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Abstract: Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are biologically active
substances secreted by MSCs into the extracellular matrix that play an immunomodulatory role in
skin damage repair. To investigate the mechanism of MSC-EVs in reducing inflammation, promoting
angiogenesis, promoting the proliferation and migration of epithelial cells and fibroblasts, and
extracellular matrix remodeling during wound healing, we focused on the effects of EVs on multiple
cell types at various stages of skin injury. A literature review was conducted to explore related research
on the influence of MSC-EVs on the types of cells involved in wound healing. MSC-EVs show a
strong regulatory ability on immune cells involved in the regulation of inflammation, including
macrophages, neutrophils, and T cells, and other cells involved in tissue proliferation and remodeling,
such as fibroblasts, keratinocytes, and endothelial cells, during wound healing in in vitro and in vivo
experiments, which substantially promoted the understanding of wound healing in the field of
trauma medicine. MSC-EVs have potential applications in combating poor skin wound healing.
Elucidating the mechanism of action of EVs in the wound-healing process would greatly advance the
understanding of therapeutic wound healing.

Keywords: mesenchymal stem cells; cellular changes; extracellular vesicles; wound healing; skin
regeneration

1. Introduction

Poor skin wound healing is an urgent concern in the field of trauma medicine. The
application of traditional therapeutic methods, such as systemic anti-inflammatory drugs
and traditional dressings, has not achieved breakthroughs in skin wound healing. Mes-
enchymal stem cells (MSCs) were found to possess great therapeutic potential for wound
healing and skin regeneration [1]. MSCs, also known as mesenchymal stromal cells, are
recognized as cell populations with diverse differentiation potential and are derived from
fat, umbilical cord, amniotic fluid, placenta, skin, dental pulp, and many other tissues [2].
MSCs were initially reported by Friedenstein et al. for their ability to self-renew and un-
dergo multilineal differentiation [3,4]. Subsequently, researchers found that MSCs secrete
various small molecules, such as extracellular vesicles (EVs), cytokines, chemokines, growth
factors, and interleukins (ILs), which can undergo endocytosis or bind to receptor surface
proteins, transmit signals to the corresponding receptor cells, and mediate intercellular
communication among cell types to change their biological behavior and participate in
immune regulation [5–9].

Researchers reported that the paracrine function of MSCs enables them to acquire
strong immune regulation capabilities and have attempted to apply them to cell therapy
regimens for various human diseases [10]. Some effects, such as suppression of the local im-
mune system, inhibition of fibrosis (scarring) and apoptosis, enhancement of angiogenesis,

Genes 2023, 14, 1516. https://doi.org/10.3390/genes14081516 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14081516
https://doi.org/10.3390/genes14081516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://doi.org/10.3390/genes14081516
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14081516?type=check_update&version=1


Genes 2023, 14, 1516 2 of 11

stimulation of mitosis, induction of tissue intrinsic repair cells, and stem cell differentiation,
are different from those of MSCs that differentiate directly into repair tissue [11]. MSC-EVs
have been shown to promote skin wound healing and accelerate this process through
multiple mechanisms. These mechanisms comprise reducing inflammation, promoting
angiogenesis, and promoting proliferation and migration of epithelial cells and fibroblasts.
Consequently, MSC-EVs can be used as new biomarkers and therapeutic targets because
of the functional molecules they encapsulate, which can simultaneously promote wound
healing through multiple mechanisms and may be a promising method to replace cells for
skin wound treatment [8].

Researchers have explored the role of MSC-EVs in various ischemic tissue-damaging
diseases, including skin wound healing, vascular remodeling, hair growth, and skin beauty.
This article briefly introduces the development history of MSC-EVs, reviews the mecha-
nisms of MSC-EVs in promoting wound healing and skin regeneration, summarizes the
potential of MSC-EVs in promoting skin wound healing, and focuses on recent studies.

