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Abstract: Farmers in northern and central Indian regions prefer to plant wheat early in the season
to take advantage of the remaining soil moisture. By planting crops before the start of the season,
it is possible to extend the time frame for spring wheat. The early-wheat-establishment experiment
began in the 2017 growing season at the Borlaug Institute for South Asia (BISA) in Ludhiana,
India, and, after three years of intensive study, numerous agronomic, physiological, and yield data
points were gathered. This study aimed to identify wheat lines suitable for early establishment
through an analysis of the agro-morphological traits and the genetic mapping of associated genes
or quantitative trait loci (QTLs). Advancing the planting schedule by two–three weeks proved to
be advantageous in terms of providing a longer duration for crop growth and reducing the need for
irrigation. This is attributed to the presence of residual soil moisture resulting from the monsoon
season. Early sowing facilitated the selection of genotypes able to withstand early elevated
temperatures and a prolonged phenological period. The ideotype, which includes increased
photo-growing degree days for booting and heading, as well as a longer grain-filling period, is
better suited to early planting than timely planting. Senescence was delayed in combination
with a slower rate of canopy temperature rise, which was an excellent trait for early-adapted
ideotypes. Thus, a novel approach to wheat breeding would include a screening of genotypes for
early planting and an ideotype design with consistent and appropriate features. A genome-wide
association study (GWAS) revealed multiple QTLs linked to early adaptation in terms of the yield
and its contributing traits. Among them, 44 novel QTLs were also found along with known loci.
Furthermore, the study discovered that the phenology regulatory genes, such as Vrn and Ppd, are
in the same genomic region, thereby contributing to early adaptation.

Keywords: agro-morphological traits; early planting; GWAS; ideotype design; phenology

1. Introduction

The prevailing notion is that extending the crop duration for cultivation by a desig-
nated period may offset the decline in crop productivity resulting from the rise in seasonal
temperatures. This has been exemplified by a few varieties of wheat in India, which man-
ifested accelerations of 4–9 days in the onset of flowering [1]. By sowing spring wheat
before the standard planting period, it may be feasible to extend the duration of the plant-
ing intervals. For instance, initiating the planting process from one to two weeks ahead
led to a significantly extended crop growth period, accompanied by the elimination of
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one irrigation requirement owing to the presence of residual moisture after the monsoon
season. However, it was expected that an unfavorable year would lead to vulnerability
and eventually reduce crop productivity [2]. Warmer temperatures in the early stages
of the growing season accelerate the occurrence of heading and anthesis during grain
filling, while cooler temperatures later on lead to a delay in maturity. Irrespective of the
constancy of the mean seasonal temperature, there is a positive correlation between a
decrease in temperature and a reduction in yield, while an increase in yield is observed
with a temperature rise [3]. Because the monsoon season is the wettest, farmers in many
northwestern and central Indian regions would prefer to sow wheat earlier in the season
to capitalize on the available soil moisture. If wheat genotypes are sown earlier than the
recommended planting date, then they might experience elevated temperatures during root
development, leaf development, and emergence, significantly in advance. From seeding to
emergence, the optimal temperature range is between 20.4 and 23.6 ◦C, with the highest
temperatures recorded reaching between 31.8 and 33.6 ◦C [4]. Root development during
the vegetative stage thrives at an ideal temperature of 20 ◦C, whereas shoot growth prefers
significantly lower temperatures [5]. Based on a research study, it was determined that
the most favorable temperature range for the emergence of leaves is between 21.3 and
24.3 ◦C [6], whereas it is 22 ◦C according to another study [7].

There is a lack of understanding about how genes regulate the early stages of heat
tolerance and the adaptive response. Many of the key genes involved in adaptation
have been identified in recent years. These include genes involved in the vernalization
reaction (Vrn), photoperiod sensitivity (Ppd), and “earliness per se” (Eps) in terms of the
growth rate [8–11]. However, there are significant differences in our understanding of
the implications of potential allele combinations for environment-specific adaptations.
On the one hand, the Vrn genes regulate the distinction between spring and winter
wheat by specifying the number of chilling hours necessary for the wheat plant to
initiate flowering. On the other hand, the Ppd genes are crucial in postponing the
flowering time during spring, once the vernalization requirement has been met. The
effects of the Eps loci may enable more nuanced adjustments to the plant’s life cycle,
facilitating regional adaptation. Several areas possibly harboring Eps genes have been
mapped out by Quantitative trait locus quantitative trait loci (QTL) investigations [12,13].
Allelic heterogeneity appears to be prevalent in various germplasms for specific QTLs,
including those found on chromosomes 4B, 6A, and 7D. The genes Vrn, Ppd, and Eps
also contribute to epistatic interactions [14,15]. As a result, numerous combinations of
alleles are likely to influence the regulation of growth patterns and optimal adaptation
to particular climates.

Planting wheat before the season starts has several adverse effects on the plant’s
growth and development. Early planting may increase the risk of unproductive vegetative
growth, reduce tillering, and make plants more susceptible to drought in dry conditions.
The high soil temperatures in the planting stage may reduce the germination percentage
and coleoptile length. Furthermore, the deeply planted seed may not have a long enough
coleoptile to split through the soil surface, leading to lower emergence and less adequate
stand establishment. The early planting of traditional and short-duration varieties, with
photoperiod insensitivity, leads to early heading and maturity, resulting in yield reduction.
Therefore, selecting advanced breeding lines suitable for early planting may be difficult
but it is not impossible, as diverse germplasms can give these variations to show a better
adaptive capacity in early planting.

The mapping of agronomic and phenological traits is a continuous process in wheat
development. QTL mapping has been widely used in wheat breeding to understand the
probable genetic control of loci, genes, or even genome segments in biotic and abiotic
stress adaptation or resistance. Early wheat establishment was initiated at the BISA in
Ludhiana, India, in the 2017 season, and, after three years of extensive research, several
data points were generated. The early-planted wheat lines had three theoretical types of
adaptation: (a) suitable for early- as well as timely-planted conditions, (b) suitable for early
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planting but not suitable for timely planting, and (c) suitable for timely planting but not
suitable for early planting. This adaptation expresses phenotypically with variation in
morpho-physiological traits, and genotypically with the effect of different genes. Diseases
may also be a limiting factor for early-established plants.

With this perspective in mind, the current study focused on finding wheat lines for
early establishment by analyzing agro-morphological features and mapping genes or QTLs
associated with early-adaptation features. A few agro-morphological traits supporting
genotypes for excellent performance in early planting have already been identified in
our previous study, along with the ideotype selection procedure [16]. The major research
questions to identify QTLs associated with adaptation to early planting for this study are
as follows:

(a) Can we identify the major QTLs important for the early establishment of wheat?
(b) What are the QTLs associated with higher performances in both planting conditions?
(c) Are those QTLs linked with major genes underlying adaptation to early planting?

2. Materials and Methods
2.1. Phenotyping

Three distinct sets of advanced spring wheat (Triticum aestivum L.) breeding lines were
evaluated during multiple wheat seasons from 2017 to 2020. Early sowing was performed
at the Borlaug Institute for South Asia (BISA) in Ludhiana, Punjab, India, as part of the
study’s hypothesis to extend the wheat-growing window. As Punjab is India’s high-yield-
potential wheat-growing zone, early planting should increase wheat production and have
a significant impact on the region’s agricultural system. The germplasm lines used in this
study were developed at CIMMYT, Mexico, and designated as a South Asia Bread Wheat
Genomic Prediction Yield Trial (SABWGPYT). Six hundred genotypes, including checks,
were planted in an α lattice design [17] with two replications in the first week of November,
referred to as a timely (or normal) seeded experiment. In contrast, the same genotypes
were planted for early planting, around three weeks earlier than the regular timetable,
with a range of 17 days in season 1, 24 days in season 2, and 23 days in season 3. Each
replicated block was split into six sub-blocks, each with ten plots. Each plot had six rows
and measured 1.32 m × 3.80 m. There was no difference in the seed rate (50 g per plot)
between planting early and planting on time. Standard agronomic procedures suggested
for the region were used to manage field experiments. Five irrigations were administered
starting 21 days after sowing, with additional irrigations provided throughout a 3–4-week
period, depending on weather circumstances. The following proportions of fertilizer were
applied per hectare of land: 150N:60P:40K kg.

Several morpho-physiological traits were assessed in the field for field phenotyping.
These traits were categorized according to their type. Phenological features include all
of the natural events that occur repeatedly throughout the wheat life cycle. For instance,
plant stature traits quantify the heights of the plants’ different portions. Physiological
attributes include a variety of field-observable physiological activities in wheat that can
be quantified using high-throughput phenotyping. Additionally, we gathered data on
yield and yield-contributing traits for this investigation. To minimize time and effort,
the FieldBook App (https://www.phenoapps.org/apps/; accessed on 27 April 2023)
developed by Poland Lab at Kansas State University in the United States was utilized
for high-throughput phenotyping [18].

2.1.1. Plant Phenology

The booting stage is characterized by a notable enlargement of the developing head
within the sheath of the flag leaf. Once the flag-leaf sheath begins to unwrap and the
first awns emerge, the procession is finished. Days to booting were calculated using the
date at which 50% of the plants in a plot completely emerged during the booting stage
(DTB). The heading date is defined as the point at which the tip of the head emerges from
the flag-leaf sheath before the head completely emerges but before it begins to bloom.

https://www.phenoapps.org/apps/
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When 50% of the plants in a plot had fully grown into the head stage, the days to head
(DTHD) were determined. The days between the booting and heading stages were referred
to as booting to heading days (BTH). Days to maturity (DAYSMT) were determined as
the number of days between sowing and physiological maturity. The point of ultimate
maturity was determined as the moment when the peduncle exhibited a 50% loss in its
green pigmentation. The duration between the heading stage and physiological maturity,
when the grain-filling time is taken into account, is commonly known as the heading to
maturity days, or the grain-filling duration (GFD).

