholar] [CrossRef]
- Klena, N.; Pigino, G. Structural Biology of Cilia and Intraflagellar Transport. Annu. Rev. Cell Dev. Biol. 2022, 38, 103–123. [Google Scholar] [CrossRef]
- Yoshiba, S.; Shiratori, H.; Kuo, I.Y.; Kawasumi, A.; Shinohara, K.; Nonaka, S.; Asai, Y.; Sasaki, G.; Belo, J.A.; Sasaki, H.; et al. Cilia at the Node of Mouse Embryos Sense Fluid Flow for Left-Right Determination via Pkd2. Science 2012, 338, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Falk, N.; Lösl, M.; Schröder, N.; Gießl, A. Specialized Cilia in Mammalian Sensory Systems. Cells 2015, 4, 500–519. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.S.; Ben-Shahar, Y.; Moninger, T.O.; Kline, J.N.; Welsh, M.J. Motile Cilia of Human Airway Epithelia Are Chemosensory. Science 2009, 325, 1131–1134. [Google Scholar] [CrossRef] [Green Version]
- Roth, Y.; Kimhi, Y.; Edery, H.; Aharonson, E.; Priel, Z. Ciliary Motility in Brain Ventricular System and Trachea of Hamster. Brain Res. 1985, 330, 291–297. [Google Scholar] [CrossRef]
- Aprea, I.; Nöthe-Menchen, T.; Dougherty, G.W.; Raidt, J.; Loges, N.T.; Kaiser, T.; Wallmeier, J.; Olbrich, H.; Strünker, T.; Kliesch, S.; et al. Motility of Efferent Duct Cilia Aids Passage of Sperm Cells through the Male Reproductive System. Mol. Hum. Reprod. 2021, 27, gaab009. [Google Scholar] [CrossRef]
- Brody, S.L. Sensory Functions of Motile Cilia and Implication for Bronchiectasis. Front. Biosci. 2012, S4, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, V.; Reiter, J.F. The Primary Cilium as the Cell’s Antenna: Signaling at a Sensory Organelle. Science 2006, 313, 629–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eguether, T.; Hahne, M. Mixed Signals from the Cell’s Antennae: Primary Cilia in Cancer. EMBO Rep. 2018, 19, e46589. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.T.; Pedersen, L.B.; Schneider, L.; Satir, P. Sensory Cilia and Integration of Signal Transduction in Human Health and Disease. Traffic 2007, 8, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Strissel, K.J.; Lishko, P.V.; Trieu, L.H.; Kennedy, M.J.; Hurley, J.B.; Arshavsky, V.Y. Recoverin Undergoes Light-Dependent Intracellular Translocation in Rod Photoreceptors. J. Biol. Chem. 2005, 280, 29250–29255. [Google Scholar] [CrossRef] [Green Version]
- Buck, L.; Axel, R. A Novel Multigene Family May Encode Odorant Receptors: A Molecular Basis for Odor Recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Leibovici, M.; Verpy, E.; Goodyear, R.J.; Zwaenepoel, I.; Blanchard, S.; Lainé, S.; Richardson, G.P.; Petit, C. Initial Characterization of Kinocilin, a Protein of the Hair Cell Kinocilium. Hear. Res. 2005, 203, 144–153. [Google Scholar] [CrossRef]
- Spasic, M.; Jacobs, C.R. Primary Cilia: Cell and Molecular Mechanosensors Directing Whole Tissue Function. Semin. Cell Dev. Biol. 2017, 71, 42–52. [Google Scholar] [CrossRef]
- Mohieldin, A.M.; Pala, R.; Beuttler, R.; Moresco, J.J.; Yates, J.R.; Nauli, S.M. Ciliary Extracellular Vesicles Are Distinct from the Cytosolic Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12086. [Google Scholar] [CrossRef]
- Dubreuil, V.; Marzesco, A.-M.; Corbeil, D.; Huttner, W.B.; Wilsch-Bräuninger, M. Midbody and Primary Cilium of Neural Progenitors Release Extracellular Membrane Particles Enriched in the Stem Cell Marker Prominin-1. J. Cell Biol. 2007, 176, 483–495. [Google Scholar] [CrossRef]
- Vinay, L.; Belleannée, C. EV Duty Vehicles: Features and Functions of Ciliary Extracellular Vesicles. Front. Genet. 2022, 13, 916233. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Sirinakis, G.; Allgeyer, E.S.; Schroeder, L.K.; Duim, W.C.; Kromann, E.B.; Phan, T.; Rivera-Molina, F.E.; Myers, J.R.; Irnov, I.; et al. Ultra-High Resolution 3D Imaging of Whole Cells. Cell 2016, 166, 1028–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Ning, J.; Hernandez-Lara, C.I.; Belzile, O.; Wang, Q.; Dutcher, S.K.; Liu, Y.; Snell, W.J. Uni-Directional Ciliary Membrane Protein Trafficking by a Cytoplasmic Retrograde IFT Motor and Ciliary Ectosome Shedding. Elife 2015, 4. [Google Scholar] [CrossRef]
- Nager, A.R.; Goldstein, J.S.; Herranz-Pérez, V.; Portran, D.; Ye, F.; Garcia-Verdugo, J.M.; Nachury, M.V. An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling. Cell 2017, 168, 252–263.e14. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jack, B.M.; Wang, H.H.; Kavanaugh, M.A.; Maser, R.L.; Tran, P.V. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length. Front. Cell Dev. Biol. 2021, 9, 661350. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Zhang, F.; Xu, N.; Liu, G.; Diener, D.R.; Rosenbaum, J.L.; Huang, K. Comparative Analysis of Ciliary Membranes and Ectosomes. Curr. Biol. 2016, 26, 3327–3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang-Minh, L.B.; Dutra-Clarke, M.; Breunig, J.J.; Sarkisian, M.R. Glioma Cell Proliferation Is Enhanced in the Presence of Tumor-Derived Cilia Vesicles. Cilia 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rilla, K. Diverse Plasma Membrane Protrusions Act as Platforms for Extracellular Vesicle Shedding. J. Extracell. Vesicles 2021, 10, e12148. [Google Scholar] [CrossRef]
- Gherman, A.; Davis, E.E.; Katsanis, N. The Ciliary Proteome Database: An Integrated Community Resource for the Genetic and Functional Dissection of Cilia. Nat. Genet. 2006, 38, 961–962. [Google Scholar] [CrossRef]
- Avidor-Reiss, T.; Maer, A.M.; Koundakjian, E.; Polyanovsky, A.; Keil, T.; Subramaniam, S.; Zuker, C.S. Decoding Cilia Function. Cell 2004, 117, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.S.; Wilkinson, C.J.; Mayor, T.; Mortensen, P.; Nigg, E.A.; Mann, M. Proteomic Characterization of the Human Centrosome by Protein Correlation Profiling. Nature 2003, 426, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Otto, E.A.; Hurd, T.W.; Airik, R.; Chaki, M.; Zhou, W.; Stoetzel, C.; Patil, S.B.; Levy, S.; Ghosh, A.K.; Murga-Zamalloa, C.A.; et al. Candidate Exome Capture Identifies Mutation of SDCCAG8 as the Cause of a Retinal-Renal Ciliopathy. Nat. Genet. 2010, 42, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Otto, E.A.; Ramaswami, G.; Janssen, S.; Chaki, M.; Allen, S.J.; Zhou, W.; Airik, R.; Hurd, T.W.; Ghosh, A.K.; Wolf, M.T.; et al. Mutation Analysis of 18 Nephronophthisis Associated Ciliopathy Disease Genes Using a DNA Pooling and next Generation Sequencing Strategy. J. Med. Genet. 2011, 48, 105–116. [Google Scholar] [CrossRef] [PubMed]
