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Miljenko Kapović 4, Natalija Novokmet 2, Pavao Rudan 5, Saša Missoni 2,6, Damir Marjanović 1,2,7
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Abstract: Mitochondrial DNA (mtDNA) has been used for decades as a predominant tool in popula-
tion genetics and as a valuable addition to forensic genetic research, owing to its unique maternal
inheritance pattern that enables the tracing of individuals along the maternal lineage across numerous
generations. The dynamic interplay between evolutionary forces, primarily genetic drift, bottlenecks,
and the founder effect, can exert significant influence on genetic profiles. Consequently, the Adriatic
islands have accumulated a subset of lineages that exhibits remarkable absence or rarity within other
European populations. This distinctive genetic composition underscores the islands’ potential as a
significant resource in phylogenetic research, with implications reaching beyond regional boundaries
to contribute to a global understanding. In the initial attempt to expand the mitochondrial forensic
database of the Croatian population with haplotypes from small isolated communities, we sequenced
mitogenomes of rare haplogroups from different Croatian island and mainland populations using
next-generation sequencing (NGS). In the next step and based on the obtained results, we refined
the global phylogeny of haplogroup N1a, HV2, and X by analyzing rare haplotypes, which are
absent from the current phylogenetic tree. The trees were based on 16 novel and 52 previously
published samples, revealing completely novel branches in the X and HV2 haplogroups and a new
European cluster in the ancestral N1a variant, previously believed to be an exclusively African–
Asian haplogroup. The research emphasizes the importance of investigating geographically isolated
populations and their unique characteristics within a global context.

Keywords: rare mitochondrial haplotypes; mitochondrial phylogeny; mitochondrial haplogroup
HV2b; N1a; X1-3

1. Introduction

Isolation, whether geographical or cultural, has always had an impact on the pop-
ulation genetic structure, and it is mirrored in the reduction of genetic diversity due to
genetic drift and a higher rate of marriage in consanguinity due to the limited relation
options [1]. These factors can have a favorable influence on the analyses of microevolu-
tionary processes and population differentiation in isolated communities such as island
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populations or remote mountainous villages also known as “inland islands” [2–4]. Mito-
chondrial DNA (mtDNA) is used in such population-genetic research due to its maternal
inheritance that can trace individuals along the maternal lineage across many generations
in the past. Scenarios involving genetic drift, repeated bottlenecks, and the founder effect,
together with marriage in consanguinity, could explain how the Adriatic islands’ mtDNA
pool accumulated a subset of lineages that are almost absent in other European populations,
clearly indicating that the islands can be very useful in genetic variability research, even
on a global scale [5–8]. Indeed, other genetic studies on isolated European populations
revealed certain private mtDNA motifs, explaining their genetic ancestry and the historical
events that have shaped their genetic structure [9,10].

Mitochondrial DNA is also extensively used in forensic casework to characterize
biological evidence based on its specific features, such as high copy numbers within cells
and the small size of the mitochondrial genome, also very useful in analysis of ancient
human remains. The currently available forensic mtDNA database is the EMPOP database,
specifically developed for forensic applications, and comprising around 48,500 quality
controlled mitotypes (URL: https://empop.online/, accessed on 28 June 2023). However,
the number of complete mitogenomes in EMPOP (around 4000) is still insufficient and
lacks contributions from Croatia [11,12]. In the initial attempt to expand the current
Croatian forensic database and achieve a fully representative database of the Croatian
territory, we randomly selected samples belonging to rare mtDNA haplogroups (<5% in
the general European population), mostly from island and mountainous populations, to
be sequenced on the Illumina platform. To the best of our knowledge, several sequenced
mitogenomes presented a novelty not only in the current Croatian database but also in the
global mtDNA literature. Those samples belonged to a rare variant of haplogroup N1a,
harboring the ancestral 16147G mutation, samples of unknown subhaplogroup affiliation
in the X phylogeny, and samples belonging to the HV2 haplogroup that share the defining
mutations for the HV2a haplogroup but otherwise belong to a completely different clade
that we named HV2b.

The mitochondrial haplogroups N1a and X originated most likely in the Arabian
Peninsula and the Near East. Although very rare and with uneven distributions in contem-
porary populations, they harbor a very large diversity of lineages across western Eurasia
and Africa. The estimated age of their common ancestor, the root of haplogroup N, is
around 55–65 kya [13].