2. Description of MSC-EVs

MSCs are often described as a highly heterogeneous population of stem and progeni-
tor cells that expand into unisolated fibroids and mucinous cells in vitro [12]. Initially, a
group of fibroblast-like cells, capable of differentiating into adipocytes, chondrocytes, and
osteocytes, was isolated from the bone marrow of guinea pigs and mice, which influenced
the microenvironment for the in vitro culture of hematopoietic stem cells (HSCs) [3,4].
These cells were later identified as MSCs in human tissues. In 2006, the International
Society for Cell & Gene Therapy provided a clear definition for MSCs. They express surface
molecules, including CD105, CD73, and CD90 but do not express surface molecules, in-
cluding CD45, CD34, CD14 or CD11b, CD79α or CD19, and HLA-DR, and can differentiate
into osteoblasts, adipocytes, and chondroblasts in vitro [13]. More importantly, MSCs were
later found to produce some “factors” through paracrine actions, which can play notable
roles in immune regulation [14,15].

2.1. Classification, Labeling, Formation, and Delivery of MSC-EVs

MSC-EVs are a diverse family of particles composed of membrane-bound particles
released from stem cells. Particles in this family are predominantly circular, isolated, or
rarely aggregated into small clusters, have confinement membranes, and exhibit uniform
electron transmission [16]. There are many types of MSC-EVs, and research scholars have
followed two rules to classify them. The first rule is from the International Society of Extra-
cellular Vesicles, which revised a new MSC-EV subtype nomenclature based on the physical
properties, biochemical components, and cells of origin of EVs according to the latest infor-
mation on EV research in 2018 [17]. Another method is simpler than that aforementioned
and is a general classification according to the subtype of MSC-EVs, namely, exosomes
(30–120 nm), microvesicles (MVs) (100–1000 nm), and apoptotic bodies (800–5000 nm) [18].
Markers of EVs include multiple proteins involved in endosome biogenesis, such as Alix,
tumor susceptibility gene 101 protein (TSG101), tetraspanins (CD63, CD81, CD9), and
lysosome-associated membrane proteins (LAMP1 and LAMP2) [19]. The membrane of
MSC-EVs contains large amounts of cholesterol, sphingomyelin, ceramide, and various
lipid molecules [20]. Additionally, the membrane surface of MSC-EVs was confirmed to
contain both the characteristic surface markers of MSCs (CD29, CD105, and CD73) and the
traditional markers of EVs (CD63, CD81, and CD9) [21]. EVs contain proteins, miRNAs,
and lipids [22]. Regarding the formation of EVs, the budding theory, which refers to the for-
mation of multivesicular bodies (MVBs) that fuse with the plasma membrane after mature
endosomes sprout inward, is widely recognized. The buds released later are called EVs [8].
MSCs produce active EVs and release them into the cytoplasm of recipient cells, where
they are captured by recipient cells through endocytosis, receptor–ligand binding, or direct
binding and can transmit signals to recipient cells, guiding their biological behavior [23].
Under some conditions, small EVs were not easily distinguishable from exosomes, and



Genes 2023, 14, 1516 3 of 11

some subpopulations of small EVs were similar in size to exosomes and were observed
during direct budding from the plasma membrane [24]. MSC-EVs consist of many different
molecules, such as nucleic acids (DNA, RNA, mRNA, and miRNA), pro-inflammatory
and anti-inflammatory cytokines, enzymes, and various other proteins [24]. Some research
scholars believe that MSC-EVs can not only dump self-secreted cytokines into the inter-
cellular space for recognition by any cell containing the corresponding receptor but also
deliver a small amount of cytokines directly to target cells, which is a surprising and more
efficient delivery mechanism than that of MSCs [25].

