Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oocyte Collection and Culture
2.2. Parthenogenetic Activation
2.3. Count the Number of Cells in the Blastocyst
2.4. Evaluation of ROS and GSH Levels in Oocytes
2.5. Mitochondrial Membrane Potential Assay
2.6. Determination of ATP Content
2.7. Mitochondrial Copy Number Detection
2.8. Quantitative Real-Time PCR (qRT-PCR)
2.9. Western Blotting
2.10. Assessment of Blastocyst Apoptosis
2.11. Statistics of Blastocyst Cell Proliferation
2.12. Statistical Analysis
3. Results
3.1. Protective Effects of Sal at Different Concentrations on Porcine Oocytes
3.2. Effects of Sal Supplementation on the Levels of Oxidative Stress in Porcine Oocytes
3.3. Effects of Sal Supplementation on the Mitochondrial Function of Porcine Oocytes
3.4. Effects of Sal Supplementation on Apoptosis and DNA Damage in Porcine Oocytes
3.5. Effects of Sal Supplementation on MAPK Activation and Meiosis in Porcine Oocytes
3.6. The Addition of Sal Can Reduce the Apoptosis and Increase the Proliferation of PA Blastocysts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoshioka, K. Development and application of a chemically defined medium for the in vitro production of porcine embryos. J. Reprod. Dev. 2011, 57, 9–16. [Google Scholar] [CrossRef]
- Sekhar, R.V.; Patel, S.G.; Guthikonda, A.P.; Reid, M.; Balasubramanyam, A.; Taffet, G.E.; Jahoor, F. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am. J. Clin. Nutr. 2011, 94, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Brussow, K.P.; Torner, H.; Kanitz, W.; Ratky, J. In vitro technologies related to pig embryo transfer. Reprod. Nutr. Dev. 2000, 40, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Day, B.N. Reproductive biotechnologies: Current status in porcine reproduction. Anim. Reprod. Sci. 2000, 60, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Tatemoto, H.; Muto, N. Mitogen-activated protein kinase regulates normal transition from metaphase to interphase following parthenogenetic activation in porcine oocytes. Zygote 2001, 9, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, Y.; Wang, D.; Yang, T.; Qi, J.; Zhang, Y.; Jiang, H.; Zhang, J.; Sun, B.; Liang, S. Iron Overload-Induced Ferroptosis Impairs Porcine Oocyte Maturation and Subsequent Embryonic Developmental Competence in vitro. Front. Cell Dev. Biol. 2021, 9, 673291. [Google Scholar] [CrossRef]
- Chatzispyrou, I.A.; Alders, M.; Guerrero-Castillo, S.; Zapata Perez, R.; Haagmans, M.A.; Mouchiroud, L.; Koster, J.; Ofman, R.; Baas, F.; Waterham, H.R.; et al. A homozygous missense mutation in ERAL1, encoding a mitochondrial rRNA chaperone, causes Perrault syndrome. Hum. Mol. Genet. 2017, 26, 2541–2550. [Google Scholar] [CrossRef] [PubMed]
- van der Reest, J.; Nardini Cecchino, G.; Haigis, M.C.; Kordowitzki, P. Mitochondria: Their relevance during oocyte ageing. Ageing Res. Rev. 2021, 70, 101378. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Dong, W.; Huo, J.; Sun, G.; Qin, Z.; Liu, X.; Zhang, B.; Wang, W. Integrated Metabolomics and Network Pharmacology Analysis Immunomodulatory Mechanisms of Qifenggubiao Granules. Front. Pharmacol. 2022, 13, 828175. [Google Scholar] [CrossRef]