The mitochondrial haplogroup N1a is widely accepted as a molecular signal of Ne-
olithic migrations of the first farmers from the Near East into Europe around 7500 years
ago. In modern day populations, its frequency is very low, usually around 0.2%, but it has
been detected in up to 25% of ancient human remains from the Neolithic period in Central
Europe [14]. In spite of its rare occurrence in modern-day populations, the N1a haplogroup
shows a wide distribution and a deep diversity within its sublineages [13,15]. Based on its
distinct mutations, three phylogeographic branches were proposed, the European, Central
Asian, and African/South Asian lineage, presumed to be absent in contemporary European
populations [14]. Haplogroup X, also a rare mitochondrial haplogroup, originated in the
Near East ca. 30 kya, is divided into four distinct subhaplogroups, denoted as X1–X4. The
predominant lineage is X2, while others are rarely found, usually in Near Eastern and
North African populations [16,17]. Haplogroup HV, as the major subclade of R0, is also
rare or absent in north and west European populations, but it is more common in southern
European regions. Its frequency reaches 7% to 9% in certain Italian populations, but it is
more prevalent in the Near East and the Caucasus [18]. A recent study of the rare human
mitochondrial haplogroup HV reported a surprisingly large number of novel lineages, but
HV2b remained unrecognized [19].

In order to shed additional light on those rare and less studied parts of mitochondrial
phylogenetic trees, we integrated the results of the NGS sequencing data with our previ-
ously sequenced similar mitogenomes and joined them with all the publicly available data
in the attempt to refine the global phylogeny of the N1a, X, and HV2 haplogroups.

https://empop.online/
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2. Materials and Methods
2.1. Sample Collection and DNA Extraction

Samples were collected within several projects approved by local Ethical Committees,
and all individuals gave their informed consent according to the international standards in
research involving human DNA. DNA extraction from whole blood was performed in the
Laboratory for Molecular Anthropology of the Institute for Anthropological Research in
Zagreb and in the Institute of Genomics, Tartu, Estonia, using both the salting out proce-
dure [20] and the NucleoSpin Blood kit (Macherey-Nagel, Dueren, Germany) according to
the manufacturer’s instructions.

In total, 32 samples affiliated to rare haplogroups for the Croatian population, ac-
cording to the HVS region, were chosen from the mtDNA database of the Institute of
Anthropological Research to be analyzed using next-generation sequencing. Out of these
32 samples, 7 samples indicating a novel finding were chosen and integrated with 9 of our
previously completely sequenced samples and samples from the literature to reconstruct
the current phylogenetic trees of haplogroups N1a, X, and HV2. Therefore, the trees are
based on 68 complete mitogenomes—16 new, yet unreported, sequences from the Croatian
and Estonian database and 52 samples reported in the literature (Figures 1–3. Additionally,
a world distribution map was created for two N1a variants (Figure 4).
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Figure 1. Maximum parsimony phylogenetic tree of the complete mtDNA sequences belonging to
the haplogroup N1a1a. The numbers on the branches refer to the substitutions relative to rCRS [21].
The samples from the present study are labeled as shown in Supplementary Table S3, and for the
published data, the GenBank accession number is indicated. Coalescence age estimates, expressed in
years and highlighted in blue, are shown on the branches and were calculated using the mutation
rate based on the mtDNA complete genome variability data [22].



Genes 2023, 14, 1614 4 of 16Genes 2023, 14, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. Newly constructed phylogenetic tree of the X1’3 branch. The designations are the same as 
in Figure 1. 

 

27,987 (16,930-41,839)

9001 (4482-15,071)

3099 (970-6155)

Europe
Asia

Africa

T10084C

A13614G
C13950T

this study
T6221C
C6371T

A10113G

A11380G

T152C
T195C
T6227C
G12406A
C16266T
G16274A
G16390A

X4

X1

(T16104C)

T146C!

X1'3

CRS

X2

Denmark
JX153422

H2a2

C10673T
C10920T

H2a

A750G

A7518G

A4769GT195C

A1438G

C256T
H

X3a

G14560A

H2

T16126C
A11020G
T5420C

C256T!

T15672C

C338T

Croatia

A263G
A8860G
A15326G

H2a2a

United Arab EmiratesSpain
MZ920403EF177437

A15903G

Druze
EU600322

T4907CT195C

Druze

C12705T

C16223T

R

A73G
G11719A

R0

T15654C T13879C

C7028T
G3531A

T5302C
A14587G C13785T

A2706G

C14766T

T195C HV

A153G

T146C
G1719A

X1'2'3

904_RAB
Croatia Druze

KF451110

A13966G
T14470C
T16189C
C16278T

X

T16278C!