2.2. MSCs and MSC-EVs

MSC-EVs may contain MSC-specific components and exert specific effects on recipient
cells, similar to the therapeutic effect of MSCs to a certain extent [26]. EVs derived from
MSCs have more advantages than that of MSCs. First, the phospholipid bilayer vesicles of
EVs prevent themselves from being recognized as foreign objects by tissues and become
complex carriers that protect enzymes, cytokines, and genetic material from degradation.
Moreover, owing to the presence of cell-binding affinity proteins embedded on the surface
of vesicles, EVs can show the same excellent delivery efficiency as MSCs. Second, EVs move
freely in the blood because of their nanometer size, which can easily achieve membrane
fusion of target cells and can penetrate the skin mucosal barrier, blood–brain barrier, and
placental barrier, making them an ideal carrier for the delivery of active molecules and
drugs [27]. However, the ratio of MSCs enriched to the target site through blood circulation
after administration and the ratio of MSCs integrated to the damaged site in a short time
are relatively low. Third, EVs are less immunogenic than MSCs because they do not express
MHC-I or MHC-II antigens on their membrane surfaces; thus, tissues do not recognize
these EVs as foreign, protecting their contents from degradation. However, MSCs express
high levels of MHC-II when stimulated by inflammation, and treatment with MSCs was
reported to be carcinogenic [28]. Fourth, EVs are highly modifiable as noncellular structures.
By loading functional drugs, specific proteins, and non-coding RNAs, including miRNAs
and siRNAs, EVs can replace cell therapy and become a new biotherapeutic method.

3. Mechanism of MSC-EVs in Promoting Wound Healing and Skin Regeneration

Skin wound healing is a series of physiological processes that begins after the normal
anatomical structure or integrity of the skin is destroyed. Several studies have investigated
the effects of MSC-EVs on wound healing and skin diseases. Different types of cells are
involved in different stages of chronic wound healing (e.g., hemostasis, inflammation,
proliferation, and remodeling), including immune cells involved in the regulation of
inflammation, for example, macrophages and neutrophils T cells [29], and cells involved in
tissue proliferation and remodeling, for example, fibroblasts, keratinocytes, and endothelial
cells (Figure 1). In this chapter, we attempt to elucidate the immunomodulatory effects of
MSC-EVs on different cell types.
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3.1. MSC-EVs Regulate Neutrophil Changes

Neutrophils are the first line of defense against acute inflammation. During the
inflammatory phase of skin injury, neutrophils first infiltrate the site of injury to sweep
microbial pathogens and then undergo apoptosis, after which macrophages infiltrate and
engulf phagocytic fragments, apoptotic neutrophils, and other apoptotic cells. Studies
have shown that keratinocyte-derived EVs treated with cytokines can significantly induce
neutrophil production and release and can induce the expression of IL-6, IL-8, and tumor
necrosis factor-α (TNF-α) in neutrophils through the nuclear factor kappa B (NF-κB) and
P38 MAPK signaling pathways [30]. However, prolonged inflammatory processes can
lead to increased fibroblast activity and extracellular matrix oversecretion, leading to skin
scarring initiated by lymphocytes and hypertrophic scarring caused by multiple directions
or intermittent strain of the scar [31]. Therefore, scar reduction focuses on modulating
neutrophil changes, stimulating scar maturation, and reducing the inflammatory response
and myofibroblast production. Complement and neutrophils are two key elements of
the innate immune system [32]. Evidence suggests that MSC-EVs inhibit complement
activation via CD59, disrupting the feedforward loop between complement and neutrophils
and inhibiting the amplification and persistence of inflammation during infection [32].
Furthermore, topical application of MSC-EVs inhibits the activation of cuticle complement,
alleviating the release of IL-17 by neutrophil extracellular traps that accumulate in and
below the cuticle [33]. Additionally, MSC-EVs have been shown to affect neutrophil-
mediated microvascular remodeling [34].