2.1.2. Plant Stature

Plant height (PH) was taken by grasping a clump of spikes and measuring the distance
from the ground to the tips of the most representative spikes (excluding the awns). The
measurement of the plant’s height up to the spike base is denoted as the height up to the
spike (HUS). This height suggests the vegetative height of the plant. The spike length
(SpkLng) is the height of the spike from its base to its tip. The leaf-blade length was
measured as the flag-leaf length (FLGLFL). The flag-leaf width (FLGLFW) was estimated by
folding the leaf in half along its length and measuring its width at the crease. The following
formula, derived from prior studies, has been proposed for calculating the flag-leaf area
(FLGLFA): [19,20]: FLGLFA = FLGLF× FLGLFW× 0.75. The mean plant height and
flag-leaf traits of five randomly selected plants were measured during the grain-filling
stage and expressed in centimeters.

2.1.3. Physiological Traits

Visual assessment was conducted to determine early ground cover (EGC) or rapid
canopy closure by observing the percentage of soil covered by green tissue in each plot.
This assessment was performed by viewing the plots at a 45-degree angle to the vertical
axis. Typically, EGC is practiced during Zadok’s Growth Stage 15, which corresponds to
the 5-leaf stage of plant development. At this stage, the visibility of the ground beneath
the plant canopy is minimal in some plots. The day on which at least one plot appeared
to be completely covered by the plant canopy was chosen as the reference day for the
EGC assessment. Comparing this 100% canopy cover, we gave a visual score to each
plot as a percentage for EGC, as per the guideline proposed by previous studies [21]. An
infrared thermometer (IRT) was utilized to determine the temperature of the canopy. As
the temperature of canopies increases, they emit long-wave infrared radiation. The IRT
detects the emission and subsequently converts it into an electrical signal, which is then
represented as temperature. It is imperative to utilize the thermometer appropriately
to obtain precise outcomes. We adhered to the procedure outlined by Julian Pietragalla
(2012) [22]. The canopy temperature increases with the time from heading to maturity as
the air temperature increases. The genotype consistently maintains its cooler canopy over
the grain-filling period, which is considered a stable genotype for heat tolerance. The slope
of the canopy temperatures over time were taken as the canopy temperature increasing
rate (CTIR).

The normalized difference vegetation index (NDVI) is also extensively used to
measure vegetative greenness and the canopy photosynthetic size at ground level, as
well as from low, higher, and satellite altitudes. The field-portable NDVI sensor is used to
measure a crop’s NDVI values at a high resolution to classify the canopy for the leaf-area
index (LAI) and green-area index (GAI), biomass, and nutrient material (e.g., nitrogen).
Data may be used to forecast production, biomass accumulation and growth rate, ground
cover, early vigor, senescence rate calculation, and biotic and abiotic stress identification.
We used periodical NDVI values to calculate the senescence rates (SRs) and maximum
NDVIs of genotypes using the portable NDVI and the process mentioned by Mullan and
Mayr (2012) [23]. Plants lose their vegetative greenness at the grain-filling stage. This
loss may occur due to high disease intensity, physiological disorder and plant aging, or
even in the early stages. The loss of plant greenness is called senescence, and the rate
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of decreasing greenness over time is called the senescence rate (SR). We calculated the
SR from the periodical NDVI value simply by calculating the slope of the NDVI values
over time.

2.1.4. Thousand-Grain Weight (TGW)

The TGW is the weight of a thousand grains in grams. To collect TGW data, ImageJ
software [24] was used. For this purpose, approximately 500–1000 uncounted grains from
each plot’s seed bag were spread on a white sheet with uniform light on top. The image
was captured using an 18-megapixel Canon DSLR camera connected to the computer. The
captured image was processed using the particle count module of ImageJ software [24].

2.1.5. Grain Yield (GRYLD)

Whole plots were harvested with a Wintersteiger plot combine. All the seed bags
were dried on threshing flour under hot sun for a day before weighing. The grains were
weighted in an electric balance using the Android-based Inventory app [25] connected to
the tablet. The weight of each plot was entered automatically from the balance to the tablet.

2.1.6. Photo-Growing Degree Days (PGDDs)

Photo-growing degree days (PGDDs) combine growing degree days (GDD) and pho-
toperiod factors on wheat development between emergence and floral initiation. Growing
degree days were calculated using the method in [26], separately and in combination with
the photoperiod. The equations in [26] used for the GDD calculation are as follows:

α = ln 2/ln
(

Tmax− Tmin
Topt− Tmin

)
(1)

Numerator = 2(Tav− Tmin)α × (Topt− Tmin)α − (Tav− Tmin)2α (2)

Denominator = (Topt− Tmin)2α (3)

Then, the growing degree days are as follows:

WEDD =

(
Numerator

Denominator

)
(Topt− Tmin) (4)

where WEDD is the degree days estimated in [26]: WEDD = 0 if Tav < Tmin or
Tav > Tmax. Tmin = 0, Topt = 27.7, and Tmax = 40 were the cardinal temperatures for
WEDD computations before anthesis, whereas Tmin = 0, Topt = 32.75, and Tmax = 44 were
the cardinal temperatures after anthesis.

According to the APSIM [27] wheat module, the photoperiod factor ( fD) is calculated
as follows:

fD = 1− 0.002Rp
(
20− Lp

)2 (5)

where Lp is the day length in decimal format, Rp is the sensitivities to the photoperiod that
are cultivar-specific and specified by photo-sens in wheat.xml. The default value of Rp is 3.

Finally, the PGDDs were calculated by multiplying the WEDD by the photoperiod
factor, as follows:

PGDD = WEDD× fD (6)

2.2. Genotyping

Genome-wide association studies (GWASs) were conducted using genotyping-by-
sequencing (GBS) facilitated by next-generation sequencing (NGS) [28]. GBS is an incredibly
powerful tool for swiftly detecting genome-wide polymorphisms. Because of its simplicity,
resilience, repeatability, reduction in complexity in large complex genomes, and low time
and cost per sample, the GBS technique is a popular choice for association-mapping
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investigations [29–31]. The GBS technique entails constructing a truncated representation of
the genome, followed by adaptor ligation, pooled library PCR amplification, and multiplex
sequencing. Although several target enrichment strategies are available for complexity
reduction, restriction enzymes have been demonstrated to be favorable in terms of speed,
specificity, and the ability to target low-copy genomic locations that sequence-capture
approaches cannot reach [32]. The maize and barley GBS technique, first introduced in
2011, utilized a solitary restriction enzyme (ApeKI) and a pair of double-stranded adapters,
specifically the barcode and common adapters [32]. This method was expanded to barley
and wheat by using a two-enzyme system comprising a rare cutter (PstI) and frequent
cutter (MspI) together with Y-adapters to build consistent libraries [30]. This method
demonstrated the resilience of GBS for species with vast, complex, and polyploid genomes
without a reference sequence. Every line from all three seasons was profiled using the
GBS protocol of [31] and on an Illumina HISeq2500. SNP markers were identified using
the TASSEL v5.2.7 pipeline [33] and mapped to the Chinese Spring Wheat Assembly v1.0
reference [34]. Genotyping calls were retrieved and filtered to ensure that the percentage
of missing data per marker was less than 40%, the rate of heterozygotes was less than
10%, and the minor allele frequency was 5%. A total of 16,152 SNP markers for season 1,
16,771 SNP markers for season 2, and 12,253 SNP markers for season 3 were obtained after
filtering, and missing data were imputed using Beagle v4.1 [35]. All these filtered marker
data were obtained through the “Feed the Future Lab for Applied Wheat Genomics” of
Kansas State University, USA.

2.3. Statistical Analysis
2.3.1. Mixed-Effects Model Analysis for Multiple Environments

The study utilized a mixed-effects methodology through the application of Restricted
Residual Maximum Likelihood/Best Linear Unbiased Prediction (REML/BLUP) analy-
sis [36,37]. The statistical model is expressed as y = Xm + Zg +Wb + Ti + Qp + ε, where y
denotes the data vector. The vector m represents the effect of the measurement–replication
combination added to the overall mean, while g denotes the vector of the genetic effect.
The block effect is represented by the vector b, and i represents the vector of the genotype
×measurement effects. The vector p denotes the permanent environment, and ε represents
the vector of the residual. The incidence matrices for these effects are represented by
X, Z, W, T and Q.

The heritability was calculated utilizing the mean value, as the genotypes were repli-
cated through the implementation of blocks. The aforementioned equation was employed

to compute the heritability of the mean, where h2
gm =

σ̂2
g

[σ̂2
g+σ̂2

i /e+σ̂2
e /(eb)]

. The aforementioned

equation pertains to the estimation of genotypic variance (σ̂2
g ), the genotype–environment-

interaction variance (σ̂ 2
i ), and the residual variance

(
σ̂2

e ), given the number of environ-
ments and blocks (e and b, respectively).

2.3.2. Mixed-Effects Model Analysis for the Single Environment

The study deployed the single-experiment mixed-effects model [38] to analyze the
individual environment. This involved the use of the equation yijk = m+ gi + rj + bjk + eijk,
where yijk represents the response variable of the ith genotype in the kth block of the jth
replicate. The intercept is denoted by m, while gi represents the effect for the jth genotype,
rj represents the effect of the jth replicate, bjk represents the effect of the kth incomplete
block of the jth replicate, and eijk represents the plot error effect corresponding to yijk.

2.3.3. Confidence Interval of Pearson’s Correlation

The study utilized a Gaussian-independent estimator for estimating the confidence
interval of the Pearson’s correlation coefficient [39]. This approach was employed to
mitigate imprecise estimates of the correlation coefficient and reduce multicollinearity in
the multivariate analysis when examining trait associations. The width of the confidence
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interval was modeled through a nonlinear power model, as expressed by the following
equation: CI = δr × β0× nβ1 + ε, where CI is the predicted value of the confidence interval,
δr is the adjustment factor for the intercept (β0) that varies according to the strength of
the relationship (r), n is the sample size, β1 is the exponential rate of decay, and ε is the
model residual.