G15927A
T16136C

MK139640 MZ920552
Spain

MF437073

MF437185

293_CRES
Portugal Druze

EU600320

A16289G

G7853A

A15222G

Reidla_Dr_09

C11407T

Tunisia

Canary islands
JQ245804

United Arab Emirates

C16320T

T10187C
C8967T
T8937C

10,378 (6852-14,439)

6735 (3717-10283) T13768C 7257 (4307-10,762)

G14016A

T455TT!

A13269G
A11167G
G9554A

C5899insC!
T2248C

T11935C
C12061T

T152C

HV2

MF523156

C15727T
C5348T

T16217C

G499A
A4562G

HV2a

T7193C
T195C

A9336G

ILD_72

T8843C
T12681C

T12408C

G7269A
C6617T

A14750G

A16272G
G16129A

C16173T
C16256T

C16234T
T16311C

A9041G

Europe
Asia

present study

C3311T
A4615G

PAKISTAN PAKISTAN

C1009T
T1005C C5899insC!

MN595851 MN595885
PAMIR 

MF522963

12630
5471 5319

KYGRYZSTAN
KX675292

T12681C
T8289insACCCCCTCT

KU683296
IRAN

KC911408

HV

A4769G

H2

A1438G

A15326G
A8860G
A263G

H2a2

A750G

H2a

CRS

H2a2a

UYGHUR

A73G

H

C7028T
A2706G

C5899insC
T455TT

199_CRES
Croatia

G247A

G13708A

G10775A
T11087C
T16298C

ARMENIACroatia
MF523015

PAMIR PAMIR 

A15706G

A7385G

HV2b

383_CRES

Figure 2. Newly constructed phylogenetic tree of the X1’3 branch. The designations are the same as
in Figure 1.

Genes 2023, 14, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. Newly constructed phylogenetic tree of the X1’3 branch. The designations are the same as 
in Figure 1. 

 

27,987 (16,930-41,839)

9001 (4482-15,071)

3099 (970-6155)

Europe
Asia

Africa

T10084C

A13614G
C13950T

this study
T6221C
C6371T

A10113G

A11380G

T152C
T195C
T6227C
G12406A
C16266T
G16274A
G16390A

X4

X1

(T16104C)

T146C!

X1'3

CRS

X2

Denmark
JX153422

H2a2

C10673T
C10920T

H2a

A750G

A7518G

A4769GT195C

A1438G

C256T
H

X3a

G14560A

H2

T16126C
A11020G
T5420C

C256T!

T15672C

C338T

Croatia

A263G
A8860G
A15326G

H2a2a

United Arab EmiratesSpain
MZ920403EF177437

A15903G

Druze
EU600322

T4907CT195C

Druze

C12705T

C16223T

R

A73G
G11719A

R0

T15654C T13879C

C7028T
G3531A

T5302C
A14587G C13785T

A2706G

C14766T

T195C HV

A153G

T146C
G1719A

X1'2'3

904_RAB
Croatia Druze

KF451110

A13966G
T14470C
T16189C
C16278T

X

T16278C!

G15927A
T16136C

MK139640 MZ920552
Spain

MF437073

MF437185

293_CRES
Portugal Druze

EU600320

A16289G

G7853A

A15222G

Reidla_Dr_09

C11407T

Tunisia

Canary islands
JQ245804

United Arab Emirates

C16320T

T10187C
C8967T
T8937C

10,378 (6852-14,439)

6735 (3717-10283) T13768C 7257 (4307-10,762)

G14016A

T455TT!

A13269G
A11167G
G9554A

C5899insC!
T2248C

T11935C
C12061T

T152C

HV2

MF523156

C15727T
C5348T

T16217C

G499A
A4562G

HV2a

T7193C
T195C

A9336G

ILD_72

T8843C
T12681C

T12408C

G7269A
C6617T

A14750G

A16272G
G16129A

C16173T
C16256T

C16234T
T16311C

A9041G

Europe
Asia

present study

C3311T
A4615G

PAKISTAN PAKISTAN

C1009T
T1005C C5899insC!

MN595851 MN595885
PAMIR 

MF522963

12630
5471 5319

KYGRYZSTAN
KX675292

T12681C
T8289insACCCCCTCT

KU683296
IRAN

KC911408

HV

A4769G

H2

A1438G

A15326G
A8860G
A263G

H2a2

A750G

H2a

CRS

H2a2a

UYGHUR

A73G

H

C7028T
A2706G

C5899insC
T455TT

199_CRES
Croatia

G247A

G13708A

G10775A
T11087C
T16298C

ARMENIACroatia
MF523015

PAMIR PAMIR 

A15706G

A7385G

HV2b

383_CRES

Figure 3. Newly constructed phylogenetic tree of the HV2b branch. The designations are the same as
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Figure 4. World distribution of the N1a1a (16147G) variant, marked in orange, and the N1a1a1
(16147A) variant, marked in blue.