3.2. MSC-EVs Regulate Macrophage Changes

Macrophages are derived from monocytes, participate in non-specific defense (innate
immunity) and specific defense (cellular immunity) in vivo, and can differentiate into
two activated subtypes, M1 and M2. M1 macrophages are typically activated cells that
secrete many pro-inflammatory factors, such as TNF-α, IL-1β, and reactive oxygen species;
M2 macrophages alternately activate and produce anti-inflammatory cells that produce IL-
10 and trophic factors. Ko reported that the enhancement of macrophage phagocytic activity
by MSCs depended on the uptake of EVs containing MSC mitochondria [35]. Accumulating
evidence suggests that MSC-EVs play a relevant role in regulating M1/M2 equilibrium,
although the exact mechanism remains unclear [36]. Evidence suggests that MSCs re-
lease the C–C chemokine ligand (CCL2, or monocyte-chemoattractant protein, MCP-1),
recruiting monocytes/macrophages to the injury site and supporting wound healing [37].
MSC-EVs have been reported to possibly hinder the activation of “pro-inflammatory”
M1 macrophages in favor of “pro-lytic” M2 macrophages [38]. For example, treatment
with MSC-EVs can significantly enhance the gene expression of M2 macrophage markers
(Arg1, CCL22, IL-10) and transforming growth factor-β (TGF-β) [39]. MSC-EVs also down-
regulate IL-23 and IL-22 production and enhance the anti-inflammatory phenotype and
pro-decomposition properties of Mregs (human regulatory macrophages, a subclass of M2
macrophages characterized by moderate IL-22 and IL-23 production and high prostaglandin
E2 expression) [40]. M2 macrophages secrete anti-inflammatory cytokines and various
growth factors that play an important role in wound healing, and modulation of M2 po-
larization through MSC-EVs can promote skin wound healing. In addition, treatment
with MSC-EVs attenuated the score and degree of skin fibrosis in the scleroderma chronic
graft versus host disease (cGVHD) mice model, possibly by decreasing the percentage
of macrophages in the skin and spleen, reducing the infiltration of macrophages into the
skin, and reducing the production of TGF-β and Smad2 in the skin [41]. EVs derived from
human umbilical cord MSCs (hUC-MSCs) can mediate TLR4 signaling through miR-181c,
reducing the inflammatory response of macrophages in burned rats [42]. Stem cells from
human exfoliated deciduous teeth (SHED) can generate EVs to stimulate macrophage
autophagy, reduce itching, and promote inflammatory wound healing [43]. In promoting
wound healing in diabetic skin, MSC-EVs have also been shown to reduce inflamma-
tion by enhancing macrophage polarization [44]. In a lipopolysaccharide-induced wound
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model, SHED-EVs enhanced the autophagy function of macrophages through the AKT,
ERK1/2, and STAT3 signaling pathways to promote wound healing, reducing itching [45].
Melatonin-pretreated MSC-EVs significantly inhibited the pro-inflammatory cytokines
IL-1β and TNF-α, activated the PTEN/AKT signaling pathway, increased the ratio of M2
to M1 polarization, and inhibited the inflammatory response, promoting diabetic wound
healing [45]. In addition, keratinocyte-derived EVs are considered major contributors to
the regulation of macrophage trafficking and maintenance of the epithelial barrier after
injury [46].

3.3. MSC-EVs Regulate T Cell Changes

T cells are derived from bone marrow pluripotent stem cells and are involved in
many aspects of adaptive immunity [47]. Several observations suggest that T cells play an
important role in the regulation of inflammation in skin repair [48]. An effective method
to suppress T cell-mediated regulation of inflammation is to prevent T cell proliferation.
MSCs have immunomodulatory properties that induce suppressive T cell production. The
immunosuppressive function of MSCs is enhanced by interferon-γ (IFN-γ) and TNF-α
produced by T cells, which can be further amplified by cytokines, such as IL-17 [49]. MSC-
EVs have also been found to play critical roles in many T cell-mediated reactive conditions
and have received increasing attention as immunomodulators and anti-inflammatory
agents. Evidence suggests that MSC-EVs can switch activated T cells to a T-regulatory
phenotype, suppressing inflammatory responses [50]. In several studies, MSC-EVs exerted
this effect in several animal models, in vitro and in vivo. For example, in vivo injection of
MSC-EVs can significantly suppress the immune response of cytotoxic T cells (Tc1 cells)
and type 1 helper T cells (Th1), reduce pro-inflammatory TNF-α and IFN-γ levels, and
induce regulatory T cells (Tregs) and anti-inflammatory IL-10 levels, preventing the onset of
allergic contact dermatitis (ACD, a typical T cell-mediated disease) in a mouse model [51].
This process was further validated by in vitro experiments, and MSC-EVs were found to
alter the metabolism of Th1-type differentiated T cells in relation to the TGF-β pathway [52].
In Su’s in vivo experiments, immune cells dominated the uptake of MSC-EVs from the
biofunctional scaffolds. Scaffolds and exosomes act as recruiters and trainers of immune
cells, respectively, synergistically promoting Treg responses in mouse skin trauma [53].