2.3.4. Single-Environment Multi-Trait Genotype–Ideotype Distance Index (MGIDI)

The MGIDI was computed in order to assess the simultaneous selection for the mean
performance across various traits within each respective environment [40]. The compu-
tation was performed to assign a weight of 100 to the mean performance in a singular
environment based on the given criteria. The MGIDIi was computed using the formula

MGIDIi =

√
f

∑
j=1

(
Fij − Fj

)2, where MGIDIi is the multi-trait genotype–ideotype distance

index for the ith genotype; Fij is the score for the ith genotype in the jth factor (i = 1.2 . . . , g;
j = 1, 2, . . . , f ), with g and f being the number of genotypes and factors, respectively; and
Fj is the jth score of the ideotype. The genotype exhibiting a lower MGIDI is comparatively
more proximate to the ideotype, thereby exhibiting desirable values for all the scrutinized
traits. The degree of selection pressure can be expressed as a proportion of the complete
set of genotypes through the use of selection intensity (SI) arguments, which range from 0
to 100 as integers. In this index, the term “argument ideotype” is employed to denote the
trait’s superior or inferior value, which is deemed necessary for computing the ultimate
index. The present model was fitted and utilized for the purpose of internally conducting
heritability extraction, which enabled the automatic computation of the selection gain for
the traits or factors. The anticipated genetic gain achieved through the utilization of the
index SG (%) was calculated for each trait and expressed as a percentage of the selection

intensity: SG(%) =
(Xs−Xo)×h2

Xo
× 100. The formula for calculating the mean of the selected

genotypes denoted Xs involves the mean of the original population represented as Xo and
the heritability coefficient denoted as h2.

2.3.5. Genome-Wide Association Mapping (GWAS)

TASSEL v5.2.7 implemented genome-wide association mapping by employing a mixed
linear model [41] that takes into consideration both population structure and kinship.
The first two principal components [42] accounted for population structure, whereas the
pedigree–relationship matrix accounted for kinship. The mixed linear model was run using
the best degree of compression and the approach of “population parameters previously
defined” [43]. We utilized a Bonferroni threshold level of 0.20 to adjust for multiple testing
and to find the relevant markers in each genotype group. The significant markers were then
demarcated into LD-based QTLs between markers, with markers p < 0.001 in the same QTL
for the existence of LD. The genomic locations of the markers were derived from publicly
accessible mapped markers in the Triticeae Toolbox database “https://triticeaetoolbox.org
(accessed on 12 June 2021)”. The trait-associated markers, as well as previously published
genes or QTLs near the significant markers, were embedded against a genotype–phenotype
map aligned to RefSeq v.1.1 [34].

2.3.6. Statistical Software

The statistical analyses were performed utilizing R 4.0.3 software [44]. The R package
Multi-Environment Trial Analysis-Metan 1.11.0 [45] was utilized to perform the analysis in
sections A, B, C, and D, using the functions gamem_met(), gamem(), corr_ci(), and mgidi(),
respectively. Additional data visualization and graphical representations were generated
utilizing the package Tidyverse 1.3.0 [46]. The genome-wide association study (GWAS)
was carried out using Tassel-v5.2.1 [47], and the map was visualized with Phenogram
“http://visualization.ritchielab.org/phenograms/plot (accessed on 20 July 2021)”).

https://triticeaetoolbox.org
http://visualization.ritchielab.org/phenograms/plot
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3. Results

Phenotypic variations, trait responses, and genotypic stability for the shifting planting
times are presented in the first part of the results. Then, genomics and QTL mapping in
light of the marker–trait association and GWAS are illustrated in the second part. The
results are presented and discussed in detail, considering the available literature in the
context of the relevant available literature, as follows.

3.1. Adaptation of Wheat Genotype in Early Planting by Modification of Agro-Morphological Traits

3.1.1. Likelihood Ratio Test, Variance Components, and Overall Performance

The statistical analysis using the likelihood ratio test demonstrated a significant impact
of the genotype on all the trait categories in the single-environment analysis. The statistical
significance of the likelihood ratio for genotypes (LRTg) and the likelihood ratio for the
genotype and planting time interaction (LRTge) were observed in seasons 2 and 3 for
all the phenological traits, except for the LRTg in the case of BTH. Similarly, all traits in
the group plant stature were significant for the LRTg and LRTge, except for the LRTge
for the FLGLFW in season 1 and the SplLng in season 3. All physiological traits except
the NDVI_DTB were non-significant for the LRTg in season 3. Two more non-significant
likelihood ratios were reported for physiological traits in season 2: the LRTg for EGC and
the LRTge for the CTIR. The TGW and grain yield were significant in the likelihood ratio
test for the LRTg and LRTge in all three seasons (Tables 1 and 2).

Each season, the average deviation was higher, showing a significantly larger geno-
typic response in the early-planting context (Tables 3 and 4). Consequently, the range of the
genotype selection pertaining to these traits is expanded. Most of the genotypes exhibited
an increase in grain yield during the early planting time in seasons 1 and 2, while sustaining
a stable grain yield across both planting times in season 3. Moreover, it was observed that
the genetic factors contributed significantly to the variance in most traits across all three
seasons, indicating that the genotypes had a consistent impact on the expression of traits
under both planting conditions (as depicted in Figures 1–4). Variations in both the overall
performance and variance components were detected among the different trait groups.

Table 1. The likelihood ratio test (LRT) was employed to examine the significance of the model in the
research study. The use of the LRT for assessing the genotypic effect is a valuable tool for determining
the statistical significance of traits in single-environment analysis.

Traits
Early Planting Timely Planting

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

Phenology

DTB 963 *** 1090 *** 534 *** 467 *** 791 *** 862 ***

DTHD 1420 *** 1340 *** 720 *** 1140 *** 886 *** 894 ***

DAYSMT 554 *** 506 *** 343 *** 619 *** 579 *** 506 ***

BTH 416 *** 268 *** 224 *** 559 *** 67.5 *** 183 ***

GFD 954 *** 1020 *** 523 *** 268 *** 412 *** 469 ***

PG_DTB 946 *** 1090 *** 525 *** 467 *** 761 *** 860 ***

PG_DTHD 1350 *** 1380 *** 736 *** 736 *** 884 *** 874 ***

PG_DAYSMT 667 *** 688 *** 384 *** 693 *** 635 *** 573 ***

PG_BTH 496 *** 262 *** 300 *** 511 *** 61.6 *** 129 ***

PG_GFD 374 *** 466 *** 157 *** 233 *** 259 *** 241 ***
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Table 1. Cont.

Traits
Early Planting Timely Planting

Season 1 Season 2 Season 3 Season 1 Season 2 Season 3

Plant Stature

PH 537 *** 306 *** 89.1 *** 534 *** 488 *** 119 ***

SpkLng 262 *** 75.4 *** 77.9 *** 187 *** 172 *** 51.9 ***

PDG † - 220 *** 87.4 *** - 332 *** 114 ***

PDL † - 317 *** 243 *** - 516 *** 107 ***

HUS 528 *** 329 *** 56.1 *** 536 *** 493 *** 100 ***

FLGLFL 318 *** 336 *** 281 *** 375 *** 243 *** 366 ***

FLGLFW 377 *** 153 *** 137 *** 428 *** 310 *** 76.9 ***

FLGLFA 327 *** 159 *** 226 *** 386 *** 225 *** 211 ***

Physiology

EGC 91.1 *** 20.4 *** 44.8 *** 175 *** 59.6 *** 200 ***

NDVI_DTB 111 *** 31.1 *** 60.6 *** 79.4 *** 30.4 *** 97.2 ***

NDVI_DTHD 89.1 *** 32.9 *** 56.1 *** 82.5 *** 160 *** 60.9 ***

NDVI_Max 84.9 *** 17.1 *** 169 *** 74.1 *** 34.2 *** 0.047 ***

SR 470 *** 560 *** 130 *** 353 *** 398 *** 43.8 ***

CTIR 134 *** 162 *** 210 *** 84.4 *** 92.2 *** 21.5 ***

Yield and TGW

TGW 687 *** 480 *** 670 *** 703 *** 581 *** 689 ***

GRYLD 116 *** 164 *** 224 *** 166 *** 561 *** 349 ***

*** p ≥ 0.001; †: PDG and PDL were considered traits of interest in season 2 and season 3.

Table 2. The likelihood ratio test (LRT) was employed to assess the statistical significance of the model
in the study. The use of the LRT is employed to determine the statistical significance of genotypic
effects in the context of the genotype–environment interaction for MET analysis.

Traits
S1 S2 S3

LRTg LRTge LRTg LRTge LRTg LRTge

Phenology

DTB 101 *** 924 *** 146 *** 1120 *** 260 *** 318 ***

DTHD 302 *** 1220 *** 169 *** 1400 *** 202 *** 538 ***

DAYSMT 462 *** 97.2 *** 421 *** 66.4 *** 162 *** 176 ***

BTH 266 *** 127 *** 1.76 ns 318 *** 0.923 ns 285 ***

GFD 76.5 *** 797 *** 67.9 *** 1100 *** 221 *** 216 ***

PG_DTB 107 *** 890 *** 235 *** 852 *** 266 *** 334 ***

PG_DTHD 295 *** 882 *** 226 *** 1250 *** 249 *** 487 ***

PG_DAYSMT 496 *** 132 *** 466 *** 127 *** 173 *** 217 ***

PG_BTH 339 *** 114 *** 5.42 * 288 *** 27.3 *** 194 ***

PG_GFD 39.1 *** 283 *** 57.8 *** 276 *** 127 *** 44.7 ***



Genes 2023, 14, 1507 10 of 37

Table 2. Cont.