- van Dam, T.J.P.; Kennedy, J.; van der Lee, R.; de Vrieze, E.; Wunderlich, K.A.; Rix, S.; Dougherty, G.W.; Lambacher, N.J.; Li, C.; Jensen, V.L.; et al. CiliaCarta: An Integrated and Validated Compendium of Ciliary Genes. PLoS ONE 2019, 14, e0216705. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Gleeson, J.G. A Systems-Biology Approach to Understanding the Ciliopathy Disorders. Genome Med. 2011, 3, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, K.; Beales, P.L. Making Sense of Cilia in Disease: The Human Ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 2009, 151C, 281–295. [Google Scholar] [CrossRef]
- Han, Y.-G.; Alvarez-Buylla, A. Role of Primary Cilia in Brain Development and Cancer. Curr. Opin. Neurobiol. 2010, 20, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Failler, M.; Giro-Perafita, A.; Owa, M.; Srivastava, S.; Yun, C.; Kahler, D.J.; Unutmaz, D.; Esteva, F.J.; Sánchez, I.; Dynlacht, B.D. Whole-Genome Screen Identifies Diverse Pathways That Negatively Regulate Ciliogenesis. Mol. Biol. Cell 2021, 32, 169–185. [Google Scholar] [CrossRef]
- Tilley, A.E.; Walters, M.S.; Shaykhiev, R.; Crystal, R.G. Cilia Dysfunction in Lung Disease. Annu. Rev. Physiol. 2015, 77, 379–406. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, E.; Richard, S.; Pant, K.; Biswas, A.; Gradilone, S.A. The Primary Cilium: Its Role as a Tumor Suppressor Organelle. Biochem. Pharmacol. 2020, 175, 113906. [Google Scholar] [CrossRef]
- Mansini, A.P.; Peixoto, E.; Thelen, K.M.; Gaspari, C.; Jin, S.; Gradilone, S.A. The Cholangiocyte Primary Cilium in Health and Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Izawa, I.; Goto, H.; Kasahara, K.; Inagaki, M. Current Topics of Functional Links between Primary Cilia and Cell Cycle. Cilia 2015, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotnikova, O.V.; Pugacheva, E.N.; Golemis, E.A. Primary Cilia and the Cell Cycle. Methods Cell Biol. 2009, 94, 137–160. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, K.; Inagaki, M. Primary Ciliary Signaling: Links with the Cell Cycle. Trends Cell Biol. 2021, 31, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Nigg, E.A.; Stearns, T. The Centrosome Cycle: Centriole Biogenesis, Duplication and Inherent Asymmetries. Nat. Cell Biol. 2011, 13, 1154–1160. [Google Scholar] [CrossRef] [Green Version]
- Ghossoub, R.; Molla-Herman, A.; Bastin, P.; Benmerah, A. The Ciliary Pocket: A Once-Forgotten Membrane Domain at the Base of Cilia. Biol. Cell 2011, 103, 131–144. [Google Scholar] [CrossRef]
- Sorokin, S.P. Reconstructions of Centriole Formation and Ciliogenesis in Mammalian Lungs. J. Cell Sci. 1968, 3, 207–230. [Google Scholar] [CrossRef]
- Lee, K.H.; Johmura, Y.; Yu, L.-R.; Park, J.-E.; Gao, Y.; Bang, J.K.; Zhou, M.; Veenstra, T.D.; Yeon Kim, B.; Lee, K.S. Identification of a Novel Wnt5a-CK1ε-Dvl2-Plk1-Mediated Primary Cilia Disassembly Pathway. EMBO J. 2012, 31, 3104–3117. [Google Scholar] [CrossRef]
- Kishi, K.; van Vugt, M.A.T.M.; Okamoto, K.; Hayashi, Y.; Yaffe, M.B. Functional Dynamics of Polo-Like Kinase 1 at the Centrosome. Mol. Cell. Biol. 2009, 29, 3134–3150. [Google Scholar] [CrossRef] [Green Version]
- García-Álvarez, B.; de Cárcer, G.; Ibañez, S.; Bragado-Nilsson, E.; Montoya, G. Molecular and Structural Basis of Polo-like Kinase 1 Substrate Recognition: Implications in Centrosomal Localization. Proc. Natl. Acad. Sci. USA 2007, 104, 3107–3112. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Q.; Zhang, X.; Zhang, B.; Zhuo, X.; Liu, J.; Jiang, Q.; Zhang, C. PCM1 Recruits Plk1 to Pericentriolar Matrix to Promote Primary Cilia Disassembly before Mitotic Entry. J. Cell Sci. 2013, 126, 1355–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutteridge, R.E.A.; Ndiaye, M.A.; Liu, X.; Ahmad, N. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol. Cancer Ther. 2016, 15, 1427–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugacheva, E.N.; Jablonski, S.A.; Hartman, T.R.; Henske, E.P.; Golemis, E.A. HEF1-Dependent Aurora A Activation Induces Disassembly of the Primary Cilium. Cell 2007, 129, 1351–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotnikova, O.V.; Nikonova, A.S.; Loskutov, Y.V.; Kozyulina, P.Y.; Pugacheva, E.N.; Golemis, E.A. Calmodulin Activation of Aurora-A Kinase (AURKA) Is Required during Ciliary Disassembly and in Mitosis. Mol. Biol. Cell 2012, 23, 2658–2670. [Google Scholar] [CrossRef]
- Dere, R.; Perkins, A.L.; Bawa-Khalfe, T.; Jonasch, D.; Walker, C.L. β-Catenin Links von Hippel-Lindau to Aurora Kinase A and Loss of Primary Cilia in Renal Cell Carcinoma. J. Am. Soc. Nephrol. 2015, 26, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Hasanov, E.; Chen, G.; Chowdhury, P.; Weldon, J.; Ding, Z.; Jonasch, E.; Sen, S.; Walker, C.L.; Dere, R. Ubiquitination and Regulation of AURKA Identifies a Hypoxia-Independent E3 Ligase Activity of VHL. Oncogene 2017, 36, 3450–3463. [Google Scholar] [CrossRef] [Green Version]
- Gradilone, S.A.; Radtke, B.N.; Bogert, P.S.; Huang, B.Q.; Gajdos, G.B.; LaRusso, N.F. HDAC6 Inhibition Restores Ciliary Expression and Decreases Tumor Growth. Cancer Res. 2013, 73, 2259–2270. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Bavarva, J.H.; Wang, Z.; Guo, J.; Qian, C.; Thibodeau, S.N.; Golemis, E.A.; Liu, W. HEF1, a Novel Target of Wnt Signaling, Promotes Colonic Cell Migration and Cancer Progression. Oncogene 2011, 30, 2633–2643. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, K.; Choi, J.-H.; Ringstad, N.; Dynlacht, B.D. Nek2 Activation of Kif24 Ensures Cilium Disassembly during the Cell Cycle. Nat. Commun. 2015, 6, 8087. [Google Scholar] [CrossRef]
- Kokuryo, T.; Yokoyama, Y.; Yamaguchi, J.; Tsunoda, N.; Ebata, T.; Nagino, M. NEK2 Is an Effective Target for Cancer Therapy with Potential to Induce Regression of Multiple Human Malignancies. Anticancer. Res. 2019, 39, 2251–2258. [Google Scholar] [CrossRef]