3.4. MSC-EVs Regulate Fibroblast, Keratinocyte, and Endothelial Cell Changes

Four main regeneration phases occur during hyperplasia and remodeling: fibroblast
proliferation, extracellular matrix (ECM) component production, re-epithelialization, and
angiogenesis [54]. After an inflammatory phase involving a multi-cytokine burst, the
damaged site begins to regenerate new tissue to restore skin form and function [54]. A
large body of evidence suggests that MSC-EVs exert a positive therapeutic effect on these
four processes. For example, fibroblasts absorbed MSC-EVs and showed a significant dose-
dependent increase in cell proliferation and migration [55]. MSC-EVs can also promote and
optimize collagen deposition (e.g., type I collagen and type III collagen) in vitro and in vivo
and further promote wound healing through the PI3K/AKT signaling pathway [55,56].
Simultaneously, EVs derived from adipose-derived mesenchymal stem cells (AD-MSCs)
can regulate the proportion of collagen type III and I, TGF-β3, TGF-β1, matrix metallo-
protease (MMP) 3, and TIMP1 and can reduce scar formation by regulating fibroblast
differentiation during skin wound repair [57]. Furthermore, human amniotic epithelial cell
(hAECs)-derived EVs have been shown to accelerate wound healing by promoting fibrob-
last proliferation and migration [58,59]. By contrast, many researchers use keratinocytes
exposed to hydrogen peroxide (H2O2) to establish a skin injury model and treat the model
with MSC-EVs to observe its efficacy. AD-MSC-derived EVs were found to promote the
proliferation and migration of skin injury model cells, reduce apoptosis, and play an ac-
tive role in skin wound healing through the Wnt/β-catenin signaling pathway [60]. EVs
derived from bone marrow MSCs (BM-MSCs) have also been shown to promote the prolif-
eration and migration of skin injury model cells, inhibit apoptosis, and accelerate wound
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healing through the Mir-93-3p/APAF1 axis [61]. Re-epithelialization, collagen deposition,
and neovascularization are successive, inseparable processes, and many researchers have
discussed multiple cell types simultaneously while exploring the promotion of MSC-EVS
for injury repair. For example, Shabbir showed that MSC-EVs enhance fibroblast prolif-
eration and migration and increase human umbilical vein endothelial cell tubulogenesis
in a dose-dependent manner [62]. Furthermore, MSC-EVs enhance fibroblast migration
by activating intracellular pathways such as AKT, ERK, and STAT3, which are all vital
pathways in wound healing [62]. Ren investigated the effects of AD-MSCs on fibroblasts,
keratinocytes, and endothelial cells and observed changes in vivo [63]. The results showed
that MSC-EVs significantly promoted the proliferation and migration of these cells through
the AKT and ERK pathways; upregulated growth factors, such as VEGFA, PDGFA, EGF,
and FGF2; and enhanced re-epithelialization, collagen deposition, and neovascularization
in in vivo skin injury models, accelerating wound healing [63].

Wound healing is a multi-step process involving complex pathways at the cellular
and molecular levels. Identifying functional gene variants, such as single nucleotide poly-
morphisms (SNPs), that are closely associated with wound healing and the establishment
of venous ulcers will greatly assist in the prognosis, diagnosis, and treatment of chronic
wounds [64]. MSC-EVs regulate cell differentiation and proliferation, affect angiogenesis,
interfere with stress responses, and participate in immune signaling [65]. A systematic
assessment of 66 patients treated with adipose-derived stem cells (ADSCs) for venous
leg ulcer (VLU) showed significantly higher wound-healing rates compared to controls,
decreased pain scores, and no serious surgery-related complications reported [66]. Thus, it
is speculated that MSCs and MSC-EVs may also contribute to the prognosis, diagnosis, and
treatment of chronic wounds by influencing the role of SNPs.