Traits
S1 S2 S3

LRTg LRTge LRTg LRTge LRTg LRTge

Plant Stature

PH 379 *** 85.8 *** 239 *** 78.6 *** 31.4 *** 57.3 ***

SpkLng 231 *** 21.5 *** 146 *** 2.75 *** 193 *** 0.000 ns

PDG † - - 193 *** 54 *** 42.7 *** 51.3 ***

PDL † - - 238 *** 49.3 *** 109 *** 36.2 ***

HUS 380 *** 85.4 *** 235 *** 90 *** 30.5 *** 37.8 ***

FLGLFL 288 *** 31.9 *** 319 *** 25.7 *** 165 *** 114 ***

FLGLFW 374 *** 5.25 ns 249 *** 9.78 *** 43.8 *** 48.9 ***

FLGLFA 310 *** 17.7 *** 278 *** 6.04 *** 67.9 *** 132 ***

Physiology

EGC 14 *** 98.2 *** 0.000 ns 84.3 *** 0.000 ns 249 ***

NDVI_DTB 20.3 *** 73 *** 3.69 ns 25.9 *** 5.43 * 72.4 ***

NDVI_DTHD 16.8 *** 59.4 *** 6.34 * 47.3 *** 1.34 ns 60.8 ***

NDVI_Max 33 *** 42.1 *** 10.9 *** 8.2 ** 0.000 ns 132 ***

SR 217 *** 114 *** 293 *** 140 *** 0.000 ns 107 ***

CTIR 181 *** 0.818 ns 18.3 *** 83.7 *** 0.000 ns 94.6 ***

Yield and TGW

TGW 646 *** 62.9 *** 202 *** 284 *** 412 *** 56.7 ***

GRYLD 106 *** 35.9 *** 1.42 ns 385 *** 143 *** 77.3 ***
*** p ≥0.001, ** p ≥0.01, * p ≥0.05; ns: non-significant; †: PDG and PDL were considered traits of interest in season
2 and season 3.

Table 3. The statistical measures for the traits observed in early planting: mean (x), confidence
interval of mean (CI), and average deviation (AD).

Traits
Season 1 Season 2 Season 3

AD CI x AD CI x AD CI x

Phenology

DTB 4.59 0.318 88.1 7.07 0.47 92.80 3.96 0.29 89.70

DTHD 4.77 0.364 112 6.53 0.48 110.00 4.84 0.36 103.00

DAYSMT 2.53 0.181 158 2.41 0.18 165.00 3.10 0.23 162.00

BTH 2.99 0.215 24.1 3.02 0.22 17.60 1.93 0.14 13.70

GFD 3.44 0.267 45.8 4.99 0.37 54.50 3.17 0.23 58.40

PG_DTB 4730 327 53,000 6720 452 56,300 3450 259 50,000

PG_DTHD 7570 567 83,900 8010 577 75,300 4950 372 63,100

PG_DAYSMT 11,100 796 188,000 9120 663 169,000 9370 692 157,000

PG_BTH 970 70.3 3570 435 33 1370 214 17 734

PG_GFD 2270 171 20,900 2040 154 18,200 1820 136 20,400
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Table 3. Cont.

Traits
Season 1 Season 2 Season 3

AD CI x AD CI x AD CI x

Plant Stature

PH 5.43 0.396 118 4.11 0.29 110.00 4.70 0.32 109.00

SpkLng 0.776 0.0557 11 0.85 0.06 10.50 1.18 0.08 12.90

PDG † - - - 4.18 0.30 72.40 5.12 0.36 69.80

PDL † - - - 3.17 0.23 37.60 2.75 0.19 39.40

HUS 5.24 0.38 107 3.93 0.28 99.40 4.61 0.32 96.30

FLGLFL 2.44 0.173 26.4 2.65 0.19 25.00 3.16 0.22 30.10

FLGLFW 0.116 0.0087 2.02 0.13 0.01 1.94 0.15 0.01 2.20

FLGLFA 5.21 0.374 40.1 4.95 0.354 36.5 7.33 0.527 50

Physiology

EGC 3.3 0.238 84.3 3.21 0.27 80.10 6.07 0.44 67.10

NDVI_DTB 0.016 0.0012 0.802 0.02 0.00 0.78 0.03 0.00 0.81

NDVI_DTHD 0.0125 0.0009 0.796 0.02 0.00 0.76 0.02 0.00 0.81

NDVI_Max 0.0116 0.0008 0.835 0.02 0.00 0.81 0.02 0.00 0.85

SR 0.0011 0.0001 0.006 0.00 0.00 0.01 0.00 0.00 0.01

CTIR 0.0162 0.0011 0.179 0.01 0.00 0.13 0.03 0.00 0.21

Yield and TGW

TGW 2.93 0.21 40.10 2.90 0.20 47.80 3.67 0.26 45.20

GRYLD 473.00 34.10 7580.00 597.00 42.90 7240.00 609.00 43.80 7920.00

†: PDG and PDL were considered traits of interest in season 2 and season 3.

Table 4. The statistical measures for the traits observed in timely planting: mean (x), confidence
interval of mean (CI), and average deviation (AD).

Traits
Season 1 Season 2 Season 3

AD CI x AD CI x AD CI x

Phenology

DTB 1.80 0.13 89.70 2.37 0.18 103.00 3.61 0.27 101.00

DTHD 2.92 0.21 105.00 2.62 0.19 112.00 3.18 0.23 109.00

DAYSMT 2.89 0.20 145.00 1.80 0.13 153.00 2.28 0.16 156.00

BTH 2.48 0.18 15.10 0.97 0.07 8.71 1.65 0.12 8.57

GFD 1.82 0.13 40.10 1.68 0.12 41.20 1.96 0.14 46.30

PG_DTB 1830 131 45,500 3130 232 52,900 3840 282 48,800

PG_DTHD 5100 345 71,300 3680 263 64,700 4670 331 59700

PG_DAYSMT 11,100 770 156,000 7220 520 151,000 7770 551 145,000

PG_BTH 871 61 2890 128 9 602 190 15 578

PG_GFD 2440 170 15,800 1410 100 18,000 1510 106 18,600

Plant Stature

PH 4.72 0.34 111.00 4.38 0.32 114.00 4.49 0.32 104.00
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Table 4. Cont.

Traits
Season 1 Season 2 Season 3

AD CI x AD CI x AD CI x

SpkLng 0.67 0.05 10.80 0.77 0.06 10.70 1.29 0.09 13.30

PDG † - - - 4.15 0.29 76.00 4.50 0.32 66.90

PDL † - - - 2.43 0.17 38.10 2.63 0.19 37.40

HUS 4.57 0.33 100.00 4.21 0.31 103.00 4.59 0.33 91.10

FLGLFL 2.36 0.17 25.90 2.20 0.16 23.80 2.95 0.21 30.20

FLGLFW 0.11 0.01 2.06 0.13 0.01 2.01 0.15 0.01 2.23

FLGLFA 5.09 0.36 40.2 4.72 0.342 36 6.81 0.484 50.7

Physiology

EGC 4.06 0.30 82.80 6.47 0.45 75.30 8.87 0.63 70.30

NDVI_DTB 0.02 0.00 0.79 0.01 0.00 0.80 0.02 0.00 0.77

NDVI_DTHD 0.02 0.00 0.78 0.01 0.00 0.79 0.02 0.00 0.80

NDVI_Max 0.02 0.00 0.81 0.01 0.00 0.82 0.01 0.00 0.85

SR 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01

CTIR 0.02 0.00 0.20 0.02 0.00 0.40 0.04 0.00 0.27

Yield and TGW

TGW 2.82 0.20 40.40 3.45 0.25 40.40 3.43 0.25 42.20

GRYLD 501.0 35.9 7040.0 539.0 39.3 6860.0 601.0 42.9 7990.0

†: PDG and PDL were considered traits of interest in season 2 and season 3.
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Figure 4. Trait properties and their variance components in grain yield and TGW: (a) boxplots of
the variations in three seasons; (b) variance components of single-environment analysis; (c) variance
components of MET analysis.

3.1.2. Adaptation for Phenological Traits in Early Planting

The phenological traits had a higher genotypic component of variation than the
residual components in a single-environment analysis. Early planting had a less residual
component of variation than the timely-planting conditions for all the phenological traits
in a single-environment analysis (Figure 1). Significant genotype–environment interaction
(GEI) was also observed for all the phenological traits. The higher GEI values seen in
the phenological traits are evidence that the GEI influenced the phenotypic variances in
these traits. The analysis indicates that during the first and second seasons, the DAYSMT
exhibited limited GEI, suggesting that genotypes played a dominant role in determining
the number of days required for full maturity. However, GEI had a discernible effect on
other traits, such as the BTH and GFD (Figure 2). Phenological traits for calendar days
and photo-growing degree days were found to differ in both the overall performance and
variance components. The study observed phenological traits with respect to calendar days
and found that genotypes exhibited varying levels of aptitude for DTHD responses during
early sowing in comparison to other traits over the course of three years. Interestingly, when
we incorporated photoperiods and temperature to calculate the photo-growing degree
days (PHDDs), the variable aptitude in season 3 was minimized, and a straightforward
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consequence of longer PHDDs was found in the early-planting conditions rather than in
the timely-planting conditions for each of the seasons.

Early planting resulted in distinct responses for the remaining phenological traits.
Under early-sown conditions, genotypes exhibited a prolonged duration in the booting
stage compared to those planted in a timely manner. The longer PG_DTHD and PG_GFD
were the consequence of longer PG_DAYSMT for each of the seasons. We employed
PHDDs for future investigation instead of straightforward calendar days for phenological
features because it is more precise and utilizes environmental variability for phenological
expression. Several prior studies also supported the use of the photoperiod and rising
degree days [48–50].