2.2. Haplogroup Affiliation and Sequencing

Haplogroup and subhaplogroup affiliations were previously determined based on
single-nucleotide polymorphisms from the coding and noncoding regions of the mito-
chondrial genome, according to the PhyloTree build 17. The HVS-I sequences were
aligned and analyzed according to the Revised Cambridge Reference Sequence (rCRS,
NC_012920) [21,23] by using ChromasPro software 2.6.6. (Technelysium Pty Ltd., Tewantin,
QL, Australia).

The initial complete sequencing of 9 mitochondrial genomes was performed at the
Estonian Biocentre, Institute of Genomics, Tartu, Estonia using Sanger sequencing. Se-
quencing was performed on the Applied Biosystems 3730xl DNA Analyzer, Thermo Fischer
Scientific, Waltham, MA, USA) with the BigDye Terminator sequencing kit (Applied Biosys-
tems, Warrington, UK), according to the previously published methodology [24,25].

Target enrichment, library preparation, and sequencing of the selected subsample
(n = 32) were performed at the Forensic Science Centre “Ivan Vučetić”, Zagreb, Croatia
according to Illumina 2016 Protocol, with the modifications described previously [26,27].
Briefly, the samples were amplified by a long-range PCR with PrimeSTAR® GXL DNA
polymerase in two amplicons for each sample. The conditions of the optimized protocol
for both fragments were as follows: 9.1 kb fragment: 25× (98 ◦C 10 s, 60 ◦C 15 s, 68 ◦C
9 min, 6 s); and 11.2 kb fragment: 25× (98 ◦C 10 s, 68 ◦C 10 min). Both mtDNA amplicons
were then quantified on a QubitTM 3.0 Fluorometer (Thermo Fisher Scientific) with the
QubitTM dsDNA High Sensitivity kit. Both mtDNA amplicons were normalized to equal
concentrations of 0.2 ng/µL, as described in the Illumina® protocol, and pooled for each
sample, wherefrom the volume of 5 µL was taken for library preparation (i.e., total input
of 1 ng). Nextera® XT Library Prep Kit was used according to the Illumina® protocol,
and negative controls (reagent blanks) were used in the target enrichment (NC-PCR) and
library preparation (NC-LIB) procedures [28]. The purification of libraries was performed
with Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA). The li-
braries underwent quantification with LabChip® DNA High Sensitivity Assay on LabChip®

GX Touch HT (PerkinElmer, Waltham, MA, USA) and were diluted to concentrations of
0.2 ng/µL. The libraries normalized to 4 nM were pooled, denatured, and diluted to 12 pM,
with 5% PhiX Sequencing Control v. 3 (Illumina, San Diego, CA, USA) spike-in (Illumina®

Denature and Dilute Libraries Guide for MiSeq System). The paired-end sequencing of all
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32 samples was performed within a single run on an Illumina® MiSeq FGxTM instrument
by using the MiSeq® Reagent Kit v.2, 300 cycles (2 × 151 bp). The run quality metrics
were reviewed in Illumina® Sequencing Analysis Viewer (SAV) v.1.11.1 software: a cluster
density of 1494 K/mm2, with 87.2% of clusters passing the filter was reported, and 78.8%
of the sequenced bases exhibited a base call quality score (Q) above 30.

The raw fastq reads generated by the MiSeq® Reporter v.2.5.1.3 (Illumina®) were
mapped to the rCRS (NC_012920) [21,22] using the bwa program version 0.7.12-r1039 [29],
with the ‘mem’ algorithm and default parameters. Samtools v1.8 [30] was used to convert
the mapped reads to BAM format, fixing mate-pair information, and sorting and indexing
the resulting files. The indels were left-aligned with the GATK v4.0.3.0 [31]. LeftAlignIn-
dels command against the rCRS reference fasta file, and subsequently the PCR duplicates
were removed with Samtools. The reads were filtered using Bcftools v1.8 [32], with a
minimum base quality of 20 and a mapping quality of 30. The base frequencies at each
reference position were counted into a VCF file, normalized by left-aligning indels, and
the multiallelic variants were split into separate rows, producing the final data format for
manual review. The coverage across all samples and positions after PCR duplicate removal
amounted to 4243 ± 2253 (mean ± standard deviation). All reported variants were manu-
ally reviewed by inspecting the respective BAM files in the Integrative Genomics Viewer
(IGV) tool v.2.4.16 [33,34]. The haplogroup and subhaplogroup affiliations were determined
based on the full haplotypes, by using HaploGrep2 v.2.1.1 [35]. Computationally assigned
haplogroups were manually validated against the PhyloTree, Build 17 [36].