- Yu, H.; Lin, Y.; Zhong, Y.; Guo, X.; Lin, Y.; Yang, S.; Liu, J.; Xie, X.; Sun, Y.; Wang, D.; et al. Impaired AT2 to AT1 cell transition in PM2.5-induced mouse model of chronic obstructive pulmonary disease. Respir. Res. 2022, 23, 70. [Google Scholar] [CrossRef]
- Chiang, H.M.; Chen, H.C.; Wu, C.S.; Wu, P.Y.; Wen, K.C. Rhodiola plants: Chemistry and biological activity. J. Food Drug Anal. 2015, 23, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.Z.; Lu, A.X.; Zhang, K.F.; Li, B.J. Anticancer effect of Sal on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol. Lett. 2014, 7, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tang, H.; Xiao, F.; Gong, J.; Peng, Y.; Meng, X. Protective effect of Sal from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules 2011, 16, 9912–9924. [Google Scholar] [CrossRef] [PubMed]
- Recio, M.C.; Giner, R.M.; Manez, S. Immunmodulatory and Antiproliferative Properties of Rhodiola Species. Planta Med. 2016, 82, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Yan, M.; Fan, Q.; Xu, J. Sal promotes osteoblast proliferation and differentiation via the activation of AMPK to inhibit bone resorption of knee osteoarthritis mice. Tissue Cell 2022, 79, 101917. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Luo, J. Sal promotes human periodontal ligament cell proliferation and osteocalcin secretion via ERK1/2 and PI3K/Akt signaling pathways. Exp. Ther. Med. 2018, 15, 5041–5045. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, C.; Chen, M.; Shi, Z.; Zhou, Y.; Shi, X.; Zhou, W.; Zhu, Z. Characterization of MicroRNAs Associated with Reproduction in the Brown Planthopper, Nilaparvata lugens. Int. J. Mol. Sci. 2022, 23, 7808. [Google Scholar] [CrossRef]
- Cecchino, G.N.; Garcia-Velasco, J.A. Mitochondrial DNA copy number as a predictor of embryo viability. Fertil. Steril. 2019, 111, 205–211. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, L.; Long, J.; Xie, Q.; Zheng, Y.; Liu, K.; Li, X. Sal: A review of its recent advances in synthetic pathways and pharmacological properties. Chem. Biol. Interact. 2021, 339, 109268. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Chen, Q.; Tian, Y.; Gao, L.; Lei, A. Sal improves porcine oocyte maturation and subsequent embryonic development by promoting lipid metabolism. Theriogenology 2022, 192, 89–96. [Google Scholar] [CrossRef]
- Lee, S.; Kang, H.G.; Jeong, P.S.; Nanjidsuren, T.; Song, B.S.; Jin, Y.B.; Lee, S.R.; Kim, S.U.; Sim, B.W. Effect of Oocyte Quality Assessed by Brilliant Cresyl Blue (BCB) Staining on Cumulus Cell Expansion and Sonic Hedgehog Signaling in Porcine during In Vitro Maturation. Int. J. Mol. Sci. 2020, 21, 4423. [Google Scholar] [CrossRef] [PubMed]
- Sreerangaraja Urs, D.B.; Wu, W.H.; Komrskova, K.; Postlerova, P.; Lin, Y.F.; Tzeng, C.R.; Kao, S.H. Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility. Int. J. Mol. Sci. 2020, 21, 3592. [Google Scholar] [CrossRef] [PubMed]