3.1.3. Adaptation for Plant Stature in Early Planting

Early planting resulted in a significant increase in the plant height, with the exception
of season 2, as illustrated in Figure 2. The reason for this phenomenon can be attributed to
the occurrence of hailstorms in the Ludhiana region of India. The occurrence of a hailstorm
during the heading stage may have played a role in the reduction in the plant height,
particularly impacting the length of the peduncle and spike. The genotypes exhibited a
reduction in the flag-leaf width, while an increase in the flag-leaf length was observed
during early planting. As a result, the flag-leaf area exhibited no significant variation across
the two planting periods. The height up to spike (HUS) does not seem to be different from
the PH, and we used it for further progress in our study, as it excluded the spike length
(SpkLng), which we considered separately in our study. The peduncle length (PDL) and the
length from the ground to the peduncle node (PDG) were considered for the plant stature
study for season 2 and season 3. Unfortunately, the study of the PDG and PDL did not
seem consistent in either year; that is why we discarded these traits from further study.
Lower GEI in the plant height was observed in both seasons 1 and 2, but it was found to be
more pronounced in season 3. Henceforth, conducting targeted research that centers on
the interpretation of genotypic heterogeneity through a distinct assemblage of genotypes
could prove advantageous.

3.1.4. Adaptation for Physiological Traits in Early Planting

The mean deviation observed for the EGC during early sowing was comparatively
low in contrast to planting at the appropriate time (Tables 3 and 4).

Higher ground cover was observed in early planting than in timely planting, except in
season 3. The NDVI value at booting and heading was higher in early planting than timely
planting, except in season 2. Hailstorms during booting to heading in season 2 caused
the lower NDVI. The maximum NDVI value was also higher in seasons 1 and 3 for early
planting than for timely planting. Outliers below the 25th percentile for the NDVI indicated
that few genotypes had very low greenness due to poor stand establishment in both the
planting times. Timely planting had a higher senescence rate (SR) and canopy temperature
increasing rate (CTIR) in all three seasons. All the physiological traits had higher residual
components of variations compared to the other trait groups.

3.1.5. Adaptation for TGW and Grain Yield in Early Planting

A higher TGW was found in the early- rather than the timely-planting condition
for seasons 2 and 3, whereas there was no significant TGW difference for season 1 in the
shifting planting times. The residual variance component of the GEI for the TGW in season
1 was also less compared to the other two seasons. The GEI was observed to be higher in
grain yield owing to its dependence on both inherited genetic factors and environmental
conditions, as well as its high variability as a trait (Figure 4). The extended duration
of winter during season 3 was observed to be the probable cause for the uniform grain
production at the two planting times during year 3, as depicted in Figure 4a.



Genes 2023, 14, 1507 21 of 37

3.1.6. Multi-Trait Stability Index, Ideotype Design

The study found that phenological events exhibited a heightened impact on both the
grain yield and thousand-grain weight (TGW). In the analysis of the PG_DTB, PG_BTH,
and PG_GFD, it was observed that longer PG_DTB exhibited a robust positive correlation
with the GRYLD and TGW, thereby indicating its potential to enhance the yield and TGW
(Supplementary Figure S6). The study indicates that an extended vegetative period is
anticipated in the case of early planting, as evidenced by the overall performance analysis.
To promote a prolonged vegetative phase during early planting as opposed to timely
planting, we applied selective pressure to encourage an extended PG_BTH during early
planting and a shortened PG_BTH during timely planting.

It is anticipated that a prolonged period of grain filling (PG_GFD) will facilitate an
increase in both the grain yield and grain weight. The prompt initiation of planting may
expedite the plant’s maturation process because of the manifestation of terminal heat stress
while it undergoes the grain-filling stage. The findings of the study indicate that an increase
in plant height is positively correlated with a higher grain yield and thousand-grain weight
(TGW). The ideotype was favored to have a reduced height to induce selection pressure
for lodging tolerance, as indicated in Table 5. The aforementioned determination has been
corroborated via various additional investigations [51,52]. In addition, a study conducted
in Australia discovered a significant lodging occurrence in wheat plants during early
planting [53].

Rapid and robust ground coverage is a desirable outcome for optimal crop estab-
lishment in all planting scenarios. The desire for robust grain filling and, subsequently,
higher yields necessitates the delay of senescence and the slowing of the canopy tempera-
ture. Given the positive correlation between a higher TGW and an increased grain yield
(Supplementary Figure S6), we incorporated this trait into the ideotype design. Table 5. dis-
plays the ideotype design utilizing the MGIDI in its entirety. The trait combination pointed
out within the scope of this study possesses the potential to incite further investigation
endeavors focused on the alteration of wheat plants [54].

Except for a few traits that did not match the selection gain, the MGIDI’s prediction of
the genetic gain for each trait shows that the logic used to create the ideotype was sound.
The study recorded a significant increase in the PG_DTB for the TP and in the PG_BTH
for the EP across all planting conditions, including the FLGLFL, FLGLFW, and GRYLD. In
addition, the intended adverse outcome was observed in both the SR and CTIR under the
planting conditions across all three seasons, apart from the TP in S1 (Table 5).

The selection pressure exerted on a limited number of traits was found to be incon-
gruous with the intended selection gain. The phenological traits, namely, PG_DTB for
early planting in S1 and S2, PG_BTH for timely planting in S2 and S3, and PG_GFD in all
seasons, were found to be incongruent with the intended selection pressure. The results
indicate that there was a lack of consistency between the EGC for early planting in all three
seasons and timely planting in S3. The TGW exhibited a lack of conformity during the
initial planting phase, while in S3, it failed to align with the intended selection pressure
during the timely-planting phase. Ultimately, there was a lack of synchronization between
the HUS and timely planting in S2 and S3, as well as in S3 during early planting. The
observed discrepancy can be attributed to the genotypic capacity to execute particular traits.
The incongruent selection pressure in phenology indicated that a longer vegetative and
reproductive period is always supportive of higher yields. The mismatch in the selection
gain for the TGW in early planting indicated that an increased TGW might not be good
enough for genotype selection in early establishment. A higher EGC did not support selec-
tion gain for early planting. A high level of strength in these factors indicates that the traits
encompassed by the factors exerted significant influence on the chosen genotypes, which
will enable subsequent breeding initiatives to select genotypes on the basis of this factorial
analysis. The breeder must possess a high level of discernment in identifying trait-based
specific genotypes to facilitate early establishment within the chosen genotypes, as depicted
in Figure 5. The MGIDI-based analysis of the genotypic performance revealed that eight
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genotypes in S1 and S2 and three genotypes in S3 exhibited favorable performances under
both planting conditions, as depicted in Figure 6. The MDIGI was utilized to identify the
most optimal genotypes in each year, taking into account both sowing conditions.
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Table 5. Selected traits and their increasing (up arrow in light-ash background) or decreasing
(down arrow in light-brown background) selection pressures on multi-trait stability index analysis
using MGIDI.

S 1 S 2 S 3 S 1 S 2 S 3
Traits

EP EP EP TP TP TP
PG_DTB ↑N ↑N ↑ ↑ ↑ ↑
PG_BTH ↑ ↑ ↑ ↓ ↓N ↓N
PG_GFD ↑ ↑ ↑ ↓N ↓N ↓N
HUS ↓ ↓ ↓N ↓ ↓N ↓N
FLGLFL ↑ ↑ ↑ ↑ ↑ ↑
FLGLFW ↑ ↑ ↑ ↑ ↑ ↑
EGC ↑N ↑N ↑N ↑ ↑ ↑N
SR ↓ ↓ ↓ ↓ ↓ ↓
CTIR ↓ ↓ ↓ ↓N ↓ ↓
TGW ↑N ↑N ↑N ↑ ↑ ↑N
GRYLD ↑ ↑ ↑ ↑ ↑ ↑

N: Selection gain did not match desired selection pressure.
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3.2. Identification of QTLs Associated with Adaptation to Early Planting
3.2.1. Population Structure

The highest number of markers were present in the B-genome (48.7% in S1, 50.0% in
S2, and 40.3% in S3), followed by the A-genome (39.2% in S1, 37.8% in S2, and 39.7% in
S3) and D-genome (10.6% in S1, 10.7% in S2, and 17.8% S3). The population structures
of the three seasons’ genotypes were studied to assess the genetic diversity of the wheat
genotypes in the experiment. The highly annotated and potentially large phylogenetic tree
from the filtered GBS data of each season was generated using Archaeopteryx in TASSEL 5,
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which elucidated that the genotypes used in the study were highly diverse in their genetic
architecture and can generate polymorphic markers for GWAS analysis for traits of interest
(Figure 7).
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3.2.2. Genome-Wide Association Mapping for Multiple Traits in EP and TP

The genome-wide association was performed using multiple-traits data obtained
from the phenotypic study of objective-1. After the Bonferroni correction for the multiple
testing, we obtained 2347 markers significantly associated with our traits of interest. The
significant markers for the grain yield are elucidated in the Manhattan plot of the MTA
in Figure 8. The chromosomes are shown in the x-axis and the −log10 p values in the
y-axis. The threshold values for each of the traits concerning seasons and planting times
align with the threshold values obtained through the implementation of the Bonferroni
correction for multiple testing at significance levels of 0.01 and 0.20, respectively. All
the Manhattan plots can be found in Supplementary Figure S4. The significant markers,
mapped in the IWGSC Ref map 1.1, are presented in Supplementary Figure S2.

It was found that a higher number of significant markers was found in early planting
(1036) compared to timely planting (819). Chromosome 5B was the highest source of
significant markers, followed by Chromosome 2B for early planting (Supplementary Figure
S3a). Similarly, when we observed the number of significant markers for specific traits in
the different planting conditions across the season, we found the highest number of SNP
markers for the PG_GFD (186), followed by the PG_DTB (140) and FLGLFL (102) in early
planting, whereas the highest number of significant markers were found for the FLGLFL
(132), followed by the SR (103) and PG_BTH (99).
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Figure 8. The utilization of Manhattan plots led to the identification of a number of markers that
exhibited a significant association with the grain yield across the S1, S2, and S3 stages of development
for both early and timely planting. Supplementary Figure S4 contains all additional Manhattan plots
for multiple traits of interest.