Therefore, EVs derived from various MSCs (e.g., AD-MSCs, BM-MSCs, hUC-MSCs,
hAECs, etc.) have substantial therapeutic effects on skin wound healing by reducing the
inflammatory response, promoting re-epithelialization and angiogenesis, promoting the
proliferation and migration of fibroblasts, and enhancing the formation and remodeling
of ECM.

3.5. MSC-EVs Promote Scar-Free Repair of Skin Wounds

After the dermal tissue is damaged, the abnormal deposition of collagen in the ex-
tracellular matrix and the accumulation of fibroblasts often cause scar hyperplasia, which
is characterized by thickening, hardening, redness, and itching of the scar, affecting the
quality of life of patients [67]. This mechanism is related to the abnormal immune function
of T cells and macrophages. TGF-β1 stimulates the proliferation of collagen fibers in wound
tissue and inhibits the decomposition of ECM, such as collagen, by MMPs, promoting
scars [68]. Additionally, if the wound surface has an insufficient blood supply, delayed
wound healing aggravates scar hyperplasia [69]. Traditional skin damage repair methods
have certain curative effects, which can reduce patients’ pain and promote wound healing;
however, the clinical curative effect is limited, the long-term curative effect is not ideal, and
the problem of scar tissue hyperplasia cannot be solved [69]. Studies have confirmed that
AD-MSCs can promote wound healing and scar formation; however, direct transplantation
of AD-MSCs leads to a low survival rate and limited clinical efficacy [1]. Nevertheless, EVs
generated by AD-MSCs can be cell-free and help promote cell damage repair, which effec-
tively accelerates the repair of skin wounds and reduces the generation of scars, helping to
improve the beauty of skin healing [57,70]. The EVs produced by AD-MSCs help promote
the healing of skin wounds and simultaneously reduce the accumulation of fibroblasts to a
certain extent, reducing the generation of scars and improving the quality of skin wound
healing. The mechanism of action of AD-MSC-EVs is complex and can activate various
signaling pathways and promote the release of wound-related factors. The formation of
wound scars is often accompanied by the deposition, degeneration, and degradation of the
cell matrix, and cell matrix proteins are the main substances that degrade the cell matrix.
Studies have shown that keloid cells express high levels of MMP1 and MMP3, which can
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promote scar formation by regulating the cell matrix, whereas AD-MSC-EVs can inhibit
the expression of MMP1 and MMP3 to a certain extent and reduce the degradation of the
peripheral cytoplasmic matrix, reducing scar formation [71].

In summary, MSC-EVs can promote the scar-free repair of the skin by regulating the
remodeling of the extracellular matrix, increasing the expression of matrix metallopro-
teinases, promoting the reconstruction of the extracellular matrix, effectively inhibiting the
formation of scars, improving the quality of skin repair, and improving the quality of skin
repair. The treatment of clinical skin wound healing plays a guiding role.

3.6. Application of MSC-EVs in Animal Studies

Recent studies on MSC-EVs have focused mostly on in vivo experiments for the treat-
ment of diseases with complex pathophysiology. For example, through in vivo evaluation
of BM-MSC-EVs in the treatment of corneal epithelial wounds, it was found that in the
corneal injury mouse model, MSC-EVs effectively promoted wound healing, significantly
reduced haze/edema of the cornea after treatment, and decreased corneal fibrosis markers,
fibronectin, collagen 3A1 and a-SMA [72,73]. In a rat model, local application of MSC-EVs
can significantly accelerate the mucosal healing of oral mucositis (OM) [74]. In Levy’s
data, the pro-angiogenesis and anti-inflammatory activity of IPSC-derived MSC-EVs has
been identified in a mouse model of diabetic wound healing and effectively mediates
inflammation resolution within the wound bed [75]. Interestingly, the EVs secreted by
un-induced iPSCs increased the rate of new epithelial formation at earlier time points and
decreased the total wound area and length at later time points [75]. At the same time,
compared with BM-MSC-EVs, EVs derived from oral mucosa Lamina propria progenitor
cells (OMLP-PC) is more effective in driving wound repair and scar healing [76]. This may
imply that the biological effects of EVs are at least partially influenced by the pluripotency
of the source cells.