2.3. Coalescence Time Estimates and Phylogenetic Trees Reconstruction

Coalescence time estimates were computed with the Bayesian MCMC approach im-
plemented in the BEAST v1.7.5 suite of software [37]. All analyses were performed using
the HKY model of nucleotide substitution [38]. Rate variation among sites was modeled
using a gamma distribution with four rate categories. A strict clock model was used as the
clock model [39]. The tree prior used was a piecewise-linear Bayesian skyline model [40].
The prior normal distribution for the mutation rate was set based on [22] Soares et al., 2009.
Each BEAST run was performed in the same way: a single MCMC chain was run for
50,000,000 steps, sampled every 1000 steps, and the first 10% was discarded as a burn-in.
Appropriate effective sample size values (ESS > 200) for each parameter in the model were
checked in Tracer v1.5. As the BEAST v1.7.5 software assumes a linear mutation rate, the
time estimates obtained from the BEAST v1.7.5 analyses were corrected by the published
formula [22] (Supplementary Table S2).

The maximum parsimony phylogenetic tree was first constructed with
the software mtPhyl 5.003 (URL: https://sites.google.com/site/mtphyl/home,
accessed on 23 February 2023), and the tree topologies were subsequently manually
verified, by using all publicly available sequences from the current literature and Mitomap
up to March 2023. The trees of the complete mtDNA sequences (52 published and 16 novel
ones—9 from our database + 7 sequences from the NGS dataset) were rooted to the Revised
Cambridge Reference Sequence (rCRS), in order to enable comparison to the previously
published data.

A world distribution map was created for both the N1a 16147A and 16147G variants
(Figure 4, with all the available data from the published literature (Supplementary Table S1).
We included only those populations harboring at least one individual with an N1a hap-
logroup. Each N1a variant is represented in a different color—16147A variant in blue and
16147G in orange, while the frequency of the N1a samples in each population is directly
proportional to the node size. The N1a 16147A distribution is based on 70 populations
from the literature and the present study, with 165 out of 25,537 different samples. The
N1a 16147G variant distribution map is based on 43 different populations, with 96 out of
14,822 different samples (Supplementary Table S1).

https://sites.google.com/site/mtphyl/home
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3. Results

In order to expand the current Croatian forensic database and achieve a fully rep-
resentative database, 32 full mitogenomes of rare mtDNA lineages from Croatian island
and mainland populations were chosen from our larger mtDNA database and sequenced
on the Illumina platform. Their haplogroup affiliations, frequencies, and mutations are
presented in Supplementary Figure S1 and Supplementary Table S4. All those sequenced
samples belong to the mtDNA clades D, F, HV, I, L, N, W, X, U1, U3, U7, and U8, all present
in less than 5% of the Croatian population. Based on their unique mutations, as seen
by comparison with the Croatian and Estonian mtDNA databases, we selected 7 out of
32 samples for further analysis of the N1a, X, and HV haplogroups. Those seven samples of
Croatian origin, together with nine previously sequenced samples of different origin from
our database (N = 16 in total), were selected for the reconstruction of phylogenetic trees of
haplogroups N1a, X, and HV2. In the reconstruction of the phylogenetic treesthirty-two
published N1a1a sequences, twelve X3a, and eight HV2b from the literature were also used
(52 in total). All the new and published sequences (with sample ID, population of origin,
reference, and mutations) that were used in the reconstruction of the trees are presented in
Supplementary Table S3 and Figures 1–3.