QTLs Associated with Morphological Traits

LD analysis was performed in TASSEL by selecting markers R2 above 0.75 and D’
above 0.85 to identify the QTLs associated with the traits of interest. After LD analysis, we
identified a total of 96 unique QTLs. Among them, 33 QTLs were associated with multiple
traits in different planting times (Supplementary Table S1). A total of 44 of them were
found to be associated with early-planting traits, and 31 were found to be associated with
timely-planting conditions. Additionally, we found twenty-two QTLs that were associated
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with both planting times. The highest number of QTLs were found in chromosome 7A for
both the planting times, whereas chromosomes 4A, 4B, and 4D showed smaller numbers of
associated QTLs (Supplementary Figure S3b).

QTLs Identified Related to Phenology-Affecting Genes

Mostly, wheat phenology can be affected by the photoperiod, vernalization, and
regional adaptation to modify the wheat life cycle. The genes that control the vernalization
requirements, photoperiod sensitivity, and even the epistatic effect of earliness per se
to modulate the life cycle for regional adaptation could have extended effects for early
adaptation [55]. The current study shows that several QTLs are linked with these genes
(Figure 9 and Table 6).

Genes 2023, 13, x FOR PEER REVIEW 25 of 37 
 

 

the different planting conditions across the season, we found the highest number of SNP 
markers for the PG_GFD (186), followed by the PG_DTB (140) and FLGLFL (102) in early 
planting, whereas the highest number of significant markers were found for the FLGLFL 
(132), followed by the SR (103) and PG_BTH (99). 

QTLs Associated with Morphological Traits 
LD analysis was performed in TASSEL by selecting markers R2 above 0.75 and D’ 

above 0.85 to identify the QTLs associated with the traits of interest. After LD analysis, we 
identified a total of 96 unique QTLs. Among them, 33 QTLs were associated with multiple 
traits in different planting times (Supplementary Table S1). A total of 44 of them were 
found to be associated with early-planting traits, and 31 were found to be associated with 
timely-planting conditions. Additionally, we found twenty-two QTLs that were associ-
ated with both planting times. The highest number of QTLs were found in chromosome 
7A for both the planting times, whereas chromosomes 4A, 4B, and 4D showed smaller 
numbers of associated QTLs (Supplementary Figure S3b). 

QTLs Identified Related to Phenology-Affecting Genes 
Mostly, wheat phenology can be affected by the photoperiod, vernalization, and re-

gional adaptation to modify the wheat life cycle. The genes that control the vernalization 
requirements, photoperiod sensitivity, and even the epistatic effect of earliness per se to 
modulate the life cycle for regional adaptation could have extended effects for early ad-
aptation [55]. The current study shows that several QTLs are linked with these genes (Fig-
ure 9 and Table 6). 

 
Figure 9. The distribution of quantitative trait loci (QTLs) across the genome, in conjunction with 
the presence of established phenology-affecting genes, such as Vrn, Ppd, and Eps, was examined for 
varying planting times. 

Figure 9. The distribution of quantitative trait loci (QTLs) across the genome, in conjunction with
the presence of established phenology-affecting genes, such as Vrn, Ppd, and Eps, was examined for
varying planting times.



Genes 2023, 14, 1507 27 of 37

Table 6. Distances of QTLs from Vrn, Ppd, and Eps loci along with nearest marker positions in the
reference genomes.

Gene Chromosome Marker Position in the
Reference Genome

Nearest
Marker

Distance
(Mbps) QTLs

Controlling Traits
ReferenceEP TP

Eps 1D 485105000
63681750 421.42 QBth.bisa.1D.4 PG_BTH

[56]
31127895 453.98 QMpt.bisa.1D.3 PG_GFD PG_BTH

Eps 1D 93484075 9364969 84.12 Qhus.bisa.1D.1 HUS [57]
Ppd-B1 2B 56238081 59094836 2.86 QMpt.bisa.2B.2 SR, PG_BTH [58]

Ppd-D1 2D 33955686 Inside the QTL -- QMpt.bisa.2D.3 EGC, PG_GFD,
PG_BTH FLGLFW [10]

Vrn-A1 5A 587423448 581738776 5.68 QMpt.bisa.5A.3
EGC, FLGLFL,
HUS, PG_GFD,
TGW

PG_BTH,
FLGLFL [8,59–61]

Vrn-A3 7A 71669854 71591808 0.08 QMpt.bisa.7A.4 GRYLD PG_DTB [62]
Vrn-B1 5B 573807893 576348143 2.54 QMpt.bisa.5B.3 SR, PG_DTB

Vrn-B1 5B 573807893 582830486 9.02 QMpt.bisa.5B.4 SR, PG_DTB,
GRYLD

[8,63]

Vrn-B3 7B 9702383 101512229 91.81 QMpt.bisa.7B.3 PG_DTB, SR, EGC CTIR
Vrn-B3 7B 9702383 70866936 61.16 Qyld.bisa.7B.2 GRYLD [64]

Vrn-D2 4D 509341209 247154166 262.19 Qhus.bisa.4D.1 HUS
Vrn-D3 7D 68417074 68291897 0.13 QDtb.bisa.7D.3 PG_DTB [65]

The rows that are shaded indicate a high degree of proximity between the gene and the identified QTLs.

Among the photoperiod-sensitive genes, Ppd-B1 is located 2.86 Mbps distant from
the QTL QMpt.bisa.2B.2 on chromosome 2B, which is associated with the senescence
rate and photo-growing degree days from the booting to heading days in early-planting
conditions. Interestingly, the Ppd-D1 allele was found inside the QTL QMpt.bisa.2D.3
on chromosome 2D, which is associated with early ground cover, photo-growing degree
days, booting to heading days, and the grain-filling period in the early-planting condition,
whereas this QTL is associated with the flag-leaf width in the timely-planting condition.
Among the vernalization alleles, Vrn-A1, Vrn-A3, Vrn-B1, and Vrn-D3 were found to be
near enough some associated QTLs. The QMpt.bisa.5A.3 is 5.68 Mbps distant from the
Vrn-A1 allele. This QTL is associated with multiple traits, such as the EGC, FLGLFL,
HUS, PG_GFD, and TGW in early-planting conditions, and with the traits PG_BTH and
FLGLFL in timely-planting conditions. The QTL QMpt.bisa.7A.4 is very close to the Vrn-A3
(0.08 Mbps) allele, which is associated with the GRYLD in early planting and with the
PG_BTB in timely planting. Vrn-B1 on chromosome 5B is close to two QTLs: QMpt.bisa.5B.3
(2.54 Mbps) and QMpt.bisa.5B.4 (9.02 Mbps), which are associated with the SR and PG_DTB
in early-planting conditions. The QTL QMpt.bisa.5B.4 is also associated with the GRYLD in
early-planting conditions. Finally, the QTL QDtb.bisa.7D.3 on 7D is 0.13 Mbps distant from
Vrn-D3. This QTL is associated with the PG_DTB in timely-planting conditions. The other
Vrn alleles were farther distant (from 61.16 to 262.19 Mbps) from the identified QTLs. The
QTLs QBth.bisa.1D.4, Qhus.bisa.1D.1, and QMpt.bisa.1D.3 are distantly located from the
Eps loci at chromosome 1D, which suggests that the identified QTLs are noble and may not
be associated with Eps loci. Further research is needed to identify an exact MTA analysis
for these noble QTLs.

Trait-Attributing QTLs and Genomic Regions in Different Planting Times

The 96 QTLs were found to be attributed to different traits for the early- and timely-
planting conditions. Some of these QTLs were common for both planting times. The
effect of these QTLs on agronomic traits may be taken into consideration with further fine
mapping for early adaptation behaviors.

Phenology-Associated Genomic Region

Fifteen QTLs were significantly associated with the PG_DTB for early planting, and
six QTLs were associated for timely planting with the same trait in different chromosomes.
Among them, two QTLs, QDtb.bisa.2D.4 and QMpt.bisa.5B.2, were found common for both
planting times. Thirteen QTLs were significantly associated with the early planting time,
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whereas ten QTLs were significantly associated with the timely-planting conditions for
the PG_BTH. All those QTLs for the PG_BTH were different for early and timely planting,
which suggests adaptation for planting time control by different QTLs. Among the four
QTLs for the PG_GFD in the timely-planting conditions, three were common for the early-
planting conditions. However, a large set of 21 QTLs in different genomes was significantly
associated with the PG_GFD in the early planting time (Table 7). These increased QTLs
in early planting for the PG_GFD suggest that more genomic regions with different genes
might influence the early adaptation.

Table 7. List of QTLs in different genomes significantly associated with different traits for early
planting and timely planting.

(a) Phenology

Traits QTLs for EP QTLs for TP

PG_DTB

QDtb.bisa.2D.4, QDtb.bisa.3B.1, QDtb.bisa.3B.3,
QMpt.bisa.2A.3, QMpt.bisa.3B.2, QMpt.bisa.4B.2,
QMpt.bisa.4B.6, QMpt.bisa.5A.1, QMpt.bisa.5B.2,
QMpt.bisa.5B.3, QMpt.bisa.5B.4, QMpt.bisa.5B.5,
QMpt.bisa.5D.1, QMpt.bisa.6A.3, QMpt.bisa.7B.3 =
15

QDtb.bisa.2D.4, QDtb.bisa.3B.5,
QDtb.bisa.7D.3, QMpt.bisa.5B.2,
QMpt.bisa.7D.2, QMpt.bisa.7A.4 = 6

PG_BTH

QBth.bisa.1A.1, QBth.bisa.2B.8, QBth.bisa.2B.9,
QBth.bisa.3B.7, QBth.bisa.5A.2, QBth.bisa.7A.10,
QBth.bisa.7A.11, QBth.bisa.7A.5, QBth.bisa.7D.3,
QMpt.bisa.1B.3, QMpt.bisa.2B.2, QMpt.bisa.2D.3,
QMpt.bisa.7A.6 = 13

QBth.bisa.1D.4, QBth.bisa.3B.6,
QBth.bisa.4A.1, QBth.bisa.6A.2,
QMpt.bisa.1D.3, QMpt.bisa.3A.5,
QMpt.bisa.5A.3, QMpt.bisa.5B.1,
QMpt.bisa.5B.2, QMpt.bisa.6B.2 = 10