- Tatemoto, H.; Sakurai, N.; Muto, N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during In vitro maturation: Role of cumulus cells. Biol. Reprod. 2000, 63, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Nishibori, M.; Yamashita, Y.; Shimada, M. LH reduces proliferative activity of cumulus cells and accelerates GVBD of porcine oocytes. Mol. Cell Endocrinol. 2003, 209, 43–50. [Google Scholar] [CrossRef]
- Zhuang, X.; Maimaitijiang, A.; Li, Y.; Shi, H.; Jiang, X. Sal inhibits high-glucose induced proliferation of vascular smooth muscle cells via inhibiting mitochondrial fission and oxidative stress. Exp. Ther. Med. 2017, 14, 515–524. [Google Scholar] [CrossRef]
- Huang, X.; Zou, L.; Yu, X.; Chen, M.; Guo, R.; Cai, H.; Yao, D.; Xu, X.; Chen, Y.; Ding, C.; et al. Sal attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway. J. Mol. Cell Cardiol. 2015, 82, 153–166. [Google Scholar] [CrossRef]
- Ji, R.; Jia, F.Y.; Chen, X.; Wang, Z.H.; Jin, W.Y.; Yang, J. Sal alleviates oxidative stress and apoptosis via AMPK/Nrf2 pathway in DHT-induced human granulosa cell line KGN. Arch. Biochem. Biophys. 2022, 715, 109094. [Google Scholar] [CrossRef]
- Chen, L.; Wert, S.E.; Hendrix, E.M.; Russell, P.T.; Cannon, M.; Larsen, W.J. Hyaluronic acid synthesis and gap junction endocytosis are necessary for normal expansion of the cumulus mass. Mol. Reprod. Dev. 1990, 26, 236–247. [Google Scholar] [CrossRef]
- Guo, M.; Cao, Y.; Wang, T.; Song, X.; Liu, Z.; Zhou, E.; Deng, X.; Zhang, N.; Yang, Z. Baicalin inhibits Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. Eur. J. Pharmacol. 2014, 723, 481–488. [Google Scholar] [CrossRef]
- Kalous, J.; Tetkova, A.; Kubelka, M.; Susor, A. Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis. Int. J. Mol. Sci. 2018, 19, 698. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Duan, X.; Zhang, G.L.; Wang, Z.B.; Wang, Q.; Xiong, B.; Sun, S.C. RhoA-mediated FMNL1 regulates GM130 for actin assembly and phosphorylates MAPK for spindle formation in mouse oocyte meiosis. Cell Cycle 2015, 14, 2835–2843. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ha, S.; Li, Z.; Huang, Y.; Lin, E.; Xiao, W. Aurora B prevents aneuploidy via MAD2 during the first mitotic cleavage in oxidatively damaged embryos. Cell Prolif. 2019, 52, e12657. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.J.; Fan, H.Y.; Liang, C.G.; Yu, L.Z.; Zhong, Z.S.; Chen, D.Y.; Sun, Q.Y. Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Biol. Reprod. 2004, 71, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.; Lee, D.; Panigone, S.; Horner, K.; Chen, R.; Theologis, A.; Lee, D.C.; Threadgill, D.W.; Conti, M. Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol. Cell Biol. 2007, 27, 1914–1924. [Google Scholar] [CrossRef]
- Tang, Y.; Vater, C.; Jacobi, A.; Liebers, C.; Zou, X.; Stiehler, M. Sal exerts angiogenic and cytoprotective effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways. Br. J. Pharmacol. 2014, 171, 2440–2456. [Google Scholar] [CrossRef]