In addition, given the characteristic of MSC-EVs promoting wound healing, some bio-
engineering materials have been applied to extend their therapeutic efficacy. For example,
thermosensitive chitosan-based hydrogel (CHI hydrogel) sustained-release iPSC-MSC-EVs
can effectively promote the repair of damaged corneal epithelium and stroma, down-
regulate collagen mRNA expression, and reduce scar formation in vivo [77]. Using the
biotin–avidin interaction, biotin-modified MSC-EVs were fixed in avidin-linked GelMA to
produce GelMA-EVs hydrogels, which increased the slow-release effect of EVs, and MSC-
EVs were observed to remain more stable in GelMA-EVs hydrogels for up to 28 days after
subcutaneously transplanted [78]. This in vivo evidence suggests that MSC-EVs have been
shown to promote wound healing and reduce scar area in animals, whether administered
directly or after optimized biological characteristics (such as increasing the pluripotent
capacity of source cells, combining biomaterials, etc.).

4. Challenges in Applying MSC-EVs to Promote Wound Healing and Skin Regeneration

Cell therapy has made great strides in the clinical practice of skin damage repair, and
an increasing number of clinical trials have reported the therapeutic effects of MSC-EVs. As
a new therapeutic approach, MSC-EVs have many limitations that must be overcome before
they can be used clinically. First, their effects are difficult to predict in vivo because of the
tissue origin, concentration, number of doses, route and timing of MSC administration,
and inflammatory state of the recipient. To predict the biological effects of MSC-EVs, a
comprehensive characterization of MSC-EV content and standardization of experimental
methods are essential. The MSCs donors used to generate EVs need to be planned and
regulated, and a standard good manufacturing practice (GMP)-compliant MSC-EV isolation
protocol needs to be developed and refined. Second, because MSC-EVs cover a relatively
wide range involving microvesicles (MVs), apoptotic bodies, and exosomes, developers
need to classify MSC-EVs and establish consistent, graded release criteria (e.g., particle
size, loading, surface marker expression) before they can be injected into potential patients.
Additionally, medical practitioners need to monitor the treatment process in the human
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body at any time, determine the markers that distinguish functional and non-functional
EVs based on the efficacy of the treatment, and then report them back to researchers to
pursue the production of functional-specific MSC-EVs. Third, the optimal dose of MSC-EVs
in humans, the optimal route of administration of MSC-EVs, and the length of time that
MSC-EVs remain in patients before being cleared by phagocytes remain unclear and need
to be determined according to the treatment. Investigators must overcome these limitations
to achieve MSC-EV-induced immunomodulation and regeneration.

5. Conclusions

Poor skin wound healing is a common problem in the field of trauma medicine.
The different stages of chronic wound healing (hemostasis, inflammation, proliferation,
and remodeling) require the involvement of different types of cells, including immune
cells involved in the regulation of inflammation, such as macrophages, neutrophils, and
T cells, and cells involved in tissue proliferation and remodeling, such as fibroblasts,
keratinocytes, and endothelial cells. MSC-EVs have been shown to facilitate skin wound
healing and accelerate this process through multiple mechanisms. These mechanisms
comprise reducing inflammation, promoting angiogenesis, promoting the proliferation and
migration of epithelial cells and fibroblasts, and ECM remodeling. Overall, MSC-EVs, an
important component of the ECM, play a crucial role in skin injury and are closely related
to tissue regeneration. Therefore, as new biomarkers and therapeutic targets, MSC-EVs can
simultaneously promote wound healing through multiple mechanisms and are a promising
approach to replacing cells for skin wound therapy.
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