PG_GFD

QBth.bisa.7A.5, QGfd.bisa.2D.2, QGfd.bisa.3A.2,
QGfd.bisa.3D.2, QGfd.bisa.5D.2, QGfd.bisa.6A.4,
QGfd.bisa.7A.5, QMpt.bisa.1D.2, QMpt.bisa.1D.3,
QMpt.bisa.2A.3, QMpt.bisa.2A.6, QMpt.bisa.2D.3,
QMpt.bisa.3A.5, QMpt.bisa.5A.1, QMpt.bisa.5A.3,
QMpt.bisa.5B.2, QMpt.bisa.6A.1, QMpt.bisa.6A.3,
QMpt.bisa.6B.2, QMpt.bisa.7B.5, QMpt.bisa.7D.2 =
21

QGfd.bisa.2B.3, QMpt.bisa.5A.1,
QMpt.bisa.6A.3, QMpt.bisa.7D.2 = 4

(b) Plant Stature

Traits QTLs for EP QTLs for TP

HUS
Qhus.bisa.4D.1, Qhus.bisa.5B.6, QMpt.bisa.2A.3,
QMpt.bisa.5A.3, QMpt.bisa.6A.1, QMpt.bisa.6A.3,
QMpt.bisa.6B.2, QMpt.bisa.7A.6 = 8

Qhus.bisa.1D.1, Qhus.bisa.2D.5,
Qhus.bisa.3D.1, Qhus.bisa.7B.6,
QMpt.bisa.6B.2, QMpt.bisa.7A.6,
QMpt.bisa.7B.5 = 7

FLGLFL

QFlg.bisa.2A.2, QFll.bisa.3B.4, QFll.bisa.7A.7,
QMpt.bisa.2A.1, QMpt.bisa.2A.6, QMpt.bisa.5A.3,
QMpt.bisa.5B.1, QMpt.bisa.5D.1, QMpt.bisa.6A.3,
QMpt.bisa.6A.5, QMpt.bisa.6B.2, QMpt.bisa.6D.2,
QMpt.bisa.7A.6, QMpt.bisa.7D.2 = 14

QFll.bisa.2B.4, QFll.bisa.2B.6,
QFll.bisa.3A.6, QFll.bisa.4A.2,
QFll.bisa.6B.1, QFll.bisa.7A.1,
QFll.bisa.7A.8, QFll.bisa.7A.9,
QMpt.bisa.5A.3, QMpt.bisa.5B.1,
QMpt.bisa.5B.2, QMpt.bisa.5D.1,
QMpt.bisa.6A.3, QMpt.bisa.6B.2,
QMpt.bisa.6D.3, QMpt.bisa.7A.6 = 15

FLGLFW QFlw.bisa.2B.1, QMpt.bisa.2A.3, QMpt.bisa.6A.3 =
3

QFlw.bisa.1B.2, QFlw.bisa.2A.4,
QFlw.bisa.5B.7, QMpt.bisa.1D.2,
QMpt.bisa.2A.3, QMpt.bisa.2D.3,
QMpt.bisa.6A.3 = 7
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Table 7. Cont.

(c) Physiological Traits

Traits QTLs for EP QTLs for TP

EGC
Qegc.bisa.7B.1, QMpt.bisa.2D.3, QMpt.bisa.5A.3,
QMpt.bisa.6D.2, QMpt.bisa.6D.3, QMpt.bisa.7B.3,
QMpt.bisa.7B.5 = 7

Qegc.bisa.3A.3, QMpt.bisa.3A.4 = 2

SR

QMpt.bisa.2A.1, QMpt.bisa.2A.3, QMpt.bisa.2B.2,
QMpt.bisa.4B.6, QMpt.bisa.5B.1, QMpt.bisa.5B.3,
QMpt.bisa.5B.4, QMpt.bisa.5B.5, QMpt.bisa.7A.6,
QMpt.bisa.7B.3, QSr.bisa.7B.4 = 8

QMpt.bisa.5B.5, QMpt.bisa.5D.1,
QMpt.bisa.6A.3, QMpt.bisa.7D.2,
QSr.bisa.3A.1, QSr.bisa.7A.2 = 6

CTIR none
Qcti.bisa.4B.5, QMpt.bisa.3B.2,
QMpt.bisa.6A.3, QMpt.bisa.6B.2,
QMpt.bisa.7A.6, QMpt.bisa.7B.3 = 6

(d) TGW and Yield

Traits QTLs for EP QTLs for TP

TGW

QMpt.bisa.1B.3, QMpt.bisa.2A.3, QMpt.bisa.4B.2,
QMpt.bisa.5A.3, QMpt.bisa.6B.2, QTgw.bisa.2A.5,
QTgw.bisa.4B.1, QTgw.bisa.4B.3, QTgw.bisa.4B.4 =
6

QMpt.bisa.7A.6, QMpt.bisa.7D.2,
QTgw.bisa.1B.1, QTgw.bisa.7A.3 = 4

GRYLD
QMpt.bisa.3A.4, QMpt.bisa.5B.4, QMpt.bisa.6A.5,
Qyld.bisa.2D.1, Qyld.bisa.6D.1, QMpt.bisa.7A.4,
Qyld.bisa.7B.2, Qyld.bisa.7D.1 = 8

QMpt.bisa.3A.4, QMpt.bisa.6B.2,
Qyld.bisa.2B.5, Qyld.bisa.2B.7 = 4

Plant-Stature-Associated Genomic Region

The plant height at different planting times was controlled by different QTLs, except
the QTL QMpt.bisa.7A.6. Seven unique QTLs for the early-planting condition and six
unique QTLs for the timely-planting condition were significantly associated with the HUS.
Four common QTLs were significantly associated with the FLGLFL, whereas nine unique
QTLs for the early-planting condition and twelve unique QTLs for the timely-planting
condition were found to be significant with the same trait. Seven QTLs were found to
be significantly associated with the FLGLFW in timely planting, and four QTLs for the
early-planting condition, along with one common QTL: QMpt.bisa.6A.3 (Table 7).

Physiology-Associated Genomic Region

Among the physiological traits, a higher number of QTLs were found to be significantly
associated with the SR for both planting times. Eleven unique QTLs in early planting and
six unique QTLs in timely planting were considerably associated with the SR. Most of these
QTLs control multiple traits. For the QTLs that control EGC, seven unique QTLs in early
planting and two in timely planting were found to be significant. Finally, no significant
QTLs were found to control the CTIR in early planting, but six QTLs were significantly
associated with this trait in the timely-planting condition (Table 7).

TGW–Yield-Associated Genomic Region

The TGW and GRYLD are highly quantitative traits that depend on several molecular
activities. There were nine unique QTLs found to be significantly associated with the
TGW in early planting, and four unique QTLs found to be significantly associated with
the timely-planting conditions for the TGW. Eight QTLs were significantly associated with
the GRYLD in early planting, and four in the timely-planting conditions. Among these
yield-associated QTLs, one QTL, QMpt.bisa.3A.4, was common for both planting times
(Table 7).

4. Discussion

Seasonal variations often influence adaptation by changing the temperature and
photoperiod. Three different sets of genotypes were grown in different seasons, with
varying weather conditions. The photo-growing degree days were measured to standardize
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the temperature and photoperiod with calendar days. It was evident that the photo-growing
degree days reduced the data variability by minimizing the calendar-day difference with
the PGDD calculation in phenological traits [48]. Calendar days were inconsistent for
the DTB and DTHD, but it was clearly evident that longer PGDDs are required more in
early planting than timely planting. In season 2 (S2) and season 3 (S3), most genotypes
exhibited longer days to booting (DTB) and days to heading DTHD when planted timely
manner (TP). However, upon incorporating the photo growing degree days (PGDD) to
calculate PG_DTB and PG_DTHD, the genotypes demonstrated shorter PGDDs values
in both seasons, as compared to early planting (EP). The seasonal ambiguities were high
in both these two seasons. Hailstorms along with high rainfall occurred in S2 during the
booting and heading time of the timely-planted crops.

Similarly, prolonged winter in S3 caused the longer DTB and DTHD for the TP. Lower
temperatures exist in both these seasons, increasing the phenological period. The addition
of the cumulative effect of temperature and the photoperiod by the PGDDs minimized
these seasonal ambiguities. It has been suggested that the growth and development of the
crop is a function of the photoperiod and ambient temperature [66,67].

The global wheat-breeding program implemented by CIMMYT has demonstrated
consistent genetic improvement in grain yields across diverse environments and man-
agement conditions worldwide, with a particular emphasis on South Asia [68]. While
certain traits have exhibited consistent improvement over time. Unique methodologies
have been employed with the established cultivars to attain maximum grain produc-
tivity [69]. According to a study, a considerable proportion of developing countries’
spring-wheat-growing regions (approximately 70%) either utilize CIMMYT germplasm
as a parent of their varieties or produce CIMMYT germplasm as an immediate re-
lease [68]. This practice has resulted in noteworthy economic advantages. The genotypes
utilized in this investigation were sourced from an extensive collection of advanced
lines produced within the wheat-breeding program of CIMMYT. The genotypes were
specifically identified for conditions that correspond to the early-sowing conditions
prevalent on India’s >20-million-hectare Indo-Gangetic plain, which are referred to as
ME1 and ME4 environments.

A number of yield-contributing factors have been identified as suitable for early plant-
ing, which can mitigate yield reductions resulting from increasing seasonal temperatures by
achieving maturity well before the onset of terminal heat stress [1]. Nevertheless, initiating
the sowing process at an early stage is accompanied by the potential hazard of inadequate
initial establishment and accelerated growth during the initial phases owing to elevated
temperatures, which may ultimately lead to diminished yields as a result of decreased
dry-matter accumulation.