3.1. Reconstruction of the Maximum Parsimony Phylogenetic Tree of the N1a1a Ancestral Variant

In order to shed new light on the ancestral branch of the N1a 16147G variant and
to clarify its spread across the Old World, we reconstructed the tree of the N1a 16147G
variant using 32 published [10,11,13,19,41–47] and 11 new complete sequences (Figure 1,
Supplementary Table S3). In order to reconstruct an unbiased phylogeny of the so-called
“African/South Asian branch”, we chose sequencing samples from various regions in Africa,
Middle and Near East, as well as from Europe. Three distinct clusters were recognized. The
largest part of the newly reconstructed tree of the N1a 16147G variant was marked by a
HVSII back mutation at the position 152. A specific African branch was observed within this
large cluster, marked by transitions in the positions 207, 3535, 4924, 9729, 12630, and 16213.
Its estimated age was 8569 years (5014–12,623). The other part of this cluster, encompassing
the vast majority of the published samples and showing a deep diversity mostly within
North and East Africa, the Arabian Peninsula, and the Near East, was characterized by
the mutation 2758 (N1a1a3), and it is also the oldest part of this branch, with an estimated
age of 14,904 years (11,416–18,975) [13,48]. Several distinct groups were visible within this
cluster. The first two were characterized by the mutations 13681 and 10586, and the smallest
one was marked by nine mutations shared by two Yemeni samples. It is expected that this
cluster will expand with additional sequences in the future.

Besides the largest cluster marked by the 152 back mutation, two smaller clusters
stemming directly from the N1a1a branch arose as well. Three Near Eastern samples were
joined in a separate cluster marked by transitions at positions 8452 and 16344, with an
age estimate of 8514 years (4452–13,011). The second cluster marked by a 4721 transition
encompassed eight different complete sequences from various European regions—four
samples of Russian, Greek, and Serbian origin [10,11,49], joined with four new sequences
from different parts of the Croatian territory. One sample originated from the continental
mountainous part of Croatia, while three others were from the Adriatic islands of Cres
and Pag. The coalescent time estimation of this European cluster was estimated at around
10,017 years (6007–14,779).

In the attempt to trace the geographical distribution of the contemporary N1a variants
on a global scale and to revise the generally accepted postulates of their spatial predomi-
nance, we created world distribution map for both the N1a 16147A and 16147G variant
(depicted in Figure 4) with all the available data from the literature on populations of
European, Asian, and African origin (Supplementary Table S1). Only those populations
harboring at least one individual with 16147A or 16147G variants were presented in blue
and orange colors, respectively. The frequency of the N1a samples in each population was
directly proportional to the node size. In spite of the current belief that both variants are
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quite rare and continentally specific, their dispersals and variety revealed much wider
distribution and frequency than was previously known.

3.2. Reconstruction of the Maximum Parsimony Phylogenetic Tree of the X1’3 Haplogroup

We also reconstructed the phylogenetic tree of the X1’3 using twelve
published [13,16,17,43,46,50–53] and two new complete sequences (Figure 3,
Supplementary Table S3). The complete sequencing of samples assigned to the X*
haplogroup with the 16136-16189-16223-16278-16289 HVSI motif did not allow their
affiliation to any known subhaplogroup on the X phylogenetic tree and suggested an
individual twig. They were joined more closely with the X3 subclade by a common
transition 3531, but they otherwise represented a completely new lineage. The cluster
marked by the 3531 mutation showed a very old age—27,987 years (16,930–41,839), while
the X3a cluster was much younger, estimated at 9001 years (4482–15,071).

3.3. Reconstruction of the Maximum Parsimony Phylogenetic Tree of the Newly Proposed
HV2b Haplogroup

The sequencing of two HV2 samples from the Cres Island was also performed and
joined with a sample of Armenian origin from the Estonian database, sharing a similar HVSI
motif. In the attempt to clarify their unusual connection, we constructed the maximum
parsimony phylogenetic tree using eight complete mtDNA sequences from the literature
and Mitomap [54–58] and three new samples (Figure 3, Supplementary Table S3). We
can conclude based on our findings that we identified a novel HV2 subbranch, which we
named HV2b. The HV2b branch was marked by transitions in the positions 3311, 4615,
8843, 12681, and 13708, estimated at around 10,378 years (6852–14,439), encompassing at
least two different clusters. The largest group, marked by the mutation 13768, was around
7257 years old (4307–10,762), while the newly sequenced samples of the Croatian and
Armenian cluster formed a separate group with an age estimate of 6735 years (3717–10,283).

4. Discussion

The Croatian Adriatic islands serve as genetic isolates characterized by the presence
of atypical lineages when compared to the contemporary European population, which are
more prevalent and frequent due to the influence of genetic drift and recurrent bottlenecks.
Incorporating these rare mitogenomes into the EMPOP database would enhance its forensic
power by facilitating the identification and matching of individuals possessing uncommon
genetic profiles for a particular region. Furthermore, the identification of novel branches
within certain haplogroups, such as the HV2, X1’3, and N1a1a ancestral variant, underlines
the importance of exploring isolated populations and their distinctive characteristics in
shaping the contemporary structure of the human population. Therefore, the objective of
this study was to reconstruct the phylogenetic trees for these haplogroups by sequencing
rare mitochondrial haplotypes obtained from our database. This research provides valuable
insights into the genetic diversity and evolutionary history of these specific lineages,
contributing to our understanding of the broader human population structure.