- Liao, Z.L.; Su, H.; Tan, Y.F.; Qiu, Y.J.; Zhu, J.P.; Chen, Y.; Lin, S.S.; Wu, M.H.; Mao, Y.P.; Hu, J.J.; et al. Sal protects PC-12 cells against amyloid beta-induced apoptosis by activation of the ERK1/2 and AKT signaling pathways. Int. J. Mol. Med. 2019, 43, 1769–1777. [Google Scholar] [CrossRef]
- Guo, B.; Zuo, Z.; Di, X.; Huang, Y.; Gong, G.; Xu, B.; Wang, L.; Zhang, X.; Liang, Z.; Hou, Y.; et al. Sal attenuates HALI via IL-17A-mediated ferroptosis of alveolar epithelial cells by regulating Act1-TRAF6-p38 MAPK pathway. Cell Commun. Signal 2022, 20, 183. [Google Scholar] [CrossRef]
- Orsi, N.M.; Leese, H.J. Protection against reactive oxygen species during mouse preimplantation embryo development: Role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol. Reprod. Dev. 2001, 59, 44–53. [Google Scholar] [CrossRef]
- Dunning, K.R.; Russell, D.L.; Robker, R.L. Lipids and oocyte developmental competence: The role of fatty acids and beta-oxidation. Reproduction 2014, 148, R15–R27. [Google Scholar] [CrossRef]
- Gasparrini, B.; Boccia, L.; Marchandise, J.; Di Palo, R.; George, F.; Donnay, I.; Zicarelli, L. Enrichment of in vitro maturation medium for buffalo (Bubalus bubalis) oocytes with thiol compounds: Effects of cystine on glutathione synthesis and embryo development. Theriogenology 2006, 65, 275–287. [Google Scholar] [CrossRef]
- Lim, J.; Luderer, U. Glutathione deficiency sensitizes cultured embryonic mouse ovaries to benzo[a]pyrene-induced germ cell apoptosis. Toxicol. Appl. Pharmacol. 2018, 352, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Wang, M.Q.; Ni, S.H.; Wang, M.; Liu, L.Y.; You, H.Y.; Wu, X.H.; Wang, Y.J.; Lu, L.; Wei, L.B. Sal ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-kappaB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur. J. Pharmacol. 2020, 867, 172797. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Liu, D.; Tian, D. Sal prevents hydroperoxide-induced oxidative stress and apoptosis in retinal pigment epithelium cells. Exp. Ther. Med. 2018, 16, 2363–2368. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Santos, J.; Varum, S.; Amaral, S.; Mota, P.C.; Sousa, A.P.; Amaral, A. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. Update 2009, 15, 553–572. [Google Scholar] [CrossRef]
- May-Panloup, P.; Chretien, M.F.; Malthiery, Y.; Reynier, P. Mitochondrial DNA in the oocyte and the developing embryo. Curr. Top. Dev. Biol. 2007, 77, 51–83. [Google Scholar] [CrossRef]
- Yao, X.; Jiang, H.; Liang, S.; Shen, X.; Gao, Q.; Xu, Y.N.; Kim, N.H. Laminarin enhances the quality of aged pig oocytes by reducing oxidative stress. J. Reprod. Dev. 2018, 64, 489–494. [Google Scholar] [CrossRef]
- Liang, S.; Jin, Y.X.; Yuan, B.; Zhang, J.B.; Kim, N.H. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci. Rep. 2017, 7, 11114. [Google Scholar] [CrossRef]
- Bisht, S.; Dada, R. Oxidative stress: Major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front. Biosci. Sch. 2017, 9, 420–447. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Y.; Sun, Q.; Zhang, J.; Jiang, M.; Chang, C.; Huang, X.; Wang, C.; Wang, P.; Zhang, Z.; et al. MFN2 Plays a Distinct Role from MFN1 in Regulating Spermatogonial Differentiation. Stem Cell Rep. 2020, 14, 803–817. [Google Scholar] [CrossRef]