- Sung, C.-H.; Leroux, M.R. The Roles of Evolutionarily Conserved Functional Modules in Cilia-Related Trafficking. Nat. Cell Biol. 2013, 15, 1387–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechtreck, K.F. IFT–Cargo Interactions and Protein Transport in Cilia. Trends Biochem. Sci. 2015, 40, 765–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Deng, X.; Yuan, C.; Xin, H.; Liu, G.; Zhu, Y.; Jiang, X.; Wang, C. IFT80 Improves Invasion Ability in Gastric Cancer Cell Line via Ift80/P75NGFR/MMP9 Signaling. Int. J. Mol. Sci. 2018, 19, 3616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yauch, R.L.; Gould, S.E.; Scales, S.J.; Tang, T.; Tian, H.; Ahn, C.P.; Marshall, D.; Fu, L.; Januario, T.; Kallop, D.; et al. A Paracrine Requirement for Hedgehog Signalling in Cancer. Nature 2008, 455, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Feigin, M.E.; Xue, B.; Hammell, M.C.; Muthuswamy, S.K. G-Protein–Coupled Receptor GPR161 Is Overexpressed in Breast Cancer and Is a Promoter of Cell Proliferation and Invasion. Proc. Natl. Acad. Sci. USA 2014, 111, 4191–4196. [Google Scholar] [CrossRef]
- Begemann, M.; Waszak, S.M.; Robinson, G.W.; Jäger, N.; Sharma, T.; Knopp, C.; Kraft, F.; Moser, O.; Mynarek, M.; Guerrini-Rousseau, L.; et al. Germline GPR161 Mutations Predispose to Pediatric Medulloblastoma. J. Clin. Oncol. 2020, 38, 43–50. [Google Scholar] [CrossRef]
- Shimada, I.S.; Hwang, S.-H.; Somatilaka, B.N.; Wang, X.; Skowron, P.; Kim, J.; Kim, M.; Shelton, J.M.; Rajaram, V.; Xuan, Z.; et al. Basal Suppression of the Sonic Hedgehog Pathway by the G-Protein-Coupled Receptor Gpr161 Restricts Medulloblastoma Pathogenesis. Cell Rep. 2018, 22, 1169–1184. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.-G.; Kim, H.J.; Dlugosz, A.A.; Ellison, D.W.; Gilbertson, R.J.; Alvarez-Buylla, A. Dual and Opposing Roles of Primary Cilia in Medulloblastoma Development. Nat. Med. 2009, 15, 1062–1065. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.Y.; Seol, A.D.; So, P.-L.; Ermilov, A.N.; Bichakjian, C.K.; Epstein, E.H.; Dlugosz, A.A.; Reiter, J.F. Primary Cilia Can Both Mediate and Suppress Hedgehog Pathway–Dependent Tumorigenesis. Nat. Med. 2009, 15, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.J.; Beetz, C.; Williams, S.G.; Bhaskar, S.S.; O’Sullivan, J.; Anderson, B.; Daly, S.B.; Urquhart, J.E.; Bholah, Z.; Oudit, D.; et al. Germline Mutations in SUFU Cause Gorlin Syndrome–Associated Childhood Medulloblastoma and Redefine the Risk Associated With PTCH1 Mutations. J. Clin. Oncol. 2014, 32, 4155–4161. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch Signaling Pathway: Architecture, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Aster, J.C.; Pear, W.S.; Blacklow, S.C. The Varied Roles of Notch in Cancer. Annu. Rev. Pathol. Mech. Dis. 2017, 12, 245–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezratty, E.J.; Stokes, N.; Chai, S.; Shah, A.S.; Williams, S.E.; Fuchs, E. A Role for the Primary Cilium in Notch Signaling and Epidermal Differentiation during Skin Development. Cell 2011, 145, 1129–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt Signaling in Cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- VanHook, A.M. Wnt Signaling and Cilia Intertwined. Sci. Signal. 2012, 5, ec22. [Google Scholar] [CrossRef]
- Wallingford, J.B.; Mitchell, B. Strange as It May Seem: The Many Links between Wnt Signaling, Planar Cell Polarity, and Cilia: Figure 1. Genes Dev. 2011, 25, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.; Gloy, J.; Ganner, A.; Bullerkotte, A.; Bashkurov, M.; Krönig, C.; Schermer, B.; Benzing, T.; Cabello, O.A.; Jenny, A.; et al. Inversin, the Gene Product Mutated in Nephronophthisis Type II, Functions as a Molecular Switch between Wnt Signaling Pathways. Nat. Genet. 2005, 37, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Corbit, K.C.; Shyer, A.E.; Dowdle, W.E.; Gaulden, J.; Singla, V.; Reiter, J.F. Kif3a Constrains β-Catenin-Dependent Wnt Signalling through Dual Ciliary and Non-Ciliary Mechanisms. Nat. Cell Biol. 2008, 10, 70–76. [Google Scholar] [CrossRef]
- Christensen, S.T.; Morthorst, S.K.; Mogensen, J.B.; Pedersen, L.B. Primary Cilia and Coordination of Receptor Tyrosine Kinase (RTK) and Transforming Growth Factor β (TGF-β) Signaling. Cold Spring Harb. Perspect. Biol. 2017, 9, a028167. [Google Scholar] [CrossRef] [Green Version]
- Egeberg, D.L.; Lethan, M.; Manguso, R.; Schneider, L.; Awan, A.; Jørgensen, T.S.; Byskov, A.G.; Pedersen, L.B.; Christensen, S.T. Primary Cilia and Aberrant Cell Signaling in Epithelial Ovarian Cancer. Cilia 2012, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Corless, C.L.; Barnett, C.M.; Heinrich, M.C. Gastrointestinal Stromal Tumours: Origin and Molecular Oncology. Nat. Rev. Cancer 2011, 11, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Normanno, N.; Carotenuto, P.; Roma, C.; Rachiglio, A.M.; Pasquale, R.; Franco, R.; Antinolfi, G.; Piantedosi, F.; Illiano, A.; Botti, G.; et al. Optimizing Response to Gefitinib in the Treatment of Non-Small-Cell Lung Cancer. Pharmgenom. Pers. Med. 2011, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, R.; Caputo, F.; Prampolini, F.; Spallanzani, A.; Gelsomino, F.; Bettelli, S.; Manfredini, S.; Reggiani Bonetti, L.; Carotenuto, P.; Bocconi, A.; et al. CtDNA-Guided Rechallenge with Anti-EGFR Therapy in RASwt Metastatic Colorectal Cancer: Evidence from Clinical Practice. Tumori J. 2022, 030089162211225. [Google Scholar] [CrossRef] [PubMed]
- Danilov, A.I.; Gomes-Leal, W.; Ahlenius, H.; Kokaia, Z.; Carlemalm, E.; Lindvall, O. Ultrastructural and Antigenic Properties of Neural Stem Cells and Their Progeny in Adult Rat Subventricular Zone. Glia 2009, 57, 136–152. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Du, H.; Wang, X.; Mei, C.; Sieck, G.C.; Qian, Q. Characterization of Primary Cilia in Human Airway Smooth Muscle Cells. Chest 2009, 136, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasahara, K.; Aoki, H.; Kiyono, T.; Wang, S.; Kagiwada, H.; Yuge, M.; Tanaka, T.; Nishimura, Y.; Mizoguchi, A.; Goshima, N.; et al. EGF Receptor Kinase Suppresses Ciliogenesis through Activation of USP8 Deubiquitinase. Nat. Commun. 2018, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Kunova Bosakova, M.; Varecha, M.; Hampl, M.; Duran, I.; Nita, A.; Buchtova, M.; Dosedelova, H.; Machat, R.; Xie, Y.; Ni, Z.; et al. Regulation of Ciliary Function by Fibroblast Growth Factor Signaling Identifies FGFR3-Related Disorders Achondroplasia and Thanatophoric Dysplasia as Ciliopathies. Hum. Mol. Genet. 2018, 27, 1093–1105. [Google Scholar] [CrossRef] [Green Version]
- Salati, M.; Caputo, F.; Baldessari, C.; Carotenuto, P.; Messina, M.; Caramaschi, S.; Dominici, M.; Bonetti, L.R. The Evolving Role of FGFR2 Inhibitors in Intrahepatic Cholangiocarcinoma: From Molecular Biology to Clinical Targeting. Cancer Manag. Res. 2021, 13, 7747–7757. [Google Scholar] [CrossRef]