4.1. New Insight into the Phylogeny and Phylogeography of the Ancestral N1a 16147G
Variant—European Cluster inside the African/South Asian Branch

The west-Eurasian mitochondrial haplogroup diversity encompasses haplogroups
mainly derived from haplogroup R, the daughter branch of the macrohaplogroup N.
The estimated origin of haplogroup N was most likely in the Arabian Peninsula around
55–65 kya, shortly after the Out-of-Africa migration, where the derivation into the R clade
took place around 59 kya [13]. West Eurasian mitochondrial haplogroups N1 (including I),
N2 (including W), and X stem directly from the N node [59]. Due to their common
features—relative rarity (usually below 5.0% in European populations) and scattered dis-
tribution, the members of these clades have generally been neglected in past studies.
The N1a haplogroup shows a wide distribution and a deep diversity within its sublin-
eages [13,15,47]. Based on the N1a haplogroup differences, three distinct phylogeographic
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branches—European (16147A variant), Central Asian (16147A variant), and African/South
Asian (16147G variant)—were proposed by Haak et al., 2005 [14]. The vast majority of
ancient and modern N1a lineages across Europe and Central Asia form a European/Central
Asian branch characterized by the 16147A mutation. Although its impact on the modern
genetic pool and its dispersal routes are still highly debated, findings of the diverse mito-
chondrial N1a lineage marked by the 16147A mutation (up to 25%) among ancient human
remains associated with the Linear pottery culture and Alföld Linear Pottery culture were
connected with the spread of the first farmers into Central Europe 7500 years ago [14].
Contemporary western Eurasian populations usually harbor below 0.2% of N1a 16147A
variant, and this drastic decline of this haplogroup in modern-day populations has not
been fully clarified. Based on a large dataset of early Neolithic skeletons, the presence of the
N1a 16147A variant in early farmers from the Carpathian Basin (6.82–10.26%) and Central
Europe (12.04%) affirmed its role as a marker for the Continental route of the Neolithic
expansion [60–62]. This variant of N1a was also found in one of three individuals of the
Megalith culture in Southwestern France, indicating its spread to the remote parts of the
European continent [63], but it has not been recorded in the Mediterranean region [64–66].
The world distribution of the N1a 16147A variant in this study showed that the distribution
of the so-called European/Central Asian branch spreads from the westernmost part of
Europe all the way to Eastern and Southern Asia and from Northern Eurasia all the way
to Northern Africa. Surprisingly high frequencies of this N1a 16147A variant were found
around the Near East and Arabian Peninsula. The highest frequency of the N1a 16147A
variant on the European territory was located around the central European region, which
served as a migratory route for Neolithic farmers. Other parts of Europe did not show a
substantial prevalence of this lineage.

The African/South Asian branch, characterized by the 16147G mutation, was believed
to be more common in the Arabian Peninsula, northern Africa, and the Near Eastern
region and very rare, or even absent in Europe [15,67,68]. It has also not been found in
any Neolithic excavation site in Europe. This suggests that the initial diversification of
the ancestral N1a branch took place in the Southern Arabian Peninsula shortly after the
Out-of-Africa migration, with substantial back-to-Africa migratory routes mostly through
the Eastern African coast and Northern African regions, to a lesser extent [13]. The highest
reported finding (6.2%) of the 16147G N1a variant in this region was reported in the
Soqotra archipelago, an isolated group of islands situated between the Horn of Africa and
southern Arabia on the proposed route of the ancient gene flow across the Red Sea [69].
As depicted in the world distribution map, it showed a substantially different distribution
than reported so far. Apart from the previously reported African and Middle Eastern
regions, members of this rare clade were found to be scattered globally, from central and
Southeastern Europe to Eastern Asia and India. It also showed a significant presence in
Europe as well, especially in Croatia and other South Eastern European countries, such
as Bosnia and Herzegovina, Bulgaria, Serbia, and Greece [70–72]. Moreover, a substantial
frequency of the N1a 16147G variant was detected in the Adriatic/Southeastern European
region (Figure 2). It is noteworthy that the highest observed frequency of both N1a clades
was reported in small and isolated populations, such as the Adriatic islands [5], the Soqotra
islands [69], and the Komi population [73], with over 9, 6, and 17%, respectively. To
the best of our knowledge and probably due to genetic drift and small population size,
this is the highest N1a frequency in any modern human population. Our calculation of
the diversification time of lineages within the novel European cluster (10,017 years ago)
corresponds with ancestral variants of this haplogroup, suggesting an even older presence
in Europe than Neolithic variants (Supplementary Table S2).