- Zhang, Y.; ShiYang, X.; Zhang, Y.; Li, Y.; Shi, X.; Xiong, B. Exposure to aristolochic acid I compromises the maturational competency of porcine oocytes via oxidative stress-induced DNA damage. Aging 2019, 11, 2241–2252. [Google Scholar] [CrossRef]
- Singh, I.; Parte, P. Heterogeneity in the Epigenetic Landscape of Murine Testis-Specific Histone Variants TH2A and TH2B Sharing the Same Bi-Directional Promoter. Front. Cell Dev. Biol. 2021, 9, 755751. [Google Scholar] [CrossRef]
- Tang, Y.; Hou, Y.; Zeng, Y.; Hu, Y.; Zhang, Y.; Wang, X.; Meng, X. Sal attenuates CoCl2-simulated hypoxia injury in PC12 cells partly by mitochondrial protection. Eur. J. Pharmacol. 2021, 912, 174617. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Xie, N.; Bai, J.; Jiang, S.; Zhang, Y.; Hou, Y.; Meng, X. Sal, a phenyl ethanol glycoside from Rhodiola crenulata, orchestrates hypoxic mitochondrial dynamics homeostasis by stimulating Sirt1/p53/Drp1 signaling. J. Ethnopharmacol. 2022, 293, 115278. [Google Scholar] [CrossRef]
- Mao, G.X.; Xu, X.G.; Wang, S.Y.; Li, H.F.; Zhang, J.; Zhang, Z.S.; Su, H.L.; Chen, S.S.; Xing, W.M.; Wang, Y.Z.; et al. Sal Delays Cellular Senescence by Stimulating Mitochondrial Biogenesis Partly through a miR-22/SIRT-1 Pathway. Oxid. Med. Cell Longev. 2019, 2019, 5276096. [Google Scholar] [CrossRef]
- Xue, H.; Li, P.; Luo, Y.; Wu, C.; Liu, Y.; Qin, X.; Huang, X.; Sun, C. Sal stimulates the Sirt1/PGC-1alpha axis and ameliorates diabetic nephropathy in mice. Phytomedicine 2019, 54, 240–247. [Google Scholar] [CrossRef]
- Daniel, L.L.; Daniels, C.R.; Harirforoosh, S.; Foster, C.R.; Singh, M.; Singh, K. Deficiency of ataxia telangiectasia mutated kinase delays inflammatory response in the heart following myocardial infarction. J. Am. Heart Assoc. 2014, 3, e001286. [Google Scholar] [CrossRef]
- Miranda, M.A.; Marcato, P.D.; Mondal, A.; Chowdhury, N.; Gebeyehu, A.; Surapaneni, S.K.; Bentley, M.; Amaral, R.; Pan, C.X.; Singh, M. Cytotoxic and chemosensitizing effects of glycoalkaloidic extract on 2D and 3D models using RT4 and patient derived xenografts bladder cancer cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111460. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Li, Z. Sal suppresses the activation of nasopharyngeal carcinoma cells via targeting miR-4262/GRP78 axis. Cell Cycle 2022, 21, 720–729. [Google Scholar] [CrossRef]
- Ding, S.Y.; Wang, M.T.; Dai, D.F.; Peng, J.L.; Wu, W.L. Sal induces apoptosis and triggers endoplasmic reticulum stress in human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2020, 527, 1057–1063. [Google Scholar] [CrossRef]
- Marteil, G.; Richard-Parpaillon, L.; Kubiak, J.Z. Role of oocyte quality in meiotic maturation and embryonic development. Reprod. Biol. 2009, 9, 203–224. [Google Scholar] [CrossRef]