- Neugebauer, J.M.; Amack, J.D.; Peterson, A.G.; Bisgrove, B.W.; Yost, H.J. FGF Signalling during Embryo Development Regulates Cilia Length in Diverse Epithelia. Nature 2009, 458, 651–654. [Google Scholar] [CrossRef] [Green Version]
- Gencer, S.; Oleinik, N.; Kim, J.; Panneer Selvam, S.; de Palma, R.; Dany, M.; Nganga, R.; Thomas, R.J.; Senkal, C.E.; Howe, P.H.; et al. TGF-β Receptor I/II Trafficking and Signaling at Primary Cilia Are Inhibited by Ceramide to Attenuate Cell Migration and Tumor Metastasis. Sci. Signal. 2017, 10, eaam7464. [Google Scholar] [CrossRef] [Green Version]
- Clement, C.A.; Ajbro, K.D.; Koefoed, K.; Vestergaard, M.L.; Veland, I.R.; Henriques de Jesus, M.P.R.; Pedersen, L.B.; Benmerah, A.; Andersen, C.Y.; Larsen, L.A.; et al. TGF-β Signaling Is Associated with Endocytosis at the Pocket Region of the Primary Cilium. Cell Rep. 2013, 3, 1806–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016, 29, 783–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habbig, S.; Bartram, M.P.; Müller, R.U.; Schwarz, R.; Andriopoulos, N.; Chen, S.; Sägmüller, J.G.; Hoehne, M.; Burst, V.; Liebau, M.C.; et al. NPHP4, a Cilia-Associated Protein, Negatively Regulates the Hippo Pathway. J. Cell Biol. 2011, 193, 633–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, A.J.; Boylan, J.F. Nek8, a NIMA Family Kinase Member, Is Overexpressed in Primary Human Breast Tumors. Gene 2004, 328, 135–142. [Google Scholar] [CrossRef]
- Carter, H.; Samayoa, J.; Hruban, R.H.; Karchin, R. Prioritization of Driver Mutations in Pancreatic Cancer Using Cancer-Specific High-Throughput Annotation of Somatic Mutations (CHASM). Cancer Biol. Ther. 2010, 10, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.D.; Parsons, D.W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R.J.; Shen, D.; Boca, S.M.; Barber, T.; Ptak, J.; et al. The Genomic Landscapes of Human Breast and Colorectal Cancers. Science 2007, 318, 1108–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Guan, Y.; Chen, X.; Yang, J.; Cheng, Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front. Pharmacol. 2021, 11, 629266. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A.; Collis, S.J. Ciliogenesis and the DNA Damage Response: A Stressful Relationship. Cilia 2016, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-Y.; Huang, B.-M.; Tang, T.K.; Chao, Y.-Y.; Xiao, X.-Y.; Lee, P.-R.; Yang, L.-Y.; Wang, C.-Y. Genotoxic Stress-Activated DNA-PK-P53 Cascade and Autophagy Cooperatively Induce Ciliogenesis to Maintain the DNA Damage Response. Cell Death Differ. 2021, 28, 1865–1879. [Google Scholar] [CrossRef]
- Abramowicz, I.; Carpenter, G.; Alfieri, M.; Colnaghi, R.; Outwin, E.; Parent, P.; Thauvin-Robinet, C.; Iaconis, D.; Franco, B.; O’Driscoll, M. Oral-Facial-Digital Syndrome Type I Cells Exhibit Impaired DNA Repair; Unanticipated Consequences of Defective OFD1 Outside of the Cilia Network. Hum. Mol. Genet. 2016, 26, ddw364. [Google Scholar] [CrossRef] [Green Version]
- Morleo, M.; Vieira, H.L.A.; Pennekamp, P.; Palma, A.; Bento-Lopes, L.; Omran, H.; Lopes, S.S.; Barral, D.C.; Franco, B. Crosstalk between Cilia and Autophagy: Implication for Human Diseases. Autophagy 2022, 19, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Morleo, M.; Brillante, S.; Formisano, U.; Ferrante, L.; Carbone, F.; Iaconis, D.; Palma, A.; Buonomo, V.; Maione, A.S.; Grumati, P.; et al. Regulation of Autophagosome Biogenesis by OFD1-mediated Selective Autophagy. EMBO J. 2021, 40, e105120. [Google Scholar] [CrossRef] [PubMed]
- Morleo, M.; Franco, B. The Autophagy-Cilia Axis: An Intricate Relationship. Cells 2019, 8, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, V.; Romaguera-Ros, M.; Garcia-Verdugo, J.M.; Reiter, J.F. Ofd1, a Human Disease Gene, Regulates the Length and Distal Structure of Centrioles. Dev. Cell 2010, 18, 410–424. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, M.I.; Zullo, A.; Barra, A.; Bimonte, S.; Messaddeq, N.; Studer, M.; Dollé, P.; Franco, B. Oral-Facial-Digital Type I Protein Is Required for Primary Cilia Formation and Left-Right Axis Specification. Nat. Genet. 2006, 38, 112–117. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, M.G.; Stowe, T.R.; Chen, S.; Zhu, M.; Stearns, T.; Franco, B.; Zhong, Q. Autophagy Promotes Primary Ciliogenesis by Removing OFD1 from Centriolar Satellites. Nature 2013, 502, 254–257. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Yang, X.; Liu, R.; Bao, J.; Hou, Y.; Sun, J.; Miao, S.; Qu, G. The Relationship Between Human Papillomavirus, OFD1 and Primary Ciliogenesis in the Progression of Oropharyngeal Cancer: A Retrospective Cohort Study. Pharmgenom. Pers. Med. 2020, 13, 633–644. [Google Scholar] [CrossRef]
- Kojima, R.; Hassan, E.; Ozawa, F.; Yamada-Namikawa, C.; Ogawa, S.; Mase, S.; Goto, S.; Nishikawa, R.; Inagaki, H.; Kato, Y.; et al. Abnormal Accumulation of OFD1 in Endometrial Cancer with Poor Prognosis Inhibits Ciliogenesis. Oncol. Lett. 2022, 24, 214. [Google Scholar] [CrossRef]
- Finetti, F.; Cassioli, C.; Cianfanelli, V.; Onnis, A.; Paccagnini, E.; Kabanova, A.; Baldari, C.T. The Intraflagellar Transport Protein IFT20 Controls Lysosome Biogenesis by Regulating the Post-Golgi Transport of Acid Hydrolases. Cell Death Differ. 2020, 27, 310–328. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Koga, H.; Kawaguchi, Y.; Tang, W.; Wong, E.; Gao, Y.-S.; Pandey, U.B.; Kaushik, S.; Tresse, E.; Lu, J.; et al. HDAC6 Controls Autophagosome Maturation Essential for Ubiquitin-Selective Quality-Control Autophagy. EMBO J. 2010, 29, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, F.; Long, H.; Lin, Y.; Liao, J.; Xia, H.; Huang, K. IFT20 Mediates the Transport of Cell Migration Regulators from the Trans-Golgi Network to the Plasma Membrane in Breast Cancer Cells. Front. Cell Dev. Biol. 2021, 9, 632198. [Google Scholar] [CrossRef]
- Aldana-Masangkay, G.I.; Sakamoto, K.M. The Role of HDAC6 in Cancer. J. Biomed. Biotechnol. 2011, 2011, 875824. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, E.; Jin, S.; Thelen, K.; Biswas, A.; Richard, S.; Morleo, M.; Mansini, A.; Holtorf, S.; Carbone, F.; Pastore, N.; et al. HDAC6-Dependent Ciliophagy Is Involved in Ciliary Loss and Cholangiocarcinoma Growth in Human Cells and Murine Models. Am. J. Physiol.-Gastrointest. Liver Physiol. 2020, 318, G1022–G1033. [Google Scholar] [CrossRef]