According to data from the National Informatics Centre under the Government
of India in 2016, it has been observed that India’s seasonal air temperature has under-
gone changes over the past twenty years [70]. This has resulted in minor heat stress
on crops during early planting. In contrast to planting at an optimal time, early plant-
ing results in a prolonged exposure of genotypes to a shorter photoperiod during the
pre-flowering stage.

The findings indicate that there is no discernible variance from a previous report [71],
which presumes that a decrease in the photoperiod duration is positively correlated
with an increase in the duration of the growth stages in wheat. Therefore, if planting
is carried out much earlier than the optimal time, then genotypes tend to remain in
the booting stage for a longer duration, resulting in the complete manifestation of their
genetic potential.

According to the findings of this research, the act of planting crops earlier than usual
does not necessarily guarantee an early maturation of the crop. The wheat-growing period
was prolonged through early planting, primarily by extending the duration of vegetative
growth. The extension of the vegetative phase, as indicated by the PG_DTB and PG_BTH,
through early planting, led to a notable boost in crop yields across various genotypes. The
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findings indicate a noteworthy positive correlation between the TGW and PG_GFD, while
exhibiting a negative correlation with other phenological traits in both planting periods.
This suggests that the observed increase in the yield during early planting may be attributed
to a rise in the number of grains, which is facilitated by a higher count of fertile spikelets
in the spike. Increasing the duration of the vegetative stage and expanding the leaf area
during early planting can lead to an increase in biomass. This increase in biomass results in
the accumulation of more dry matter at the source, which is subsequently transported to the
sink. Consequently, it seems to enhance both the quantity and quality of grains. According
to a study, a graph estimation model indicated that the most resilient network of traits for
enhancing grain yields in all environments comprised the biomass, thousand-grain weight
(TGW), and grain number [69].

The ideotype design approach aims to enhance crop productivity by concurrently
considering the selection of genotypes based on multiple traits. The design of an ideo-
type, as proposed by Olivoto and Nardino in 2020, involves the favorable selection of
multiple traits with satisfactory gains for their application in breeding programs [40].
The study revealed a satisfactory genetic gain for certain traits, suggesting that the at-
tainment of an ideotype design is feasible through the utilization of the MGIDI, whereby
traits are designated for increase or decrease. A study on the selection of stress-resistant
maize hybrids generated a comparable and evident conclusion to assure long-term
gains in primary traits while maintaining genetic gains in secondary traits [72]. The
MGIDI exhibits a superior performance in comparison to other linear selection indices,
thereby aiding breeders in the identification of superior genotypes. The utilization of
multiple traits for ideotype design holds the potential to mitigate the adverse effects of
multicollinearity. As a result, it leads to enhanced conditioned matrices and unbiased
index coefficients, which facilitate the estimation of the genetic gain [40]. The utilization
of a graphical and simplified method for evaluating the strengths and weaknesses of
genotypes and traits facilitated the identification of suitable candidates for continued
implementation in the current breeding program.

Certain traits that do not align with the ideotype and may hinder the optimal per-
formance of genotypes should be taken into account when planning future breeding
programs. Crop breeders are required to select genotypes from a pool of advanced
lines that exhibit the desired level of strength for the trait of interest in a crop-breeding
program. The present investigation revealed a distinct trend of strengths and weaknesses
for the traits in question, as evidenced by the prompt and punctual plantings observed
across the three-year period. Phenological traits such as the PG_DTB and PG_GFD
demonstrated significant selection gain throughout all seasons in early planting. How-
ever, weaker support for the selected genotypes in early planting for two seasons was
observed in the TGW and GRYLD. Nevertheless, the superior results achieved by well-
executed genotypes on both dates of planting exhibited greater stability compared to
other genotypes. The possibility exists for their selection in future variety releases within
a broader spectrum of the 20 MHA Indo-Gangetic regions, which encompass a range of
climatic conditions, from cooler and drier (NWPZ) to warmer and more humid (NEPZ).
The vast expanse of wheat cultivation in India constitutes a unique geographical region
characterized by predominantly small–marginal farmers who seek a cultivar capable
of adapting to diverse sowing periods. The cultivation of the said genotypes can be
carried out either during the early sowing period or within the appropriate time frame,
contingent upon the cropping system, while maintaining optimal performance.

Effective breeding programs require excellent genetic resources with a diversified
gene pool in the breeding material [73]. A huge genetic variation exists across the wheat
genome, and it was noticeably high for the A and B genomes in CIMMYT germplasms [56].
It was also noted in the same article that CIMMYT’s synthetic wheat germplasm has lower
gene diversity in the D genome compared to the A and B genomes. The materials used
in the current study also had less genomic diversity in the D genome. Again, the proper
understanding of and acquaintance with the linkage disequilibrium extent are necessary to
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determine the adequate requirement of the marker density for proper MTA study, where it
is notably true that the LD declines swiftly with distance [74]. It was observed in a recent
study [65] that the marker number is no longer a critical limiting factor for prediction
accuracies in wheat in which the LD is high. Moreover, counterfeit MTA might cause
less diverse population structures in GWASs [75–77]. In this study, the population was
highly stratified, giving a broadened general overview and knowledge of the biological
background of the mapping panel.

The GWAS revealed several significant marker–trait associations. The marker diversity
in the D genome was lower compared to the A and B genomes. A similar result was found in
the genetic analysis of the spring wheat association-mapping panel [78]. The GWAS for the
trait of interest in early adaptation was found to be valuable in the genetic architecture study
and co-localization of loci for the traits. Several captivating co-localizations were identified
in a study for phenology, plant stature, disease resistance, and even yield, contributing
traits with potential associations with the GRYLD and stability, and representing its possible
significance in global wheat-breeding strategies [65]. Our current study also found several
genomic regions with associated significant markers in several genomes for multiple
traits. LD analysis removed all the false-positive markers in the GWAS and, finally, 96
unique QTLs were identified. Several of these QTLs were co-localized with multiple traits
at different planting times. The co-localization of SNPs and QTLs for different traits in
different environments has been reported in several studies [62,79–84].

The early heat tolerance can be examined by applying selection pressure to a di-
verse genetic materials cultivated under October sowing conditions [85]. This selection
intensity is influenced mainly by several phenology-affecting QTLs or genes. In our
study, we found QTLs not only associated with phenology, but also with other groups
of traits, such as plant stature and physiological traits. Several heat-tolerant QTLs have
been receiving increased attention over the last few years [86–89]. A review on recent
GWASs on wheat over the last decade (from 2010 to 2020) found thousands of MTAs
conferring abiotic stresses [90]. Among these MTAs, seedling heat tolerance was reported
by Maulana et al. (2018) [87], who identified several QTLs containing potential sources
of candidate genes of early heat tolerance in winter wheat. In our study, we found
44 unique QTLs associated with early adaptation in spring wheat. Among these QTLs,
co-localization for various traits were common. The QTL prefix with “QMpt” in our
study refers to the co-localized loci for multiple traits. Again, some QTLs were found
to be co-localized even for both planting times. These QTLs are obviously crucial for
definitive study, but we considered unique QTLs for different planting times. Several
QTLs linked to yield component traits have been detected in the last decades through
GWASs [90]; some of them were validated using bi-parental mapping population anal-
ysis [90,91] or meta-QTL analysis [92]. In early planting conditions, two unique QTLs
(QMpt.bisa.2B.2 and QMpt.bisa.2D.3) linked to photoperiod-sensitivity genes, such as
Ppd-B1 and Ppd-D1, controlled the PG_BTH. This phenomenon confirms the importance
of photoperiod sensitivity in early adaptation. Again, Vrn-B1 was found to be linked
with two QTLs (QMpt.bisa.5B.3 and QMpt.bisa.5B.4) to control the trait PG_DTB in
early planting. The linkage of the days to booting with Vrn-B1-linked QTLs suggests
a vernalization requirement in the early-adapted genotype. We can conclude a mild
vernalization requirement for early adaptation, as we worked with spring wheat. Genes
for photoperiod sensitivity and the vernalization requirements were also shown to make
an effective contribution to early adaptation [55]. In early planting, a higher number
of QTLs responsible for all three phenology-affecting traits reveals that early adapta-
tion influences many putative genes or QTLs to exert their impacts compared to timely
planting. Similar cases also were found in physiological traits, except for the CTIR. The
highly quantitative traits TGW and GRYLD were also revealed to be associated with a
higher number of QTLs for early planting compared to timely planting. In a nutshell,
early planting is influenced by more QTLs for phenology, physiology, the TGW, and the
GRYLD. The genotype–phenotype map connecting key markers to the RefSeq illustrates
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the RefSeq’s use as a platform for comparing and confirming GWAS results. Targeted
selection for the desired region is now easy using this community resource for wheat
breeding. Our study provides an opportunity for accelerating GWAS-assisted wheat
breeding for early adaptation in the Indo-Gangetic region.

5. Conclusions

The act of planting at an early stage was observed to result in alterations in the
manifestations of specific features in various genotypes. This could potentially be
attributed to the impact of early heat exposure and the presence of a significantly
prolonged phenological phase. The temporal placement of planting exerted a greater
influence on phenological traits in comparison to other traits. The observed increase
in the grain yield during early planting can be attributed to the extended phenological
period, which facilitated greater mobilization from source to sink. The development of an
ideotype design for subsequent breeding programs is predicated on a single-environment
approach. The MGIDI was employed to identify genotypes based on their traits during
both planting periods. The significance of phenological traits in achieving selection
gain during early planting was established. In the context of early planting, genotypes
exhibiting favorable phenological traits (namely, an extended vegetative phase and
prolonged grain-filling period) were identified as effective means of achieving a higher
grain yield and thousand-grain weight. A total of 44 novel QTLs and 22 common QTLs
were found to be associated with early adaptation in wheat, which could be used for
genotype identification in early planting. The proposition is made that the assessment of
cultivars under conditions of timely and early sowing may facilitate their development
with broad adaptability. However, due to the prevalence of the semi-dwarf stature within
the CIMMYT germplasm, the application of selection pressure towards a reduced stature
did not yield favorable results for genotype selection.
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