- Pakrasi, P.L.; Jain, A.K. Cyclooxygenase-2-derived endogenous prostacyclin reduces apoptosis and enhances embryo viability in mouse. Prostaglandins Leukot. Essent. Fatty Acids 2008, 79, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Rizzino, A.; Wuebben, E.L. Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta 2016, 1859, 780–791. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Sequence | Amplicon Size (bp) | Accession Number |
---|---|---|---|
ATF6 | F: TATTTGCCTCTTTCATTGCCC R: GGATCGAGATTGTGCGGTTAT | 123 | NC_000845.1 |
ND1 | F: GCCACATCCTCAATCTCCAT R: GATTAGAGGGTAGGGTATTGGTAG | 99 | NC_000845.1 |
COX1 | F: TCCAATGGACATTATGGCTC R: GAAGACATCTCGGCTGAACT | 220 | NC_010443.5 |
GCG | F: GAATCAACACCATCGGTCAAAT R: CTCCACCCATAGAATGCCCAGT | 198 | NC_010457.5 |
GADPH | F: CCCAGAATATCATCCCTGCT R: CTGCTTCACCACCTTCTTGA | 185 | NC_010447.5 |
Gene Name | Sequence | Amplicon Size (bp) | Accession Number |
---|---|---|---|
Caspase3 | F: GTGGGATTGAGACGGACAGTGG R: TTCGCCAGGAATAGTAACCAGGTG | 114 | NM_214131.1 |
BCL-2 | F: TGGATGACCGAGTACCTGAA R: CAGCCAGGAGAAATCAAACA | 120 | NM_001166486.1 |
BAX | F: CACCAAGAAGCTGAGCGAGTGT R: TCGGAAAAAGACCTCTCGGGGA | 118 | NM_173894 |
COX2 | F: GGCTGCGGGAACATAATAGA R: GCAGCTCTGGGTCAAACTTC | 183 | NM_214321.1 |
MEK | F: TCATCGACTCCATGGCCAAC R: AGATGTCCGACTGCACGGAGTA | 96 | NM_001244550.1 |
ERK1 | F: AGCCCTTTTGAGCATCAGACC R: AATGACGTTCTCGTGGCGG | 84 | XM_021088019.1 |
ERK2 | F: CAAACCTTCCAACCTGCTGC R: TACTCCGTCAGGAACCCTGT | 111 | XM_021071922.1 |
C-MOS | F: GGTGGTGGCCTACAATCTCC R: TCAGCTTGTAGAGCGCGAAG | 165 | NM_001113219.1 |
GDF9 | F: GTCTCCAACAAGAGAGAGATTC R: CTGCCAGAAGAGTCATGTTAC | 109 | NM_001001909.1 |
CDK1 | F: TAATAAGCTGGGATCTACCACATC R: TGGCTACCACTTGACCTGTA | 130 | NM_001159304.2 |
Cyclin B | F: AGCTAGTGGTGGCTTCAAGG R: GCGCCATGACTTCCTGTA | 101 | NM_001170768.1 |
NANOG | F: AGGACAGCCCTGATTCTTCCACAA R: AAAGTTCTTGCATCTGCTGGAGGC | 198 | XM_021092390.1 |
CDX2 | F: AGCCAAGTGAAAACCAGGAC R: TGCGGTTCTGAAACCAGATT | 178 | NM_001278769.1 |
SOX2 | F: GCGGAGTGGAAACTTTTGTCC R: CGGGAAGCGTGTACTTATCCTT | 157 | NM_001123197.1 |
OCT4 | F: GGCTTCAGACTTCGCCTCC R: AACCTGAGGTCCACAGTATGC | 226 | XM_021097869.1 |
Caspase9 | F: GGCCACTGCCTCATCATCAA R: GGAGGTGGCTGGCCTTG | 163 | XM_013998997.2 |
GADPH | F: CCCAGAATATCATCCCTGCT R: CTGCTTCACCACCTTCTTGA | 185 | NM_001034034.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Geng, Z.; Yu, X.; Hu, B.; Liu, L.; Chi, Z.; Qu, L.; Zhang, M.; Jin, Y. Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption. Genes 2023, 14, 1729. https://doi.org/10.3390/genes14091729
Shi S, Geng Z, Yu X, Hu B, Liu L, Chi Z, Qu L, Zhang M, Jin Y. Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption. Genes. 2023; 14(9):1729. https://doi.org/10.3390/genes14091729
Chicago/Turabian StyleShi, Shuming, Zhaojun Geng, Xianfeng Yu, Bing Hu, Liying Liu, Zhichao Chi, Linyi Qu, Mingjun Zhang, and Yongxun Jin. 2023. "Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption" Genes 14, no. 9: 1729. https://doi.org/10.3390/genes14091729
APA StyleShi, S., Geng, Z., Yu, X., Hu, B., Liu, L., Chi, Z., Qu, L., Zhang, M., & Jin, Y. (2023). Salidroside Supplementation Affects In Vitro Maturation and Preimplantation Embryonic Development by Promoting Meiotic Resumption. Genes, 14(9), 1729. https://doi.org/10.3390/genes14091729