- Hezel, A.F.; Gurumurthy, S.; Granot, Z.; Swisa, A.; Chu, G.C.; Bailey, G.; Dor, Y.; Bardeesy, N.; DePinho, R.A. Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms. Mol. Cell. Biol. 2008, 28, 2414–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pampliega, O.; Orhon, I.; Patel, B.; Sridhar, S.; Díaz-Carretero, A.; Beau, I.; Codogno, P.; Satir, B.H.; Satir, P.; Cuervo, A.M. Functional Interaction between Autophagy and Ciliogenesis. Nature 2013, 502, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Ma, M. Cilia and Polycystic Kidney Disease. Semin. Cell Dev. Biol. 2021, 110, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.V.; Maranto, A.; Palicharla, V.R.; Hwang, S.-H.; Mukhopadhyay, S.; Qian, F. Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis. Front. Mol. Biosci. 2022, 9. [Google Scholar] [CrossRef]
- Seeger-Nukpezah, T.; Geynisman, D.M.; Nikonova, A.S.; Benzing, T.; Golemis, E.A. The Hallmarks of Cancer: Relevance to the Pathogenesis of Polycystic Kidney Disease. Nat. Rev. Nephrol. 2015, 11, 515–534. [Google Scholar] [CrossRef] [Green Version]
- Gargalionis, A.N.; Korkolopoulou, P.; Farmaki, E.; Piperi, C.; Dalagiorgou, G.; Adamopoulos, C.; Levidou, G.; Saetta, A.; Fragkou, P.; Tsioli, P.; et al. Polycystin-1 and Polycystin-2 Are Involved in the Acquisition of Aggressive Phenotypes in Colorectal Cancer. Int. J. Cancer 2015, 136, 1515–1527. [Google Scholar] [CrossRef]
- Zhang, K.; Ye, C.; Zhou, Q.; Zheng, R.; Lv, X.; Chen, Y.; Hu, Z.; Guo, H.; Zhang, Z.; Wang, Y.; et al. PKD1 Inhibits Cancer Cells Migration and Invasion via Wnt Signaling Pathwayin Vitro. Cell Biochem. Funct. 2007, 25, 767–774. [Google Scholar] [CrossRef]
- Bian, G.-H.; Cao, G.; Lv, X.-Y.; Li, Q.-W.; Sun, H.; Xiao, Y.; Ai, J.-Z.; Yang, Q.-T.; Duan, J.-J.; Wang, Y.-D.; et al. Down-Regulation of Pkd2 by SiRNAs Suppresses Cell–Cell Adhesion in the Mouse Melanoma Cells. Mol. Biol. Rep. 2010, 37, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Keith, D.S.; Torres, V.E.; King, B.F.; Zincki, H.; Farrow, G.M. Renal Cell Carcinoma in Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 1994, 4, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Hemal, A.K.; Khaitan, A.; Singh, I.; Kumar, M. Renal Cell Carcinoma in Cases of Adult Polycystic Kidney Disease: Changing Diagnostic and Therapeutic Implications. Urol. Int. 2000, 64, 9–12. [Google Scholar] [CrossRef]
- Orskov, B.; Sorensen, V.R.; Feldt-Rasmussen, B.; Strandgaard, S. Changes in Causes of Death and Risk of Cancer in Danish Patients with Autosomal Dominant Polycystic Kidney Disease and End-Stage Renal Disease. Nephrol. Dial. Transplant. 2012, 27, 1607–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajj, P.; Ferlicot, S.; Massoud, W.; Awad, A.; Hammoudi, Y.; Charpentier, B.; Durrbach, A.; Droupy, S.; Benoît, G. Prevalence of Renal Cell Carcinoma in Patients with Autosomal Dominant Polycystic Kidney Disease and Chronic Renal Failure. Urology 2009, 74, 631–634. [Google Scholar] [CrossRef]
- Wetmore, J.B.; Calvet, J.P.; Yu, A.S.L.; Lynch, C.F.; Wang, C.J.; Kasiske, B.L.; Engels, E.A. Polycystic Kidney Disease and Cancer after Renal Transplantation. J. Am. Soc. Nephrol. 2014, 25, 2335–2341. [Google Scholar] [CrossRef] [Green Version]
- Gradilone, S.A.; Pisarello, M.J.; LaRusso, N.F. Primary Cilia in Tumor Biology: The Primary Cilium as a Therapeutic Target in Cholangiocarcinoma. Curr. Drug Targets 2015, 18, 958–963. [Google Scholar] [CrossRef] [Green Version]
- Pant, K.; Peixoto, E.; Richard, S.; Biswas, A.; O’Sullivan, M.G.; Giama, N.; Ha, Y.; Yin, J.; Carotenuto, P.; Salati, M.; et al. Histone Deacetylase Sirtuin 1 Promotes Loss of Primary Cilia in Cholangiocarcinoma. Hepatology 2021, 74, 3235–3248. [Google Scholar] [CrossRef]
- Youn, Y.H.; Hou, S.; Wu, C.-C.; Kawauchi, D.; Orr, B.A.; Robinson, G.W.; Finkelstein, D.; Taketo, M.M.; Gilbertson, R.J.; Roussel, M.F.; et al. Primary Cilia Control Translation and the Cell Cycle in Medulloblastoma. Genes Dev. 2022, 36, 737–751. [Google Scholar] [CrossRef]
- Moser, J.J.; Fritzler, M.J.; Rattner, J.B. Primary Ciliogenesis Defects Are Associated with Human Astrocytoma/Glioblastoma Cells. BMC Cancer 2009, 9, 448. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, S.; Singh, A.; Khiabanian, H. Cilium Expression Score Predicts Glioma Survival. Front. Genet. 2021, 12, 758391. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Zhou, H.; Xiang, R. Primary Cilia–Related Pathways Moderate the Development and Therapy Resistance of Glioblastoma. Front. Oncol. 2021, 11, 718995. [Google Scholar] [CrossRef]
- Bakshi, A.; Chaudhary, S.C.; Rana, M.; Elmets, C.A.; Athar, M. Basal Cell Carcinoma Pathogenesis and Therapy Involving Hedgehog Signaling and Beyond. Mol. Carcinog. 2017, 56, 2543–2557. [Google Scholar] [CrossRef] [Green Version]
- Kuonen, F.; Huskey, N.E.; Shankar, G.; Jaju, P.; Whitson, R.J.; Rieger, K.E.; Atwood, S.X.; Sarin, K.Y.; Oro, A.E. Loss of Primary Cilia Drives Switching from Hedgehog to Ras/MAPK Pathway in Resistant Basal Cell Carcinoma. J. Investig. Dermatol. 2019, 139, 1439–1448. [Google Scholar] [CrossRef]
- Kim, J.; Dabiri, S.; Seeley, E.S. Primary Cilium Depletion Typifies Cutaneous Melanoma In Situ and Malignant Melanoma. PLoS ONE 2011, 6, e27410. [Google Scholar] [CrossRef]
- Zingg, D.; Debbache, J.; Peña-Hernández, R.; Antunes, A.T.; Schaefer, S.M.; Cheng, P.F.; Zimmerli, D.; Haeusel, J.; Calçada, R.R.; Tuncer, E.; et al. EZH2-Mediated Primary Cilium Deconstruction Drives Metastatic Melanoma Formation. Cancer Cell 2018, 34, 69–84. [Google Scholar] [CrossRef]
- Carotenuto, P.; Romano, A.; Barbato, A.; Quadrano, P.; Brillante, S.; Volpe, M.; Ferrante, L.; Tammaro, R.; Morleo, M.; De Cegli, R.; et al. Targeting the MITF/APAF-1 Axis as Salvage Therapy for MAPK Inhibitors in Resistant Melanoma. Cell Rep. 2022, 41, 111601. [Google Scholar] [CrossRef]
- Uebel, A.; Kewitz-Hempel, S.; Willscher, E.; Gebhardt, K.; Sunderkötter, C.; Gerloff, D. Resistance to BRAF Inhibitors: EZH2 and Its Downstream Targets as Potential Therapeutic Options in Melanoma. Int. J. Mol. Sci. 2023, 24, 1963. [Google Scholar] [CrossRef]
- Paul, C.; Tang, R.; Longobardi, C.; Lattanzio, R.; Eguether, T.; Turali, H.; Bremond, J.; Maurizy, C.; Gabola, M.; Poupeau, S.; et al. Loss of Primary Cilia Promotes Inflammation and Carcinogenesis. EMBO Rep. 2022, 23, e55687. [Google Scholar] [CrossRef]