4.2. Complete Sequencing of the Rare X* Lineage Revealed a Novel Branch within the X
Haplogroup Phylogeny

Haplogroup X was estimated to originate in the Near East ca. 30 kya. According to the
current nomenclature it is divided into four subclades denoted as X1–X4. The X2 subclade
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encompasses by far the largest part of the X tree, marked by both the highest frequency and
diversity of all X lineages scattered worldwide It is geographically distributed among West
Eurasians, northern groups of Native Americans, as well as in northern Africa and the Near
East, but with low frequency, around 1–2% [13,16]. Some of X2 branches are predominant
in the Near Eastern and North African region, while the others are restricted to certain
Native American or European populations [8,74]. Although high global genetic diversity
has been reported for haplogroup X2, this haplogroup is far less common in Croatian
insular populations according to our previous findings. Subclades X1 and X4 are mainly
found in Near East and North Africa, while X3 has mostly Near Eastern and Mediterranean
distribution [13,17]. Our samples from two Croatian Adriatic Islands (Cres and Rab),
representing identical lineages, revealed a novel individual twig in the X haplogroup
phylogeny. This branch is connected with the X3 haplogroup by a common mutation
3531 in the coding region of the mitochondrial genome. This mutation was previously
recognized as defining for the X3 branch, and our novel lineage shares this, but not the other
defining mutations. Capturing such rare mitochondrial lineages in the sieve of sampling
methods is clearly an advantage of studying isolated island populations as reservoirs of
ancient diversity in the study of contemporary human populations.

4.3. An Unusual Genetic Link between Adriatic and Near Eastern Populations within the
HV2 Haplogroup

Similar interesting trace of a long-distance migration from Near/Middle East in the
Adriatic gene pool was found in the HV2 haplogroup. Haplogroup HV is predominantly
present in the Near East, Middle East, and in the Caucasus, while in Europe it is spread
unevenly—it is rare or absent in the north and west, but more common among southern
and eastern Europeans [19]. A revised topology of haplogroup HV based on 316 novel and
previously published complete mitochondrial genomes [18] defined the HV2 haplogroup
only by the unstable 73 mutation and the HV2a haplogroup with several other mutations,
including 16217 position in the HVSI region of the mitochondrial genome. Haplogroup
HV2 has been dated at 36–42 kya and most likely arose in Iran between the time of the first
settlement by modern humans and the LGM [54]. Our complete sequencing revealed a
novel HV2 subbranch, which we dubbed HV2b (Figure 3). Most members of this novel clade
belong to Central Asia (Pamir (China), Kyrgyzstan) and the Middle East (Iran, Armenia).
Finding of a specific cluster within the novel HV2b clade, encompassing a sample from the
Adriatic and from Armenia, suggests possible one time long-distance migration in the past.

5. Conclusions

The identification of a previously unknown European cluster within the African/South
Asian N1a 16147G branch suggests the emergence of a new founder lineage likely orig-
inating locally within European territories, potentially predating the Neolithic period.
Additionally, the wider distribution of N1a 16147A than previously reported in the lit-
erature suggests a need for a revision of the complete N1a phylogeny. Furthermore, the
detection of rare mitochondrial lineages, such as X* and HV2b, indicates the presence of
signals with origins in the Near/Middle East within the Adriatic gene pool. These findings
highlight that small human genetic isolates can serve as reservoirs of population variability,
offering insights into prehistoric migratory events that have played a significant role in
shaping the maternal genetic landscape on a larger scale.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes14081614/s1, Figure S1: Rare Croatian haplogroups with observed
frequencies; Table S1: A list of all published N1aA and N1aG HVS regions with frequencies [75–126];
Table S2: Coalescence time estimates for the subhaplogroups of N1a, X and HV2; Table S3: New
phylogenetic trees of N1a, X, and HV2 with fasta files; Table S4: List of all samples sequenced using
next generation sequencing, with detected mutations.
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Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rudan, I. Health Effects of Human Population Isolation and Admixture. Croat. Med. J. 2006, 47, 526–531. [PubMed]
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