- Dvorak, J.; Hadzi Nikolov, D.; Dusek, L.; Filipova, A.; Richter, I.; Buka, D.; Ryska, A.; Mokry, J.; Filip, S.; Melichar, B.; et al. Prognostic Significance of the Frequency of Primary Cilia in Cells of Small Bowel and Colorectal Adenocarcinoma. J. BUON 2016, 21, 1233–1241. [Google Scholar]
- Sénicourt, B.; Boudjadi, S.; Carrier, J.C.; Beaulieu, J.-F. Neoexpression of a Functional Primary Cilium in Colorectal Cancer Cells. Heliyon 2016, 2, e00109. [Google Scholar] [CrossRef] [Green Version]
- Rocha, C.; Papon, L.; Cacheux, W.; Marques Sousa, P.; Lascano, V.; Tort, O.; Giordano, T.; Vacher, S.; Lemmers, B.; Mariani, P.; et al. Tubulin Glycylases Are Required for Primary Cilia, Control of Cell Proliferation and Tumor Development in Colon. EMBO J. 2014, 33, 2247–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Previdi, M.C.; Carotenuto, P.; Zito, D.; Pandolfo, R.; Braconi, C. Noncoding RNAs as Novel Biomarkers in Pancreatic Cancer: What Do We Know? Future Oncology. 2017, 13, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carotenuto, P.; Fassan, M.; Pandolfo, R.; Lampis, A.; Vicentini, C.; Cascione, L.; Paulus-Hock, V.; Boulter, L.; Guest, R.; Quagliata, L.; et al. Wnt Signalling Modulates Transcribed-Ultraconserved Regions in Hepatobiliary Cancers. Gut 2017, 66, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Lampis, A.; Carotenuto, P.; Vlachogiannis, G.; Cascione, L.; Hedayat, S.; Burke, R.; Clarke, P.; Bosma, E.; Simbolo, M.; Scarpa, A.; et al. MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma. Gastroenterology 2018, 154, 1066–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carotenuto, P.; Hedayat, S.; Fassan, M.; Cardinale, V.; Lampis, A.; Guzzardo, V.; Vicentini, C.; Scarpa, A.; Cascione, L.; Costantini, D.; et al. Modulation of Biliary Cancer Chemo-Resistance Through MicroRNA-Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology 2020, 72. [Google Scholar] [CrossRef] [Green Version]
- Barbato, A.; Piscopo, F.; Salati, M.; Reggiani-Bonetti, L.; Franco, B.; Carotenuto, P. Micro-RNA in Cholangiocarcinoma: Implications for Diagnosis, Prognosis, and Therapy. J. Mol. Pathol. 2022, 3, 88–103. [Google Scholar] [CrossRef]
- Mansini, A.P.; Lorenzo Pisarello, M.J.; Thelen, K.M.; Cruz-Reyes, M.; Peixoto, E.; Jin, S.; Howard, B.N.; Trussoni, C.E.; Gajdos, G.B.; LaRusso, N.F.; et al. MicroRNA (MiR)-433 and MiR-22 Dysregulations Induce Histone-Deacetylase-6 Overexpression and Ciliary Loss in Cholangiocarcinoma. Hepatology 2018, 68, 561–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeley, E.S.; Carrière, C.; Goetze, T.; Longnecker, D.S.; Korc, M. Pancreatic Cancer and Precursor Pancreatic Intraepithelial Neoplasia Lesions Are Devoid of Primary Cilia. Cancer Res. 2009, 69, 422–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quilichini, E.; Fabre, M.; Dirami, T.; Stedman, A.; de Vas, M.; Ozguc, O.; Pasek, R.C.; Cereghini, S.; Morillon, L.; Guerra, C.; et al. Pancreatic Ductal Deletion of Hnf1b Disrupts Exocrine Homeostasis, Leads to Pancreatitis, and Facilitates Tumorigenesis. Cell Mol. Gastroenterol. Hepatol. 2019, 8, 487–511. [Google Scholar] [CrossRef] [Green Version]
- Carotenuto, P.; Roma, C.; Rachiglio, A.M.; Tatangelo, F.; Pinto, C.; Ciardiello, F.; Nappi, O.; Iaffaioli, V.; Botti, G.; Normanno, N. Detection of KRAS Mutations in Colorectal Carcinoma Patients with an Integrated PCR/Sequencing and Real-Time PCR Approach. Pharmacogenomics 2010, 11, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Emoto, K.; Masugi, Y.; Yamazaki, K.; Effendi, K.; Tsujikawa, H.; Tanabe, M.; Kitagawa, Y.; Sakamoto, M. Presence of Primary Cilia in Cancer Cells Correlates with Prognosis of Pancreatic Ductal Adenocarcinoma. Hum. Pathol. 2014, 45, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Schimmack, S.; Kneller, S.; Dadabaeva, N.; Bergmann, F.; Taylor, A.; Hackert, T.; Werner, J.; Strobel, O. Epithelial to Stromal Re-Distribution of Primary Cilia during Pancreatic Carcinogenesis. PLoS ONE 2016, 11, e0164231. [Google Scholar] [CrossRef] [Green Version]
- Ghidini, M.; Cascione, L.; Carotenuto, P.; Lampis, A.; Trevisani, F.; Previdi, M.C.; Hahne, J.C.; Said-Huntingford, I.; Raj, M.; Zerbi, A.; et al. Characterisation of the Immune-Related Transcriptome in Resected Biliary Tract Cancers. Eur. J. Cancer 2017, 86, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Nakazono, K.; Tokuda, M.; Mashima, Y.; Dynlacht, B.D.; Itoh, H. HDAC 2 Promotes Loss of Primary Cilia in Pancreatic Ductal Adenocarcinoma. EMBO Rep. 2017, 18, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.-Z.; Cai, Z.; Shi, S.; Jiang, H.; Shang, Y.-R.; Ma, N.; Wang, J.-J.; Guan, D.-X.; Chen, T.-W.; Rong, Y.-F.; et al. Cilia Loss Sensitizes Cells to Transformation by Activating the Mevalonate Pathway. J. Exp. Med. 2018, 215, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Menzl, I.; Lebeau, L.; Pandey, R.; Hassounah, N.B.; Li, F.W.; Nagle, R.; Weihs, K.; McDermott, K.M. Loss of Primary Cilia Occurs Early in Breast Cancer Development. Cilia 2014, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Yuan, K.; Frolova, N.; Xie, Y.; Wang, D.; Cook, L.; Kwon, Y.-J.; Steg, A.D.; Serra, R.; Frost, A.R. Primary Cilia Are Decreased in Breast Cancer: Analysis of a Collection of Human Breast Cancer Cell Lines and Tissues. J. Histochem. Cytochem. 2010, 58, 857–870. [Google Scholar] [CrossRef] [Green Version]
- Légaré, S.; Chabot, C.; Basik, M. SPEN, a New Player in Primary Cilia Formation and Cell Migration in Breast Cancer. Breast Cancer Res. 2017, 19, 104. [Google Scholar] [CrossRef]
- Hassounah, N.B.; Nagle, R.; Saboda, K.; Roe, D.J.; Dalkin, B.L.; McDermott, K.M. Primary Cilia Are Lost in Preinvasive and Invasive Prostate Cancer. PLoS ONE 2013, 8, e68521. [Google Scholar] [CrossRef] [Green Version]
- Basten, S.G.; Willekers, S.; Vermaat, J.S.; Slaats, G.G.; Voest, E.E.; van Diest, P.J.; Giles, R.H. Reduced Cilia Frequencies in Human Renal Cell Carcinomas versus Neighboring Parenchymal Tissue. Cilia 2013, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nacchio, M.; Pisapia, P.; Pepe, F.; Russo, G.; Vigliar, E.; Porcelli, T.; Luongo, C.; Iaccarino, A.; Pagni, F.; Salvatore, D.; et al. Predictive Molecular Pathology in Metastatic Thyroid Cancer: The Role of RET Fusions. Expert. Rev. Endocrinol. Metab. 2022, 17, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, K.C.; Sul, H.J.; Hong, H.J.; Kim, K.-H.; Kero, J.; Shong, M. Loss of Primary Cilia Promotes Mitochondria-Dependent Apoptosis in Thyroid Cancer. Sci. Rep. 2021, 11, 4181. [Google Scholar] [CrossRef] [PubMed]
- Nita, A.; Abraham, S.P.; Krejci, P.; Bosakova, M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021, 10, 1445. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-M.; Su, F.; Kalyana-Sundaram, S.; Khazanov, N.; Ateeq, B.; Cao, X.; Lonigro, R.J.; Vats, P.; Wang, R.; Lin, S.-F.; et al. Identification of Targetable FGFR Gene Fusions in Diverse Cancers. Cancer Discov. 2013, 3, 636–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Andrea, C.E.; Zhu, J.-F.; Jin, H.; Bovée, J.V.; Jones, K.B. Cell Cycle Deregulation and Mosaic Loss of Ext1 Drive Peripheral Chondrosarcomagenesis in the Mouse and Reveal an Intrinsic Cilia Deficiency. J. Pathol. 2015, 236, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Guo, F.; Cheng, W.; Zhang, J.; Huang, J.; Wang, R.; Ma, Z.; Xu, K. HDAC6 Inhibition Suppresses Chondrosarcoma by Restoring the Expression of Primary Cilia. Oncol. Rep. 2017, 38, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Remo, A.; Grillo, F.; Mastracci, L.; Simbolo, M.; Fassan, M.; Cecchini, M.P.; Miscio, G.; Sassano, A.; Parente, P.; Vanoli, A.; et al. Loss of Primary Cilia Potentiates BRAF/MAPK Pathway Activation in Rhabdoid Colorectal Carcinoma: A Series of 21 Cases Showing Ciliary Rootlet CoiledCoil (CROCC) Alterations. Genes 2023, 14, 984. [Google Scholar] [CrossRef]
- Pancione, M.; Di Blasi, A.; Sabatino, L.; Fucci, A.; Dalena, A.M.; Palombi, N.; Carotenuto, P.; Aquino, G.; Daniele, B.; Normanno, N.; et al. A Novel Case of Rhabdoid Colon Carcinoma Associated with a Positive CpG Island Methylator Phenotype and BRAF Mutation. Hum. Pathol. 2011, 42, 1047–1052. [Google Scholar] [CrossRef]
- Fu, W.; Asp, P.; Canter, B.; Dynlacht, B.D. Primary Cilia Control Hedgehog Signaling during Muscle Differentiation and Are Deregulated in Rhabdomyosarcoma. Proc. Natl. Acad. Sci. USA 2014, 111, 9151–9156. [Google Scholar] [CrossRef]
- Liu, X.; Shen, Q.; Yu, T.; Huang, H.; Zhang, Z.; Ding, J.; Tang, Y.; Xu, N.; Yue, S. Small GTPase Arl6 Controls RH30 Rhabdomyosarcoma Cell Growth through Ciliogenesis and Hedgehog Signaling. Cell Biosci. 2016, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front. Oncol. 2020, 9, 1547. [Google Scholar] [CrossRef] [Green Version]
- Loskutov, Y.V.; Griffin, C.L.; Marinak, K.M.; Bobko, A.; Margaryan, N.V.; Geldenhuys, W.J.; Sarkaria, J.N.; Pugacheva, E.N. LPA Signaling Is Regulated through the Primary Cilium: A Novel Target in Glioblastoma. Oncogene 2018, 37, 1457–1471. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Roine, N.; Mäkelä, T.P. CCRK Depletion Inhibits Glioblastoma Cell Proliferation in a Cilium-dependent Manner. EMBO Rep. 2013, 14, 741–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caligiuri, M.; Becker, F.; Murthi, K.; Kaplan, F.; Dedier, S.; Kaufmann, C.; Machl, A.; Zybarth, G.; Richard, J.; Bockovich, N.; et al. A Proteome-Wide CDK/CRK-Specific Kinase Inhibitor Promotes Tumor Cell Death in the Absence of Cell Cycle Progression. Chem. Biol. 2005, 12, 1103–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansini, A.P.; Peixoto, E.; Jin, S.; Richard, S.; Gradilone, S.A. The Chemosensory Function of Primary Cilia Regulates Cholangiocyte Migration, Invasion, and Tumor Growth. Hepatology 2019, 69, 1582–1598. [Google Scholar] [CrossRef]
- Sabanovic, B.; Giulietti, M.; Piva, F. Role of Primary Cilium in Pancreatic Ductal Adenocarcinoma (Review). Int. J. Oncol. 2020, 57, 1095–1102. [Google Scholar] [CrossRef]
- Do, P.A.; Lee, C.H. The Role of CDK5 in Tumours and Tumour Microenvironments. Cancers 2020, 13, 101. [Google Scholar] [CrossRef]
- Husson, H.; Moreno, S.; Smith, L.A.; Smith, M.M.; Russo, R.J.; Pitstick, R.; Sergeev, M.; Ledbetter, S.R.; Bukanov, N.O.; Lane, M.; et al. Reduction of Ciliary Length through Pharmacologic or Genetic Inhibition of CDK5 Attenuates Polycystic Kidney Disease in a Model of Nephronophthisis. Hum. Mol. Genet. 2016, 25, 2245–2255. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.X.; Turner, J.S.; Brautigan, D.L.; Fu, Z. Modulation of Primary Cilia by Alvocidib Inhibition of CILK1. Int. J. Mol. Sci. 2022, 23, 8121. [Google Scholar] [CrossRef]
- Snedecor, E.R.; Sung, C.C.; Moncayo, A.; Rothstein, B.E.; Mockler, D.C.; Tonnesen, M.G.; Jones, E.C.; Fujita, M.; Clark, R.A.; Shroyer, K.R.; et al. Loss of Primary Cilia in Melanoma Cells Is Likely Independent of Proliferation and Cell Cycle Progression. J. Investig. Dermatol. 2015, 135, 1456–1458. [Google Scholar] [CrossRef] [Green Version]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-Intrinsic β-Catenin Signalling Prevents Anti-Tumour Immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Macias, R.I.R.; Banales, J.M.; Sangro, B.; Muntané, J.; Avila, M.A.; Lozano, E.; Perugorria, M.J.; Padillo, F.J.; Bujanda, L.; Marin, J.J.G. The Search for Novel Diagnostic and Prognostic Biomarkers in Cholangiocarcinoma. Biochim. Et. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 1468–1477. [Google Scholar] [CrossRef]
- Nobutani, K.; Shimono, Y.; Yoshida, M.; Mizutani, K.; Minami, A.; Kono, S.; Mukohara, T.; Yamasaki, T.; Itoh, T.; Takao, S.; et al. Absence of Primary Cilia in Cell Cycle-Arrested Human Breast Cancer Cells. Genes Cells 2014, 19, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Franco, B.; Clarke, P.; Carotenuto, P. Pemigatinib. Fibroblast Growth Factor Receptor Inhibitor, Treatment of Cholangiocarcinoma. Drugs Future 2019, 44, 923. [Google Scholar] [CrossRef]
- Schraml, P.; Frew, I.J.; Thoma, C.R.; Boysen, G.; Struckmann, K.; Krek, W.; Moch, H. Sporadic Clear Cell Renal Cell Carcinoma but Not the Papillary Type Is Characterized by Severely Reduced Frequency of Primary Cilia. Mod. Pathol. 2009, 22, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, M.A.; Ferradaes, T.M.; Riffault, M.; Hoey, D.A. Ciliotherapy Treatments to Enhance Biochemically- and Biophysically-Induced Mesenchymal Stem Cell Osteogenesis: A Comparison Study. Cell Mol. Bioeng. 2019, 12, 53–67. [Google Scholar] [CrossRef]
- Pala, R.; Mohieldin, A.M.; Sherpa, R.T.; Kathem, S.H.; Shamloo, K.; Luan, Z.; Zhou, J.; Zheng, J.-G.; Ahsan, A.; Nauli, S.M. Ciliotherapy: Remote Control of Primary Cilia Movement and Function by Magnetic Nanoparticles. ACS Nano 2019, 13, 3555–3572. [Google Scholar] [CrossRef]
- Cebotaru, L.; Liu, Q.; Yanda, M.K.; Boinot, C.; Outeda, P.; Huso, D.L.; Watnick, T.; Guggino, W.B.; Cebotaru, V. Inhibition of Histone Deacetylase 6 Activity Reduces Cyst Growth in Polycystic Kidney Disease. Kidney Int. 2016, 90, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Kramann, R.; Fleig, S.V.; Schneider, R.K.; Fabian, S.L.; DiRocco, D.P.; Maarouf, O.; Wongboonsin, J.; Ikeda, Y.; Heckl, D.; Chang, S.L.; et al. Pharmacological GLI2 Inhibition Prevents Myofibroblast Cell-Cycle Progression and Reduces Kidney Fibrosis. J. Clin. Investig. 2015, 125, 2935–2951. [Google Scholar] [CrossRef] [Green Version]
- Woo, Y.M.; Bae, J.-B.; Oh, Y.-H.; Lee, Y.-G.; Lee, M.J.; Park, E.Y.; Choi, J.-K.; Lee, S.; Shin, Y.; Lyu, J.; et al. Genome-Wide Methylation Profiling of ADPKD Identified Epigenetically Regulated Genes Associated with Renal Cyst Development. Hum. Genet. 2014, 133, 281–297. [Google Scholar] [CrossRef]
- Ischenko, I.; Petrenko, O.; Hayman, M.J. A MEK/PI3K/HDAC Inhibitor Combination Therapy for KRAS Mutant Pancreatic Cancer Cells. Oncotarget 2015, 6, 15814–15827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Willemarck, N.; Talebi, A.; Marchand, A.; Binda, M.M.; Dehairs, J.; Rueda-Rincon, N.; Daniels, V.W.; Bagadi, M.; Raj, D.B.T.G.; et al. Identification of Drugs That Restore Primary Cilium Expression in Cancer Cells. Oncotarget 2016, 7, 9975–9992. [Google Scholar] [CrossRef] [Green Version]
- Wu, V.M.; Chen, S.C.; Arkin, M.R.; Reiter, J.F. Small Molecule Inhibitors of Smoothened Ciliary Localization and Ciliogenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 13644–13649. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, M.; Siara, M.; Sajewicz, W. G Protein-Coupled Receptors: Abnormalities in Signal Transmission, Disease States and Pharmacotherapy. Acta Pol. Pharm. 2014, 71, 229–243. [Google Scholar] [PubMed]
- Thomsen, W.; Frazer, J.; Unett, D. Functional Assays for Screening GPCR Targets. Curr. Opin. Biotechnol. 2005, 16, 655–665. [Google Scholar] [CrossRef]
- Geoerger, B.; Aerts, I.; Casanova, M.; Chisholm, J.C.; Hargrave, D.R.; Leary, S.; Ashley, D.M.; Bouffet, E.; MacDonald, T.; Hurh, E.; et al. A Phase I/II Study of LDE225, a Smoothened (Smo) Antagonist, in Pediatric Patients with Recurrent Medulloblastoma (MB) or Other Solid Tumors. J. Clin. Oncol. 2012, 30, 9519. [Google Scholar] [CrossRef]
- Chen, J.K.; Taipale, J.; Young, K.E.; Maiti, T.; Beachy, P.A. Small Molecule Modulation of Smoothened Activity. Proc. Natl. Acad. Sci. USA 2002, 99, 14071–14076. [Google Scholar] [CrossRef]
- Büttner, A.; Seifert, K.; Cottin, T.; Sarli, V.; Tzagkaroulaki, L.; Scholz, S.; Giannis, A. Synthesis and Biological Evaluation of SANT-2 and Analogues as Inhibitors of the Hedgehog Signaling Pathway. Bioorg. Med. Chem. 2009, 17, 4943–4954. [Google Scholar] [CrossRef]
- Rodon, J.; Tawbi, H.A.; Thomas, A.L.; Stoller, R.G.; Turtschi, C.P.; Baselga, J.; Sarantopoulos, J.; Mahalingam, D.; Shou, Y.; Moles, M.A.; et al. A Phase I, Multicenter, Open-Label, First-in-Human, Dose-Escalation Study of the Oral Smoothened Inhibitor Sonidegib (LDE225) in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2014, 20, 1900–1909. [Google Scholar] [CrossRef] [Green Version]
- LoRusso, P.M.; Rudin, C.M.; Reddy, J.C.; Tibes, R.; Weiss, G.J.; Borad, M.J.; Hann, C.L.; Brahmer, J.R.; Chang, I.; Darbonne, W.C.; et al. Phase I Trial of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Refractory, Locally Advanced or Metastatic Solid Tumors. Clin. Cancer Res. 2011, 17, 2502–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Davidow, L.; Arvanites, A.C.; Blanchard, J.; Lam, K.; Xu, K.; Oza, V.; Yoo, J.W.; Ng, J.M.Y.; Curran, T.; et al. Glucocorticoid Compounds Modify Smoothened Localization and Hedgehog Pathway Activity. Chem. Biol. 2012, 19, 972–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in Cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene/Gene Signatures | Molecular Pathway | Type of Cancer | Clinical Implication | References |
---|---|---|---|---|
PKD1; PKD2 | Wnt; RTK; Mechanotransduction | Colorectal, Melanoma | Therapeutic Targeting | [118] |
PTCH1; CTNNB1 | HH; Wnt | Medulloblastoma | Diagnostic biomarkers | [68] |
SHH; PTCH1; SMO; GLI | HH | Glioblastoma | Therapeutic Targeting | [132] |
MGMT | HH | Glioblastoma/Glioma | Drug Resistance | [132,172] |
LPAR1 | GPCR | Glioblastoma | Therapeutic Targeting | [173] |
CCRK | AR, Wnt, AKT, EZH2, and NF-κB, HH | Glioblastoma | Therapeutic Targeting | [174,175] |
LRGUK, NSUN7, LRRC27, SPAG17, EFHB, IFT27, DZIP1L, FOLR1, RGS22, TEX9, GALNT3, and GLB1L | Cilium-Associated Genes | Glioma | Prognostic Biomarkers | [131] |
EZH2 | Wnt/b-Catenin | Melanoma | Therapeutic Targeting; Diagnostic Biomarkers | [136] |
PTCH, SMO; GLI1 | HH | Colorectal Cancer | Diagnostic and Predictive Biomarkers | [141] |
IFT88 | HH; MAPK | Cholangiocarcinoma; Thyroid Cancers | Diagnostic Biomarker | [176] |
HDAC6 | HH; MAPK | Cholangiocarcinoma; Chondrosarcoma | Therapeutic Targeting; Diagnostic, Predictive Biomarkers | [57,113] |
SIRT1 | HH; AKT; IL6 | Cholangiocarcinoma | Therapeutic Targeting | [128] |
HDAC2 | KRAS | Pancreatic Ductal Adenocarcinoma | Therapeutic Targeting | [155] |
AURKA; INPP5E | Cilium-Associated Genes | Pancreatic Ductal Adenocarcinoma | Prognostic Biomarkers | [177] |
SPEN | ERα | Breast Cancer | Prognostic, predictive Biomarkers | [159] |
CDK5 | Cell-Cycle-Related | Several Cancers | Prognostic, predictive Biomarkers; Therapeutic targeting | [178,179] |
CILK1 | HH | Several Cancers | Therapeutic targeting | [178,180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carotenuto, P.; Gradilone, S.A.; Franco, B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes 2023, 14, 1428. https://doi.org/10.3390/genes14071428
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes. 2023; 14(7):1428. https://doi.org/10.3390/genes14071428
Chicago/Turabian StyleCarotenuto, Pietro, Sergio A. Gradilone, and Brunella Franco. 2023. "Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies" Genes 14, no. 7: 1428. https://doi.org/10.3390/genes14071428
APA StyleCarotenuto, P., Gradilone, S. A., & Franco, B. (2023). Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes, 14(7), 1428. https://doi.org/10.3390/genes14071428